
420 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 16, NO. 3, MARCH 2006

A Fast Adaptive Motion Estimation Algorithm
Ishfaq Ahmad, Senior Member, IEEE, Weiguo Zheng, Member, IEEE, Jiancong Luo, Member, IEEE, and

Ming Liou, Life Fellow, IEEE

Abstract—Motion estimation (ME) is a multistep process that in-
volves not one, but a combination of techniques, such as motion
starting point, motion search patterns, and adaptive control to curb
the search, avoidance of search stationary regions, etc. The collec-
tive efficiency of these techniques is what makes a ME algorithm
robust and efficient across the board. This paper proposes a ME al-
gorithm that is an embodiment of several effective ideas for finding
the most accurate motion vectors (MVs) with the aim to maximize
the encoding speed as well as the visual quality. The proposed al-
gorithm takes advantage of the correlation between MVs in both
spatial and temporal domains, controls to curb the search, avoids
of search stationary regions, and uses switchable shape search pat-
terns to accelerate motion search. The algorithm yields very sim-
ilar quality compared to the full search but with several hundred
times faster speed. We have evaluated the algorithm through a
comprehensive performance study that shows that the proposed
algorithm achieves substantial speedup without quality loss for a
wide range of video sequences, compared with the ME techniques
recommended by the MPEG-4 committee.

Index Terms—Adaptive search patterns, adaptive threshold, in-
ertia tracing, spatial and temporal predictive search.

I. INTRODUCTION

T
HE overwhelming complexity of motion estimation (ME)

using a full search based brute-force approach has led to

explosive research in ME. The research has led to myriad fast

algorithms, and yet finding the “most efficient” algorithm re-

mains an open research problem. Most ME algorithms exhibit

tradeoffs between quality and speed. Since ME is highly scene

dependent, and, no one technique can be fully relied to generate

good visual quality for all kinds of video scenes. Instead, it is the

quintessence of a variety of techniques, such as motion starting

point, motion search patterns, and adaptive control to curb the

search, avoidance of search stationary regions, etc., that makes

an ME algorithm robust and efficient across the board.

While the performance of the full search method is consid-

ered to be “optimal,” its complexity is prohibitively high for

software implementation. Furthermore, since the full search

method aims to find the minimum sum of absolute differences
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(SADs), the presence of noise in a video can lead to suboptimal

motion vectors (MVs). The presence of noise can also cause

the full search to produce chaotic motion field for a smooth

motion video, costing more bits to encode MVs with fewer bits

left for encoding DCT coefficients with a given bit budget [1],

[22]. Designing fast and accurate ME algorithms remains an

open research problem. The most common ME method is the

block matching technique, in which a video frame is divided

into macroblocks (MBs) (16 16 pixels) or blocks (8 8

pixels) and a search window is defined. Each MB of the current

frame is compared with the blocks of the reference frame

within a search window. The displacement with the maximum

correlation or the minimum distortion between the current

block and the reference blocks within the search window is

selected as the MV.

A vast number of block matching algorithms (BMAs) have

been proposed (see [18] for an extensive survey). Some of

the well known algorithms are: block pixel decimation [16],

three step search algorithm (TSS) [18] and two dimensional

logarithmic search algorithm (2D-LOG) [16] as well as their

variations [25], [21], new three step search algorithm (NTSS)

[22], four step search algorithm [26], conjugate directional

search [23], [31], [37], orthogonal direction search algorithm

(OSA) [27], dynamic search window adjustment (DSWA) [20],

cross search [7], diamond search [32], [39], gradient-based

search [24], zone-based search [17], refined zone-based search

[11], parallel hierarchical one-dimensional search algorithm

(PHODS) [4], and candidate vector-based four step search

algorithm (CV4SS) [12]. Hierarchical search [3], [5], [21], [29]

and multiresolution algorithms [2], [3] perform ME at multiple

levels successively, starting with the lowest resolution level

using low-pass filtering or subsampling [28].

