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Introduction

E lectrostatic interactions of a macromolecule
with a polar solvent and solvent-mediated
screening are essential factors in protein folding.' ™
Proteins in aqueous solution are involved in equi-
librium interactions (binding-releasing) with
aqueous protons, which depend on the protein
conformation. These interactions provide a cou-
pling between the state of ionization x of the ioniz-
able groups and the conformation of the protein at
a given pH in the solution."** A realistic treatment
of the protein folding problem, namely the predic-
tion of chain-folding initiation sites, or the confor-
mations of surface loops of a protein in aqueous
solution, can be achieved by considering the total
energy E(rp,pH) of a protein in the conformation
r, in aqueous solution at a given pH as a sum,

E(r,, pH) = E,(r,) + F,,(xr,) + F,(r,)

+ sz(rp,pH), (1)
where E; (r,) is the internal conformational en-
ergy of the protein or the conformational energy in
a vacuum; F,(r,) is the free energy of creation of
the molecular cavity in an aqueous solution;
F,1,(r,) is an electrostatic solvation free energy, or
the free energy of transfer of the protein from a
vacuum into an aqueous solution; and F,,(r,, pH)
is the free energy for changing the initial state of
ionization of the ionizable groups in a vacuum
when the protein is moved into an aqueous sol-
vent at a given pH. Methods to treat multiple-site
titration phenomena have recently been devel-
oped.”® The essential part of these methods is an
accurate calculation of the desolvation free energy
Agyy, of the ionizable groups, when they are
transferred from a solvent to the protein environ-
ment, and the pairwise potential of mean force
(PMF), W,;, between the ionized groups in a sol-
vent.

Research has shown that the continuum electro-
static model provides a reliable method for obtain-
ing a physically reasonable description of the elec-
trostatic polarization of an aqueous solution by the
charges of a solute and provides a quantitative
estimation of the electrostatic free energy of solva-
tion” " The continuum electrostatic model as-
sumes that both the solvent and solute can be
treated as linear dielectric media with different
uniform dielectric constants, which are separated

by a smooth dielectric boundary surface. The elec-
trostatic potential is then described by the Poisson
equation.” *® The solution of the Poisson equation
can be achieved by either of two classes of numeri-
cal methods, the finite-difference (FD) method” '
or the boundary element (BE) method.”'2~ 141

The FD method, first used for biomolecular
systems by Warwicker and Watson,'" restricts the
3-dimensional (3-D) space to a rectangular 3-D
box, which confines the solute and a portion of the
solvent around the solute. The 3-D box is repre-
sented as a 3-D lattice; and the spatial electrostatic
variables, i.e., the dielectric constant and charge
density, are mapped onto the 3-D lattice and then
the Poisson equation can be solved by an iterative
method.'** Faster and stabler results are provided
by a multigrid iterative method.” * For large
molecules, the FD method has an accuracy prob-
lem because of the limitations inherent in mapping
physical quantities onto a 3-D lattice,” % i.e., the
dependence of the solvation free energy on the
position and orientation of the molecule on the 3-D
lattice. An experimental accuracy of about kT in
the calculation of the electrostatic potential can be
achieved for a very fine lattice spacing, with at
least three grids per Angstrom. The computational
complexity of the FD method greatly depends on
the lattice dimension Ng, i.e., the number of grids
per box length, because the number of variables is
Ng and the convergence rate is about (1 —
1 /Nq).22*24

The BE method has some inherent advan-
tages”!?71*1? over the FD method because it works
directly with a surface variable, i.e., the polariza-
tion surface charge density on the dielectric
boundary, and presents a numerical solution of an
integral equation over the dielectric boundary, to
which the original Poisson equation is analytically
converted.">'**” The BE method is invariant to
rotations and translations of the molecule because
the molecular surface and the distribution of the
surface BEs depend only on the distances between
the atoms. A comprehensive comparison of the BE
and FD methods was made by Bharadwaj et al.,
who made use of an advanced numerical imple-
mentation of the FD method; they found that the
BE method exhibits a higher degree of consistency
because of the absence of grid dependencies.

We developed the BE method to solve the non-
linear Poisson-Boltzmann equation' and applied
the BE method to study electrostatic effects in a
highly charged polypeptide, poly-(i-lysine).>***%%°
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In this study new algorithmic advances were added
to the BE method,” which improve its numerical
accuracy and performance. A new adaptive multi-
grid BE (MBE) algorithm implements the multisize
representation of the boundary elements and
provides a fast calculation of the electrostatic field
in the multigrid representation of the dielectric
border surface. We show that the MBE method is
suitable for designing a rational algorithm for cal-
culating the solvation free energy, F,,,, and the
free energy of ionization, F,,,, of a peptide in a
given conformation. The calculation of the energy
of transfer from the vacuum to water and the free
energy of equilibrium proton binding-releasing
for the 17-residue peptide Ac-ETGTKAEL-
LAKYEATHK-NMe with eight ionizable residues
requires about 400 sec of CPU time in serial code
on one node of the IBM SP2 supercomputer.

Continuum Dielectric Model

The continuum dielectric model assumes that a
solvated molecule is comprised of a cavity of low
dielectric constant, D;, embedded in a continuum
solvent medium of high dielectric constant, D,.
The solute is separated from the solvent by a
boundary, which is defined to be the smooth sur-
face traced by the inward-facing part of a probe
(with the radius of a water molecule) as it rolls
over the solute molecule. An analytical description
of this surface was presented by Connolly.***' This
boundary confines the solute molecular charge dis-
tribution, which is typically represented as a set of
fixed charges, {g,}, located at atomic centers, {r.}.
The total electrostatic potential, ®,,,,, in the ab-
sence of added salt, can be written as

D) = D (1) + D(1), (2)
where @, is the potential due to the solute charge
distribution and ®, is the reaction potential due to
the surface polarization charge density o (s) on the
molecular surface arising from the response of the
solvent dielectric medium to the solute charge

distribution. The sum of the potentials, ..., + @,,
satisfies the Poisson equation,

VD) V[®,, (1) + ()] +47)q,8(r—1,) =0,
k

€))

where r, is the position of a set of fixed charges
within the solute cavity and D(r) is the dielectric
constant at point r. The Poisson equation can be
converted into an integral equation'** for the sur-
face charge density o (s) on the molecular surface
S,

o (s)(t — s)n(t) ds

L =
R
f 7 (t — r)n(t)
t= Y ———, @
Di ; |t - l‘k|3
where the constant f is
1 D,—-D,
%)

f=%2:D,+D,

and n(t) is the vector normal to the surface S at the
point t. The last term in eq. (4) is the normal
component of the electrostatic field at the surface
point t due to the solute charges {g,}. This integral
equation has a unique solution if the molecular
surface S is a Liapunov—Kellogg regular surface,™
i.e., one that satisfies the equation

arc cos[n(t)n(s)] < Clt — s|, 6)

where t and s are points on the surface S and C is
a constant, which is equal to the inverse local
curvature radius of the surface. The smooth Con-
nolly molecular surface®*?! satisfies the
Liapunov—Kellogg equation, eq. (6), if saddle
pieces of the molecular surface do not contain
cusps.®!

The molecular potential @

ol 1S given straight-
forwardly"™ by

1 7. 6(r — 1p)

q)mo (I') =5
! D, % It — 1.l

7 (7)

and the reaction potential ®, is obtained from the
surface integral

o(s)ds

e —s|

= | ®)

In the BE method, the integral appearing in the
first term on the right-hand side of eq. (4) is
replaced by a discrete sum over a finite number of
BEs, s,, with surface area As, and constant polar-
ization charge density o,. The BEs tesselate the
molecular surface, so that the integral equation, eq.
(4), is transformed into a set of linear numerical
equations in matrix form,*~*

oc=0K+b, (C))
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where these terms are identified with the terms on
the left and right side, respectively, of eq. (4).

The matrix elements K, define the normal
component of the electrostatic field on the BE t,,
which is produced by the uniformly charged BE
sg- The matrix elements are a function of only the
geometric properties of the BEs that cover the
molecular surface'*!3%:

(t, —sg)n(t,) As
Kocﬁ =f 2 3 k ’ (10)
|ta - Sﬁl

where f is given by eq. (5). For a Liapunov-Kel-
logg regular surface® S, eq. (6), the diagonal ma-
trix elements K,; = 0 in the lim|t, — s, = 0.

The last term, b, of eq. (9) is the electrostatic
field generated by the charges {g,} of the solute
molecule and constitutes a permanent source elec-
trostatic field. The value of the source field b on
the BE «, i.e., b, is given by'3*

b, = i ¥ q:(t, — rn(t,) ‘

(11)
D; % It, — l'k|3

A solution of eq. (9), in principle, can be ob-
tained by the variety of methods for solving a
system of linear equations with a nonsymmetric
matrix.’

Properties of BE Integral Equation

The integral equation, eq. (4), for the polariza-
tion charge density ¢ has several useful proper-
ties, which reflect internal self-consistency of this
integral equation. By integrating both sides of eq.
(4) over the molecular surface S, it is easy to show
that the total polarization charge o(t) automati-
cally satisfies Gauss’ theorem,

1 1
fsa(s) ds = (30 - 51-) %;k, (12)
because, for any point r, that is inside a closed
surface S, the solid angle () covered by the surface
S is the full solid angle 4, i.e.,