AlmostalloftheBMAsmakeexplicitandimplicitassumptions

that the matching distortion increase monotonically as the

checking point moves away from the global minimum or the

error surface is unimodal over the global window. Indeed,

this assumption is not always true. Consequently, the resultant

MVs may be trapped in a local minimum. Most BMAs exhibit

proper behavior provided the following prerequisites are met:

1) object displacement is constant within a block of pixels;

2) pixel illumination between successive frame is spatially

and temporally uniform (this constraint can be relaxed in the

BMA with luminance correction); 3) motion is restricted to

translation; 4) matching distortion increases monotonically as

the displaced candidate block moves away from the direction

of the exact minimum distortion. Most of these conditions are

usually not met for real-life video sequences, but a large number

of ME algorithms still perform reasonably well. The problem

is these algorithms yield different performance on different

1051-8215/$20.00 © 2006 IEEE
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video sequences, and the reasons for that are not obvious. The

second problem is their high complexity. MV prediction (MVP)

techniques have shows significant performance improvements.

An initial guess of the next MV is obtained by prediction from

the previous MV in temporal or spatial domain. Various MVP

are proposed in literatures [6], [14], [23], [30], [36]. Within the

MPEG-4 or H.26X framework, MVs are differentially coded.

The predicted MV is subtracted from the actual MV and the

resulting difference is coded using a variable length code.

MPEG and ITU series standards recommend block-based

motion compensation techniques. After considerable assess-

ment and rigorous testing, the MPEG-4 Part-7 adopted MV

field adaptive fast search technique (MVFAST) [8]–[10] as

a recommended ME algorithm [13]. Our group proposed an

algorithm named predictive MVFAST (PMVAST) [34] (part

of which appeared in [13]) that is also recommended in the

MPEG-4 standard. In this paper, we propose a ME algorithm

that is a combination of a number of novel ideas for finding

more accurate MVs and with a faster speed. The proposed

algorithm, named as fast adaptive ME (FAME) algorithm, out-

performs MVFAST and PMVFAST. FAME takes advantages

of the correlation between MVs in both spatial and temporal

domains, controls to curb the search, avoids search stationary

regions, and adaptively uses special diamond shape search

patterns to accelerate motion search. The algorithm yields

very close quality compared to the full search but with several

hundred times speedup.

The rest of this paper is organized as follows. Section II pro-

vides an overview of MVFAST and PMVFAST. The details and

descriptions of these algorithms set the stage for the discussion

of FAME that uses new features but takes into account some of

the good features of these two previous algorithms. Section III

describes the proposed algorithm in details. Section IV provides

extensive performance evaluation and comparisons, as well as

the comments and observations. The last section concludes the

paper with final remarks and future directions.

II. OVERVIEW OF MVFAST AND PMVFAST

MVFAST offers high performance both in quality and speed

and does not require memory to store the searched points and

MVs. The MVFAST has been adopted by MPEG-4 Part 7

(March 2000) as the core technology for fast ME.

MVFAST exploits an optional phase called early elimination

of search as its first step. In the phase of early elimination of

search, the search for a MB will be terminated immediately, if

its SAD value obtained at (0, 0) is less than a threshold T, and the

MV is assigned as (0, 0). MVFAST defines local motion activity

of a MB to classify motion types as high, medium or low. The

local motion activity determines the initial search center as well

as the search strategy. If the motion activity is low or medium,

the search center is the origin. Otherwise, the vector belonging

to the set of MVs in the region of support (ROS) that yields the

minimum SAD is chosen as the search center.

MVFAST employs two search patterns to perform local

search around the search center: the small diamond search

pattern (SDSP) and large diamond search pattern (LDSP). The

choice depends on the motion activity identified. If the motion

Fig. 1. BMVCL.

activity is low or high, SDSP is employed; otherwise, LDSP is

chosen. LDSP switches to SDSP, if the center position gives

the minimum SAD.

A derivative of MVFAST, called PMVFAST is considered as

an optional approach that might benefit in special coding situa-

tions. PMVFAST incorporates a set of thresholds in MVFAST

to trade higher speed-up at the cost of memory size, memory

bandwidth and additional algorithmic complexity. PMVFAST

combines the ‘stop when good enough’ principle, the threshold

of stopping criteria and the spatial and temporal MV prediction

of advanced predictive diamond zonal search (APDZS) [33],

[35] as well as the efficient LDSP and SDSP of MVFAST. The

PMV is used as the initial predictor. The search stops if the PMV

satisfies the stopping criterion. PMVFAST computes the SAD

of some highly probable MVs and stops if the minimum SAD so

far satisfied the stopping criterion. PMVFAST performs a local

search using some of the techniques of MVFAST.