— d
f (t — r)n(t) dt . (13)
s

3
|t - rkl

If the point r, moves on the surface S, and this
surface is a Liapunov—Kellogg regular surface, then
for any point s of the surface,” the surface S will

cover only half of a full solid angle, i.e.,

(t — s)n(b) dt
[———— =27 (14)
5 It — s|

The BE analogs of egs. (13) and (14) can be
found by using egs. (11) and (10), respectively, and
they are

b, - 47% Y (15)
a ik

and

Y K, As, =2mfAs,. (16)
B

The numerical equation, eq. (9), generally loses
internal self-consistency because of the representa-
tion of the surface S by finite BEs. In turn, it
creates an avalanche of numerical errors in the
numerical solution of the linear system (9) for the
charge density o,. The main idea of designing an
accurate numerical algorithm, which is imple-
mented in this article, is to construct a system of
linear eqgs. (9) that exhibit the same properties of
internal self-consistency for matrix elements (16)
and for the source term (15) that the initial inte-
gral equation, eq. (4), has. Rashin and Nam-
boodiri*® used normalization of the polarization
charge o, by Gauss’ theorem (12) to obtain the
correct charge distribution. Purisima and Nilar®
recently showed that the calculation of the diago-
nal matrix elements K_, on the basis of the sum
rule (15) considerably improves the accuracy of the
solution. Since our first implementation of the iter-
ative BE method (IBE),""**** we have been experi-
menting with applying self-consistency rules (15)
and (16) (in a different manner than that used by
Purisima and Nilar®) to achieve maximum accu-
racy and a speedy solution of eq. (4) for a macro-
molecular surface.

To design an optimal numerical method, we
have to reconcile three principal components of the
IBE method: (i) maximum accuracy can be achieved
with a small surface lattice of BEs s, to assure a
small variation of o(s) over the BE s_; (ii) the
variation of o(s,) is proportional to the variation
of the source electrostatic field over the BE s_; (iii)
to achieve maximum speed in the calculation of
the polarization charge density distribution o, the
dimensions of the linear system (9) must be as
small as possible. To reconcile these three compo-
nents, we considered multilevel-sized BEs.
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MBE Algorithm

To solve the matrix equation, eq. (9), and de-
crease the number of variables where appropriate,
we define three sets of BEs on the molecular sur-
face: (i) a set of small BEs with coordinates s®,
normal vectors n?, small areas As_, and polariza-
tion charge densities ¢’; (ii) a set of large BEs with
coordinates sé, normal vectors n%, large areas Alg,
and polarization charge densities oy; (iii) a set of
patch BEs with coordinates slj, large areas Apy,
and polarization charge densities o,/ (the patches
are very large irregularly shaped parts of the sur-
face). Assume that the polarization charge densi-
ties o, ‘TBI' and o) are constant over the respec-
tive BEs. Each large BE s, is a collection of small
BEs (sgl, el sgn); the area of a large BE is a sum of
the areas of a collection of small BEs. Likewise,
each patch BE s/ is a collection of large BEs
(s}, ...,s} ). The polarization charge density of a
large BE is an average polarization charge density
over the collection of small BEs, i.e.,

Aly =) As,, 17)
Bi
Ap,= Y AL, (18)
Yk
1 1 s
% = A5 L% Ass (19
B B
1 1
pr = A—y %I:'O-yk Al)/k' (20)

To take advantage of the slow variation of the
source term of the linear equation, eq. (4), on the
macromolecular surface, and consequently the
slow variation of the polarization charge density,
consider the solution of eq. (4) for each charged
atom, or group of atoms, separately. If o (s) is the
polarization charge density due to charged atom k,
then the total polarization charge density of the
whole molecule is the sum

o(s) = Y o (s), (21)
k

due to the linearity of eq. (4).

Consider charged atom k with coordinate r,.
The macromolecular surface can be divided into
three regions: (i) the Local surface S, ., within a

Loc”

distance R, . from the source r, of the permanent
molecular electrostatic field, is represented by the
small BEs; (i) the Intermediate surface S, with
BEs within a distance R;,, from the source r, of
the permanent molecular electrostatic field, is rep-
resented by the large BEs; (iii) the Distant surface
Spets is represented by the patch BEs, which in-
clude the rest of the macromolecular surface at
large distances > R, form the source r, of the
permanent molecular electrostatic field (see Fig. 1).
It should be noted that, for a large macromolecule,
the distant region can be subdivided into a set of
distant regions with a steadily increasing size of
patches. The polarization charge density distribu-
tion can be approximated by the low-dimension
vector (o, o', oP); the source term can be ap-
proximated by b", b', b", and the matrix equation,
eq. (9), can be represented as a linear equation of
low dimensions,

oL Kt KUY KW (gt bt

ol =kt KU g© oL+ ],

oD KPL KD KPP || oD bP
(22)

where the expression for the matrix elements K.
follows from eq. (10), and is

(s;, — spin(s}) As,

Is® — sgl3

Kip=f (23)

As mentioned above, the matrix elements K, 8
define the average electrostatic field”*** gener-
ated by BE 8 on BE «. To speed up the calculation