III. FAME ALGORITHM

Motion is generally classified as foreground and background

motion. Most ME algorithms assume the background is still

or has slow motion, and that the foreground motion is stable

(moving in constant direction). This assumption leads to a cer-

tain correlation between MVs, which are then searched using a

fixed shape, such as a diamond or square; MVFAST and PMV-

FAST use similar ideas. However, the above assumptions are

not always true. In many cases the foreground is almost still but

the background moves fast, such as the camera focusing on a

moving car. Here, the car may be relatively still but the back-

ground may have fast motion. In such situations, a fixed search

pattern may get trapped in a local minimal, leading to incor-

rect motion prediction. Further, a fixed threshold cannot adapt

to different kinds of sequence, and, wastes useful computational

resource. The FAME algorithm takes advantages of the correla-

tion between MVs in both spatial and temporal domains, and

uses adaptive shape search patterns to accelerate motion search.

Various features of FAME are described next.

Adaptive Threshold for Identifying Stationary Blocks: About

98% of the stationary blocks have their SAD at position (0,

0) less than 512 for MB size of 16 16 [8], [13]. If we can

detect a stationary MB, we can just set its MV as (0, 0) and

skip the motion search. Previous algorithms [8], [34] detect sta-

tionary blocks using a fixed threshold. An adaptive threshold

makes detection fast and more robust. Most stationary MBs have

small SADs at (0, 0). The proposed algorithm uses an adaptive

threshold, named threshold for stationary block (TSB), which
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Fig. 2. Temporal MV prediction.

Fig. 3. Illustration of motion inertia.

makes the detection faster and robust in the sense that it can re-

sist the influence of noise. If the SAD at (0, 0) is less than TSB,

the algorithm skips the rest of the search and use (0, 0) as the

MV of the current block. TSB is determined as follows:

• denote by MVCL the MV candidate list. Initially, MVCL

contains MVs of the upper, upper-right and left MBs.

• if all adjacent MBs in MVCL have MVs at (0, 0), the algo-

rithm uses the maximum of their SAD as threshold TSB;

• if one of adjacent MBs in MVCL has MV unequal to (0,

0), we use the minimum of SAD of adjacent MBs as TSB

since the possibility of current block inside stationary area

become lower.

To make the detection more robust, we bound TSB within a

certain range. The upper boundary can be tuned in terms of the

type of the video sequence.

Detection of MBs Belonging to Same Moving Object: The

smoothness of the motion field, especially within the same

moving object, means high correlation of MVs. This property

can be used to accelerate motion search if we can identify the

current MB is within the same moving object of its adjacent

MBs. This property is explained as follows:

(1)

(2)

where is local motion activity (LMA) measurement factor,

is the average of MVs of the upper, upper-right, and left

MBs, and is the th MV in MVCL.

The definition of LMA in FAME is different from that in MV-

FAST. In MVFAST, is defined as the cityblock length of

[8], [13]. In FAME, is defined as the cityblock length of the

Fig. 4. Various search patterns used in FAME.

Fig. 5. Example of MV candidate list.

variation of MV. The notion of our LMA makes the measure-

ment more localized and more detailed. It also reflects the con-

sistency of MVs within MVCL. It can be observed that if the

current MB and MBs in MVCL belong to the same moving ob-

ject, should have a small value. The LMA is defined as

Low if

Medium if

High if

(3)

In our experiments, , . When LMA is low, it

means its adjacent MBs have similar motion property. The cur-

rent MB may possibly be inside the same object with its adjacent

MBs, and may have the same MV.

Adaptive Threshold to Enable Half-Stop: In order to avoid

being trapped in unnecessary search, FAME uses a threshold to
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TABLE I
ABBREVIATIONS USED IN SUBSEQUENT TABLES

stop the search when the result is good enough. If the prediction

error during the search is below this threshold, the search stops

earlier. We call this the threshold for half-stop (THS), which is

again adaptively set according to LMA of its MVCL.

• THS is equal to the mean value of SAD of adjacent MBs if

the local motion activity is less than 4.

• THS is equal to the minimum value of SAD of adjacent

MB.