FIGURE 1. Definition of the Local, L, Intermediate, |,
and Distant, D, portions of a molecular surface for the
source center S (i.e., a charge or group of charges).
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of the matrix elements in eq. (22), the fast multi-
grid approximation at the monopole level, similar
to that of Greengard and Rokhlin* is imple-
mented for the calculation of the matrix elements
KLI, KIL, KH/ KLD, KDL, KID, KDI, and KDD. The
matrix elements between the local BEs are calcu-
lated on the basis of a fine grid, while the matrix
elements for the distant BEs are calculated on the
basis of a coarse grid,

(s — sgk)n(si) As,

LI _
K(xﬁ _fz | s _ s |3
Bx Sa 5p,
— LL . s 1
= Y Kig, if Is}, — spl <Ry,
Bx
(ss — s )n(sS ) Al
_ a B a B . 1
=f o] if s — s> Ry,
@ B
(24)

where B, is a collection of the small BEs that
tesselate a large BE B. The matrix elements K.
are given by

S

(sflk B Slsg )n(ska) Asﬁ

KIL —

)»

B~ 3
AL ls5, — sgl
1
- LL el
VA Kep if sy, —spl <Ry,
o Qe

(sl(x —sp )n(six) Asg

S 113
85 — sgl

1l
if [s, —spl>R

Loc”

(25)

where Al is the area of the large BE «. The matrix
elements of the diagonal submatrix K" are given

by

KN, = i Ty (Six,- - S;])n(sii) Asg As,,

3
Ala o ﬁj |S°‘i - szk|

LK
Q;

(s’a — s )n(s]a) Alg
1

o

if s5, — shl < R,

P
lsq — sgl

if s, — 51> Ryoe. (26)

Loc*

The matrix elements between patches of the diago-
nal submatrix KPP are given by

kP L y v (SZ, - s;j)n(six) Asg As,

S 3
Ap"‘ Q; B; |S0‘[ - S;k|
1
= Ay Y Y Kop As,,
Pa a; B

if Isf — sfl < Ry,

(SL, - slﬁj)n(slai) AlBi Al

XX

Apo‘ Q; B;‘ |Silf - Sék|3
if s — sgl > Ry
1
=—3Y Y KI, Al . (27)
Apa ¥ ,Bj ’37 ’

The matrix elements of all other submatrices K'°,
K'P, etc., can be expressed by similar equations.
The important properties of the expressions shown
above are that the matrix element of a high level,
e.g., KPP, is a sum of the subsets of low-level
matrix elements, e.g., K" or K.

The diagonal elements K% for the small BEs on
the molecular surface are calculated by

KX =k (wAs)"?/R,, (28)

where R, is the local radius of curvature of the
molecular surface and k, is an empirical coeffi-
cient that is found numerically to be +0.75, —0.20,
and 0.0 for convex, concave, and saddle faces,
respectively, of the molecular surface. Equation
(28) is obtained by analytical integration of eq. (10)
over the small BE, which is assumed to have a
circular shape, and the coefficient k, reflects the
real shape of the small BE that is generated by our
program. It should be noted that the usual choice
for the diagonal matrix elements in the BE
method"? ' is to equate them to zero (i.e., assum-
ing that the small BEs are planar). Purisima and
Nilar® obtained the diagonal matrix elements from
the normalization condition of eq. (14).

The Liapunov—Kellogg condition, eq. (6), en-
ables one to obtain the upper bound for the matrix
elements K, between two BEs with centers at s,
and sz on the molecular surface,

IK, gl <ls, —sgl/4R.. (29)

If condition (29) is violated for the given matrix
element K g4, then K, is replaced by the appro-

574

VOL. 18, NO. 4



FAST MBE METHOD FOR MACROMOLECULAR COMPUTATIONS

priate upper bound value. Filtering of the matrix
elements K, through this condition (29) is equiv-
alent to smoothing singular cusps on the molecu-
lar surface. The physically real dielectric border
surface does not contain singular cusps because an
intramolecular dielectric constant cannot be as-
signed to the infinitesimally thin volume of the
cusp in the vicinity of its singular point. Therefore,
cusps, which appear rarely in the Connolly geo-
metrically constructed molecular surface, have to
be smoothed with a user-defined radius of curva-
ture (about 1 A).

As follows from the sum rule equation, eq. (16),
the submatrices KXY, where X,Y =1L, 1, D, are
subject to the sum rule

o

o

v
i &

= 2w As), (30)

where AsBX is the area of the BE XB' The sum rule
for the vector b", b, b®, follows from eq. (15),

Zb&f Asais + Zbi{Alai + Zb;‘xp Apa,p
! of

s
o o

f
= 4#31 %qk (31)

The solution of the linear equation, eq. (22), can
be found iteratively. We found that the precondi-
tioned biconjugate gradient (PBCG) method® con-
verges in all cases, whereas the Gauss—Seidel (GS)
method® fails to converge. It should be noted that
the PBCG method can be implemented only if the
full matrix K is calculated. The iterative BE
method, which uses a partially calculated matrix'’
K within a local region, or the BE method without
calculation of matrix” K, can use only the GS
method, which often fails to attain convergence.
Therefore, to obtain convergence, the iteration with
underrelaxation'®?” must be used.