• To avoid the extremely low or high value of THS caused

by noise, we bound THS within a certain range. Generally,

the lower bound has the same value of the lower bound of

TSB. The upper bound can be tuned in terms of the type of

video sequence.

Extended MV Candidate Set: The MVCL initially consists

of a basic MVCL, called BMVCL. This includes MVs from its

neighbor MBs as shown in Fig. 1, where MB is the current

MB. The BMVCL is extended to include additional MVs, as

explained below.

Since the FAME algorithm is also based on motion prediction

technique, the candidates in MVCL are crucial for speed and

quality of FAME. If there are more MV candidates, the chance

to find true vector faster and more precise is higher. Fig. 2 shows

ordinary members in MVCL, presenting the prediction from the

spatial domain. However, the correlation of MVs does not exist

only in the spatial domain, but exists in the temporal domain as

well. FAME uses one MV prediction from the temporal domain.

Motion Inertia: Some temporal MV prediction based algo-

rithms are reported [8], [14], [33]. But these algorithms use only

the average of MVs of adjacent MBs in the reference picture, or

the MV of corresponding MB in the reference picture. As shown

in Fig. 2, for MB , the prediction of MV from temporal do-

main would be , or the average of MVs of adjacent

MBs in picture . Based on our experiments and observa-

tions, the motion track of a moving object in a video sequence is

continuous except when scene change occurs. That means there

is a so-called motion inertia property in the temporal domain.

The property can be used for MV prediction and interpolation.

Let present the coordinates of left-top corner of cur-

rent MB. denotes the inertia MV predictor of current

MB. is the set of MVs of the reference frame. Let

be the coordinates of the left-top corner of MB in the reference

frame and , be the MV of

this MB. Based on the inertia property (the MB moves with the

same MV), the position of MB in current frame will be

(4)

(5)

Let . The goal of MV prediction is

to find out a MV in the reference frame that minimizes , as (6).

Fig. 3 illustrates the inertia MVs.

(6)
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TABLE II
DETAILED COMPARISON OF FAME WITH FS, MVFAST, AND PMVFAST
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TABLE II (Continued)
DETAILED COMPARISON OF FAME WITH FS, MVFAST, AND PMVFAST
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TABLE II (Continued)
DETAILED COMPARISON OF FAME WITH FS, MVFAST, AND PMVFAST
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TABLE II (Continued)
DETAILED COMPARISON OF FAME WITH FS, MVFAST, AND PMVFAST

For bidirectionally predicted frames, the MVs can be inter-

polated from its reference pictures. The interpolated MVs are

computed by inertia criteria and scaling. The MVs are used as

for B-frames. From observation, we found that the inter-

polated MV can provide good prediction of MV for B-frames,

and this the motion search can be terminated quickly.

When LMA is not low, and an additional MV

resulting from the mean filter is added to the BMVCL.

, where and are obtained from (7)

Mean

Mean (7)

where , , and are the MVs of the upper, upper-right, and

left MBs.

For instance, if , and ,

then and .

Adaptive Search Patterns: FAME adaptively uses four mo-

tion search patters: small diamond pattern (SDP), large diamond

pattern (LDP), elastic diamond pattern (EDP), and motion adap-

tive pattern (MAP). The first three patterns are shown as Fig. 4.

LDP and EDP are used to locate raw MV inside search range,

while SDP is used to fine tune an MV. MAP is used to find pre-

dictors in the MVCL. The algorithm selects these patterns adap-

tively depending upon LMA. The algorithm switches these pat-

terns when needed.

The search patterns are selected according to the following

principles.

• SDP is used to refine a predicted MV. Once the minimum

of SAD is located at the center of diamond, the center rep-

resents the MV, and the search can be terminated.

• If the number of successively executed SDPs exceeds a cer-

tain predefined constant, called elastic factor , the search

pattern switches to EDP.

• EDP and LDP are used for fast wide-range search in diag-

onal direction and in horizontal and vertical direction re-

spectively and to avoid the search from being trapped at

local minima. The algorithm switch to LDP once after exe-

cuting EDP. LDP will switch to EDP when the minimum of

SAD is not located at the center. Other wise, it will switch

to SDP for further refinement.

• MAP is used to search the predictors in MVCL. It is used

first if the local motion activity is not low.

Search Strategy: The search strategy is as follows.