Our 3-level MBE method for calculating the
polarization charge density can be summarized as:

1. calculation of a set of small and large BEs on
the molecular surface, using the MSEEDY
or Connolly® method;

2. collection of small BEs into the large BEs
and collection of large BEs into the patch

BEs (it should be noted®* that our method
does not need the expensive surface triangu-
lation used, for example, by Zauhar and
Morgan'?);

3. definition of a collection of centers of molecu-
lar electrostatic fields as a set of charged atoms
or compact atom groups;

4. calculation of the MBE set (s°, s, s?) for the
kth center of the molecular electrostatic field,;

5. calculation of an appropriate source vector
(b, b',b") and a uniform correction by nor-
malization by the sum rule, eq. (31);

6. calculation of the matrix elements of eq.
(22), and a uniform correction to satisfy the
sum rule, eq. (30);

7. solution of the linear equation, eq. (22), by
the PBCG iterative method;

8. uniform normalization of the resulting po-
larization charge vector o° o/, 07 by
Gauss’ theorem, eq. (12);

9. collection of the polarization charge densi-
ties on the MBE;

10. go back to step 4 and consider the next
charged center of the molecular electrostatic field;

The present 3-level MBE implementation con-
siders the small grid and large grid as collections of
pseudoregularly distributed BEs on the molecular
surface with a high density d_, about 10 points /A?,
and a low density d,;, about 1 point/:&z, respec-
tively, and each patch BE represents the whole
surface of one surface atom. The multigrid method
can be generalized for any unrestricted multilevel
set of surface BEs, whose size is increased continu-

T Molecular surface triangulation is used to approximate the
surface polarization charge density inside the triangle BE lin-
early on the basis of the charge densities at the vertices of the
triangle, to achieve an accurate approximation of the nonsingu-
lar surface integral in eq. (4) with relatively large areas of the
BEs. The same accuracy of the approximation of the surface
integral can be achieved by using the average value of the
polarization charge density at the center of the BEs and smaller
(about 2-3 times) areas of the BEs, because the difference in the
accuracy between these two approximations scales as the sec-
ond power of the area of the BEs, ie, ~ As?. Yoon and
Lenhoff® provided a numerical comparison between the linear
and constant approximation and showed that comparable accu-
racy can be obtained in the framework of the constant approxi-
mation with twice the smaller areas of the BEs. A proper
triangulation of the molecular surface is a complicated and
time-consuming procedure that can produce long triangles with
small areas or other unpleasant features in the molecular sur-
face tesselation.'?
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ously, by considering a set of compact groups of
surface atoms. An estimate of the number of inde-
pendent surface variables 1, in the unrestricted
multilevel MBE method for a large macromolecule
is given by

nyse ~ 1 log N, (32)

where N, is the total number of surface atoms of a
macromolecule, 7, is the average number of BEs
for each level of BEs, i.e., Local, Intermediate, and
Distant regions, see Figure 1. If the size of the BEs
at level i increases by any constant factor m com-
pared to the size of the BEs at level (i — 1), and the
number of BEs at each size level is approximately
constant, then the maximum level of the BEs is
~ log N; and the total number of the multilevel
BEs is defined by expression (32).

The computational complexity for calculating
the matrix elements is on the order of ~ nig;,
and the complexity for solving the linear system
(22) by the PBCG method is also on the order of
~ nipe. To obtain the total polarization charge
distribution, we must repeat the solution of the
linear system (22) for each source of electrostatic
field of the macromolecule (in the worst case for
each charged atom), see eq. (21); consequently,

complexity ~ N,,(n,log N,)’, (33)

i, the complexity scales as N,, the number of
atoms in the macromolecule. The actual complex-
ity scales as ~ N,, because the surface atoms can
be united into a set of compact charged groups
and the atoms of the molecular core produce a
more uniform polarization of a solvent on the
molecular surface and, consequently, can be united
in a set of large clusters. Then, each charged clus-
ter can be considered as one effective source of an
electrostatic field on the molecular surface.

MBE Algorithm Combined with
Calculation of Transfer Energy and
Ionization Equilibrium

The main goal of designing methods to solve
the Poisson equation is to calculate the total elec-
trostatic free energy of a macromolecule in a solu-
tion, ie., eq. (1). The solvation (or transfer) free
energy of a solute macromolecule in a solvent is a
difference of polarization free energies of the
macromolecule in the same conformation in the

solvent and in a vacuum environment, i.e.,

Fsolv(rp) = Wpolz(Di’ Dsol) - Wpolz(Di/ Dvac)/ (34)

where W,,;, is the free energy of the surface polar-
ization of the macromolecule, D; is the dielectric
constant of the macromolecule, D, is the dielec-
tric constant of the solvent, and D, is the dielec-
tric constant in a vacuum, which were taken as 2.0,
80.0, and 1.0, respectively, in all our calculations.

The polarization free energy W, is given by
1 qx O
Wpolz = — S RE— (35)
P 2 ; % e, — s,

where g, is the polarization charge and s, is the
BE on the molecular surface.'’>** For simplicity, it
is reasonable to suppose that the surface, which
defines the dielectric border between two dielec-
tric media, is identical in the aqueous solvent and
in a vacuum. Then, to calculate the polarization
charge densities in the two environments, i.e., to
obtain the solution of eq. (22), we need to calculate
the matrix elements K_, and the source field
vector b°,b.,b” only once. The solution of linear
equation (22) by the PBCG method is fast and
requires only about five to six iterations.

The proposed MBE method has several advan-
tages when the calculation of the ionization free
energy F,, is considered. If the number N of
coupled ionization sites of a macromolecule does
not exceed 20, then the partition function over the
ionization microstates x = (x,..., x5), (x; =0,1)
can be calculated directly as™®

% AGHS (x,)
Z= ) exp|——————/|, (36)
Pt kT

where x, is the nth protonation microstate, the
total number of protonation microstates being
equal to 2V. The free energy F,,, is

F,,= —kTIn Z. (37)

The free energy of the ionization microstate x is
given by
N
AG(PS;x) = Y x;(pH — pK? — ApK)[In10]kT
i=1

W;ix;x;, (38)

N
+ X
i, j=1;i<j
where K/ is the intrinsic dissociation constant of

the ith single isolated residue in the solvent and
ApK; is the shift in pK of a single isolated residue
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due to its transfer from the solvent to the protein
environment. The last sum in eq. (38) represents
the free energy of interaction between the N titrat-
able sites in terms of the pairwise PMFs, W;;. The
pK shift is given by

ApK [In10]KT = [ E(PS]) — E(PS?)]
—[ES) - E@S)], (39)

where E(S/) and E(S)) are the total electrostatic
energies of the ith single isolated residue in the
ionized and neutral state, respectively, in the sol-
vent, and E(PS;), E(PS?) are the total electrostatic
energies of the ith residue in the ionized and
neutral state, respectively, in the protein environ-
ment in the solvent. The total electrostatic energy
is given as the sum of the last two terms in eq. (1).
The potential of mean force W;; is given by the
following equation®:

o,(s) ds
s It + 1; = sl ’
(40)

1 0'-(S) ds 1
W.

1j= qu q

|r +r—s|

m

where 0,(s) and oy(s) are the polarization charge
densities due to charged groups i and j, respec-
tively. It is easy to see from eq. (40) that all pK;
shifts and PMFs W;; can be calculated sequentially
while only one loop over all charged groups is
carried out; therefore, these calculations are com-
bined into the algorithm described in the previous
section as step 8a, following step 8, calculation of
pK; shift and PMFs W;;. These calculations of pK
shifts and pairwise PMFs are carried out faster in
the framework of the proposed MBE method com-
pared to what can be achieved by a straightfor-
ward application of the FD method,”* because
calculations by the FD method have to be repeated
for each N single ionized and N(N — 1)/2 double
ionized microstates.

Results

The MBE method has some intrinsic parame-
ters, d,, d;, R;.., and R, that are defined in the
previous sections and that affect the accuracy and
performance of the MBE method. We compared
the MBE method for a spherical cavity,'?*%%%
which contains a point charge and is embedded in
a polar solvent, with the analytical results.*® For
real molecular systems, comparisons were made
with the results of calculations by the multigrid

version of the improved DelPhi program.*’ In all
calculations, we used PARSE" atomic charges and
radii to define a molecular surface, which was
calculated with the MSEED* or Connolly® meth-
ods with a probe radius of 1.4 A

Figure 2 shows the relative errors between the
MBE method and the analytical solution® for the
polarization free energy of the off-center point
charge in a spherical cavity of radius 5 A versus
the displacement D of the point charge from the
center of the cavity. It can be seen that an accuracy
of about 1% is achieved when the size of the small
BEs is less than the distance between the point
charge and the surface of the cavity. It should be
noted that, in real molecular systems, the smallest
distance between any point charge and the molec-
ular surface is larger than the smallest atomic
radius of ~1 A, if we assume that all atomic
charges are located at the centers of the atoms.
Figure 3 shows the relative errors for two positions
of the point charge, D =45 and 4.75 A, re-
specitvely, versus the parameter R, .. From this
figure we conclude that a reasonable value of the
parameter R, . is about triple the size of the large
BEs. Further increase of R,. does not improve the
accuracy of the free energy, because this accuracy
is limited by the accuracy of the polarization charge
density in the local region, which is defined by the
size of the small BEs.