1) Add the spatial predictors to BMVCL, as shown in Fig. 5.

Compute LMA with (1)–(3).

2) When , the search starts from SDP, and

elastic factor , and initial search center is the av-

erage in MVCL.
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TABLE III
SUMMARY OF PERFORMANCE COMPARISON WITH MVFAST, PMVFAST

3) When , MVCL is extended by adding

and . The initial search pattern is the MAP.

MVs in MVCL are checked respectively. The candidate

with the minimum SAD is selected as the search center

for subsequent search. Then the search pattern is SDP, and

elastic factor .

4) When , MVCL is extended by adding

and . The initial pattern is MAP. The

candidates in MVCL are checked respectively. The

one with the minimum SAD is selected as new search

center. Subsequent search is starts from SDP, and

elastic factor .
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Fig. 6. Average number of checkpoints versus upper bound of TSB (CCIR
format video).

Fig. 7. Average number of checkpoints versus upper bound of TSB (QCIF and
CIF format video).

Fig. 8. Average PSNR versus upper bound of TSB (CCIR format video).

Search Track: FAME keeps track of accessed checking

points so as to avoid duplicate checking.

IV. PERFORMANCE EVALUATION

This section includes the performance of the proposed algo-

rithm and its comparison with MVFAST and PMVFAST. Table I

lists the abbreviations used in the comparison. Compared with

Fig. 9. Average PSNR versus upper bound of TSB (QCIF and CIF format
video).

Fig. 10. Average number of checkpoints versus upper bound of THS (CCIR
format video).

Fig. 11. Average PSNR versus upper bound of THS (CCIR format video).

these two supposedly the “best” algorithms, FAME is in faster

and yields better visual quality, as demonstrated by the results

presented in this section. The full search (FS) technique is also

included for comparison. All ME algorithms being compared

were implemented on Microsoft VM software. The rate control

algorithm was TM5. The selection of the video sequences was

according to MPEG-4 testing [15]. MVFAST and PMVFAST

were implemented according to their description reported in
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TABLE IV
PERFORMANCE COMPARISON WITH DIFFERENT UPPER BOUND OF TSB (CCIR FORMAT VIDEO)

[13]. For the experiments reported in Tables II and III, both the

upper bound of TSB and THS were 4608 for the CCIR format

video sequences, and 896 for the QCIF and CIF format video

sequences.

To investigate the effect of the upper bounds of TSB and THS,

we examined a number of values. For the CCIR format video,

we set the upper bounds of TSB and THS from 4K (4096) to 8K

(8192), with steps of 512. For the QCIF and CIF format video,

we set the upper bounds from 512 to 1536, with steps of 128.

Tables VIII and IX show the effect of different values for and

.

A. Detailed Assessment and Comparison

We compare FAME with FS, MVFAST and PMVFAST, in

terms of speed and quality. The number of checkpoints is the

measure for search speed. From the results in the Table II, we

observe that FAME has a speedup of 3000 over FS, and far out-

performs MVFAST and PMVFAST in the terms of the number

of checkpoints. The search time is another speed measure that

takes into account the overhead of the algorithm. The over-

head of the algorithm includes the time spent on setting the list,

storing and fetching temporal and spatial MV candidates and

computing motion inertia, etc. Table II indicates that FAME out-

performs MVFAST and PMVFAST in the search time compar-

ison as well. As for the visual quality comparison, MVFAST and

FAME both slightly outperform FS, and are better than PMV-

FAST. FAME yields the best peak signal-to-noise ratio (PSNR)

among the four algorithms.

B. Comparison Summary

Table III provides a summary of the performance comparison

of FAME with MVFAST and PMVFAST. The percentages of

checkpoints less than the reference algorithms are included in

the table. On average, FAME is 54% faster than MVFAST and

58% faster than PMVFAST. In terms of PSNR values, FAME

is slightly better than MVFAST by 0.01 dB and outperforms

PMVFAST by almost 1 dB. We observe that FAME achieves

Fig. 12. Average number of checkpoints versus the upper bound of THS
(QCIF and CIF format video).

Fig. 13. Average PSNR versus the upper bound of THS (QCIF and CIF format
video).

different speedup compared to MVFAST and PMVFAST on

various video sequences.