Figure 4 shows the dependence of the polariza-
tion free energy of n-butylamine, W,,,, given by
eq. (35), versus (d,)~'/%. To define the dependence
of W,,, on the size of the small BEs, the values of
the parameters R;,. and R;, were taken larger
than the n’gaximal size of the molecule, the latter
being 10 A. It can be seen that, for values of
(d,)"'/* < 0.5, the dependence is very flat for the
MBE method; therefore, the density of the small
BEs d, > 4.0 A~ can be considered as an accept-
able den51ty, which provides a relative accuracy
for the calculation of W_,, of better than 0.5%. As
shown in our previous work," a reasonable size of
a large BE is produced with a density parameter of
d, = 1.0-2.0 A2, Therefore, for further calcula-
tions, we fixed the parameters d, and d; in the
range of 5.0-6.0 and 1 0-20 A2 respectlvely The
set 6.0 and 1.5 A~2 is our standard set for the
parameters d, and d,. Figure 4 also shows that the
MBE results are in excellent agreement with the
DelPhi results for h (or d;1/2) < 0.5 A.

Table I shows the results of the calculation of
the polarization free energy W,,, by the MBE
method for a large molecule, the 17-residue pep-
tide Ac-ETGTKAELLAKYEATHK-NMe in the «-
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FIGURE 2. Relative error in the polarization free energy W, eq. (35), of the point charge in the spherical cavity
embedded in a polar solvent. The radius of theo cavity is equalto 5 A; D is thcoe displacement of the point charge from the
center of the cavity. The parameter R .. = 3 A, and the densities d;, d, (in A~2) from the bottom to the top curve are
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FIGURE 4. Polarization free energy W,,,, eq. (35
aqueous solution, calculated by the (—
method, or the size d; /2

), of ion

of a small BE. The error symbols

ized n-butylamine in the extended conformation in an

) MBE method and by the (---) DelPhi method versus cell size h of the DelPhi

represent the standard deviations for the polarization free

energy from the average value. The average polarization free energy is calculated over all rotations and translations of
the molecule relative to the 3-D lattice in the DelPhi method.

helical conformation,** with different sets of pa-
rameters R; .. and R;,. As can be seen, the MBE
method demonstrates good stability as these pa-
rameters are varied. Reasonable values of the pa-
rameters R;,. and Ry, from the point of view of
accuracy and computing time are in the range of
4-5and 8-10 A, respectively. In these calculations,
we considered the whole peptide group and each
group of polar residues as the source of the molec-
ular electrostatic field. Figure 5 shows a compari-
son of the polarization free energy W, ,, of the
17-residue peptide Ac-ETGTKAELLAKYEATHK-
NMe in the a-helical conformation, calculated by
the MBE and DelPhi methods. As can be seen, the
MBE values of W, are in good agreement (within
2.5%) with the DelPhi values of W oz

Table II shows free energies of desolvation Ag;
of the ionizable residues of the 17-residue peptide
Ac-ETGTKAELLAKYEATHK-NMe in the o-heli-
cal conformation, when the residue is moved from

It is recognized that the o-helical form does not remain
intact as the pH changes. However, this calculation was carried
out only to demonstrate how to obtain AF,, for a given
conformation. Simulations of the coupling between ionization
and conformational equilibria, which requires the combination
of the Monte Carlo method for the total energy defined by eq.
(1) with the ECEPP method for calculating a conformational
energy in a vacuum, are presented elsewhere.*!

a solvent to a protein environment

Agi = [ polz (PS+) polz(PSO)]
[ polz(s+) polz(sio)] . (41)

TABLE 1.
Polarization Free Energy, W,,,,, Versus
Parameters R .. and R,,; of MBE Method.
R, .. (A R, (A) Wpor, (kcal/ mol) t (s)
3.0 6.0 -101.22 191
3.0 8.0 —101.58 218
5.0 8.0 —101.82 305
3.0 10.0 —101.28 280
5.0 10.0 -101.87 390
5.0 12.0 —101.89 496
DelPhi? —99.51 148

The polarization free energy is calculated by eq. (35) for a

17-residue peptide Ac-ETGTKAELLAKYEATHK-NMe in the
state of zero ionization for each residue in the a-helical
conformation with the standard set of parameters d, d, (see
text). t is the CPU time for a calculation by serial code on
one node of the IBM SP2 supercomputer.

#Calculation by the DelPhi method with lattice dimension
Ny = 129, lattice size h = 0.227 A,
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FIGURE 5. Polarization free energy W, of the 17-residue peptide Ac-ETGTKAELLAKYEATHK-NMe in the neutral
form in the a-helical conformation in an aqueous solution. (—) The free energy calculated by the MBE method (see
Table 1). (---) The average free energy of the DelPhi method versus the cell size. The error symbols represent the

standard deviations as in Figure 4.

TABLE II.
Free Energies of Desolvation and PMFs for lonized Groups of Peptide Ac-ETGTKAELLAKYEATHK-NMe.
W,

Ag, K2 E; Ki Yz Exs His K

E; 0.52 —-1.07 0.33 —-0.23 0.25 0.27 —-0.20 —-0.19
(0.34) (—1.12)

K& 0.13 —-0.32 0.24 -0.27 —-0.29 0.22 0.20
(0.48) (—0.30)

E; 0.35 —0.38 0.31 0.35 —0.26 —-0.25
(0.23) (—0.52)

K —0.04 —-0.35 —-0.33 0.28 0.26
(0.13) (-0.27)

Y 2.11 0.58 -0.93 —0.31
(1.86) (0.49)

Exn 0.51 -0.40 —0.40
(0.54) (—0.41)

H; 0.96 0.48
(0.91) (0.54)

K$ 0.00
(0.04)

Values were calculated by the MBE and DelPhi methods and are in kcal /omol. Numbers in parentheses were calculated by the
DelPhi method with lattice dimension N, = 129 and lattice size h = 0.227 A.
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FIGURE 6. Excess free energy of ionization of the 17-residue peptide in a fixed a-helical conformation in an aqueous

solution at 300 K versus pH.*

As can be seen from Table II, A g; calculated by the
MBE method is in reasonable agreement with the
one computed by the DelPhi method. Calculations
of the PMFs W, between charged ionizable
residues of the peptide Ac-ETGTKAELLAKY-
EATHK-NMe also show results in good agreement
with those computed by the DelPhi method. It
should be noted that these calculations of the de-
solvation free energies A g; and the PMFs are very
inexpensive with our MBE method; the results of
all these calculations to obtain Ag; and W;; were
obtained in one loop over charged groups for an
additional CPU time of less than 120 s. Therefore,
the complete calculation of the two last terms in
eq. (1), i.e., the free energy F,, of transfer from a
vacuum to an aqueous solution and the free en-
ergy of ionization F,,, takes about 400 s of CPU
time on one node of the IBM SP2 supercomputer.

Figure 6 shows the dependence of the excess
free energy of ionization AF, , of the peptide Ac-
ETGTKAELLAKYEATHK-NMe in the fixed o-heli-
cal form*""* on the pH of the aqueous solution,
where the free energy AF, , is defined as

z

AFinz = Finz - F'O (42)

nz’

where F,,, is the free energy of ionization of the
peptide in a given conformation and F?, is the
free energy of ionization of the peptide when all
ionized groups are considered as isolated and non-
interacting, i.e., all desolvation energies Ag; =0

and the PMFs W;; = 0.

Table III shows the dependence of the perfor-
mance CPU time for the MBE method on molecu-
lar size. The ratio t/S,, decreases as the molecular
surface S,, area, i.e., the number of BEs, increases;
therefore, the dependence of the CPU time ¢ on S,,
is less than a linear regression.

Discussion

We designed a 3-level MBE method that ex-
hibits good accuracy and performance for short
peptide molecules. As shown, the MBE method
calculates the free energy of transfer and the ion-
ization free energy for a 17-residue peptide Ac-
ETGTKAELLAKYEATHK-NMe with eight ioniz-
able residues in 400 s of CPU time on the IBM SP2
supercomputer. The size of the matrix in eq. (22)
does not exceed 2000 for this 17-residue peptide;
therefore, the RAM demands do not exceed 120
MB and are about the same RAM size needed by
DelPhi for N, =129. We also showed that the
MBE method is stable to a variation in the size and
numbers of MBEs, which are tesselated on the
molecular surface. This accuracy and stability are
provided by the intensive use of the different
kinds of sum rules for matrix elements and the
source term vector. The use of the sum rules of the
MBE method is important for a calculation of abso-
lute solvation free energies to treat the conforma-
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TABLE IIl.

CPU Time for MBE Method.

Molecule N, S,, (A2) t t/S,
Lysozyme 1309 7399 51 0.7

17-res? 279 1420 13 1.1

Ala14P 152 759 10 1.5

Ala10® 112 561 9 1.6

Ala6® 72 391 7 1.8

Alag® 52 299 6 2.0

Alat® 22 210 4 3.9

CPU time in seconds to calculate the surface polarization
charge for one center of the molecular electrostatic field, i.e.,
to solve eq. (9) for one particular term b.

® Seventeen-residue peptide Ac-ETGTKAELLAKY-
EATHK-NMe in the neutral form in the o-helical conforma-
tion.

® o-helical conformation.

tional stability of a molecule in a solvent. Using
the precalculated full matrix in eq. (22) and the
PBCG method, we overcame the problem of bad
convergence (or nonconvergence in some cases) of
the iterative solution of the BE integral
equation,'®*? which in the fast multipole approxi-
mation BE method? is partially solved by itera-
tions with underrelaxation at the price of a slow
convergence rate.

Our proposed MBE method can be generalized,
in an obvious way, beyond the current 3-level size
of the BEs, to include adaptively increasing sets of
BEs tesselated on the molecular surface. As esti-
mated, such a generalized unrestricted MBE
method has a linear, computational complexity with
respect to molecular size and can be used for large
macromolecules.
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