Generally, motion in a scene is of two types: camera pan-

ning dominant or foreground object dominant. In the former,
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TABLE V
PERFORMANCE OF FAME WITH DIFFERENT UPPER BOUND OF TSB (QCIF AND CIF FORMAT VIDEO)

most background elements move in the same direction. In the

latter, the motion reflects the direction of the foreground object

motion. In most talking-head video sequences, the background

is relatively steady and only the foreground objects are active.

Thus, they are object motion dominant video. In contrast, in

most sport videos, the camera usually focuses on the athletes

(objects), while the background elements move in the same di-

rection when the camera is panning. Such videos are camera

panning dominant video. Among the video sequences involved

in the experiments, “flower,” “coastguard,” and “foreman” are

camera panning dominant video sequences, while the rest are

foreground object motion dominant video sequences.

From Table III, we observe that the average number of

checkpoints of FAME is 30% less than MVFAST and 20% less

than PMVFAST in object motion dominant video. However,

the values increase to 60% less as compared MVFAST and

90% less than PMVFAST in camera panning dominant video.

That implies that FAME can handle camera panning dominant

video better than MVFAST and PMVFAST. This is due to the

inertia temporal MV predictor that can predict the background

panning motion more accurately than the spatial MV predictors.

C. Effect of TSB Upper Bound

We investigated the performance of the algorithm by setting

deferent upper bound for TSB (see Tables IV and V). Figs. 6

and 7 show the checkpoint curves. Figs. 8 and 9 show the PSNR

curves. We observe that an increase in the upper bound leads to

small number of checkpoints involved. However, the PSNR also

tends to decrease. The reason is that when the upper bound of

the threshold is increased, more MBs are detected as stationary
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TABLE VI
EFFECT OF DIFFERENT UPPER BOUND OF THS (CCIR FORMAT VIDEO)

TABLE VII
EFFECT OF DIFFERENT UPPER BOUND OF THS (QCIF AND CIF FORMAT VIDEO)
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TABLE VIII
EFFECT OF L AND L (CCIR FORMAT VIDEO)
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TABLE IX
EFFECT OF L AND L (QCIF AND CIF FORMAT VIDEO)
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TABLE IX (Continued)
EFFECT OF L AND L (QCIF AND CIF FORMAT VIDEO)
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TABLE X
QUALITATIVE COMPARISON OF MVFAST, PMVFAST, AND FAME ALGORITHM

MBs. Consequently, the number of checkpoints decreases. This

is a tradeoff situation as some MBs can be wrongly taken as

stationary, which lowers the video quality. The selection of the

upper bound of the threshold would depend on the user require-

ments in terms of the speed and quality. Here UB is the upper

bound of TSB.

D. Effect of THS Upper Bound

Different upper bounds for THS were used to investigate its

effects (see Table VI and VII). Figs. 10 and 11 show the check-

point curves. Figs. 12 and 13 show the PSNR curve. When we

increase the upper bound of THS, both the numbers of check-

points and the PSNR value decrease. This observation is similar

to the effect of the upper bound of TSB. When the upper bound

of THS is increased, the algorithm terminates search in more

MBs with larger SAD values. The match is not considerably ac-

curate but is much faster. Hence, the numbers of checkpoints as

well as the PSNR values decrease. Here UB is the upper bound

of THS.

E. The Effect of and

We used different and values to investigate their effect

on the performance. From Tables VIII and IX, we observed that

by fixing the value of , generally, both the speed and PSNR

performance tend to decrease when the value of increases.

Again, by fixing to 1, we find that generally when the value

of increases, the speed increases but the PSNR drops. Thus,

there is a tradeoff between speed and visual quality. We choose

and in the experiments.

F. Qualitative Comparison

We summarize the qualities of MVFAST, PMVFAST, and the

proposed FAME algorithm. The qualitative comparison is made

in Table X.

G. Conclusions

FAME outperforms MVFAST with much faster speed while

yielding the similar picture quality with full search. MVFAST

causes steep degradation when coding fast motion sequences,

like Stefan, in our experiments. However, FAME not only

achieves the similar quality with full search, but also uses less

checking points compared to MVFAST. The experiments show

that FAME can cope well with both large dynamic motion

variation sequence and simple uniform motion video. FAME

is very suitable for real-time high quality MPEG-4 video

encoding.
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