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VOROBJEV AND SCHERAGA

Introduction

lectrostatic interactions of a macromoleculeE with a polar solvent and solvent-mediated
screening are essential factors in protein folding.1] 3

Proteins in aqueous solution are involved in equi-
Ž .librium interactions binding]releasing with

aqueous protons, which depend on the protein
conformation. These interactions provide a cou-
pling between the state of ionization x of the ioniz-
able groups and the conformation of the protein at
a given pH in the solution.1,2,4 A realistic treatment
of the protein folding problem, namely the predic-
tion of chain-folding initiation sites, or the confor-
mations of surface loops of a protein in aqueous
solution, can be achieved by considering the total

Ž .energy E r , pH of a protein in the conformationp
r in aqueous solution at a given pH as a sum,p

Ž . Ž . Ž . Ž .E r , pH s E r q F r q F rp int p cav p solv p

Ž . Ž .q F r , pH , 1inz p

Ž .where E r is the internal conformational en-int p
ergy of the protein or the conformational energy in

Ž .a vacuum; F r is the free energy of creation ofcav p
the molecular cavity in an aqueous solution;

Ž .F r is an electrostatic solvation free energy, orsolv p
the free energy of transfer of the protein from a

Ž .vacuum into an aqueous solution; and F r , pHinz p
is the free energy for changing the initial state of
ionization of the ionizable groups in a vacuum
when the protein is moved into an aqueous sol-
vent at a given pH. Methods to treat multiple-site
titration phenomena have recently been devel-
oped.5,6 The essential part of these methods is an
accurate calculation of the desolvation free energy
D g of the ionizable groups, when they aresolv i

transferred from a solvent to the protein environ-
ment, and the pairwise potential of mean force
Ž .PMF , W , between the ionized groups in a sol-i j
vent.

Research has shown that the continuum electro-
static model provides a reliable method for obtain-
ing a physically reasonable description of the elec-
trostatic polarization of an aqueous solution by the
charges of a solute and provides a quantitative
estimation of the electrostatic free energy of solva-
tion.7 ] 10 The continuum electrostatic model as-
sumes that both the solvent and solute can be
treated as linear dielectric media with different
uniform dielectric constants, which are separated

by a smooth dielectric boundary surface. The elec-
trostatic potential is then described by the Poisson
equation.7 ] 18 The solution of the Poisson equation
can be achieved by either of two classes of numeri-

Ž . 7,11,16cal methods, the finite-difference FD method
Ž . 9,12 ] 14,19or the boundary element BE method.

The FD method, first used for biomolecular
systems by Warwicker and Watson,11 restricts the

Ž .3-dimensional 3-D space to a rectangular 3-D
box, which confines the solute and a portion of the
solvent around the solute. The 3-D box is repre-
sented as a 3-D lattice; and the spatial electrostatic
variables, i.e., the dielectric constant and charge
density, are mapped onto the 3-D lattice and then
the Poisson equation can be solved by an iterative
method.16,20 Faster and stabler results are provided
by a multigrid iterative method.20 ] 24 For large
molecules, the FD method has an accuracy prob-
lem because of the limitations inherent in mapping
physical quantities onto a 3-D lattice,25 ] 27 i.e., the
dependence of the solvation free energy on the
position and orientation of the molecule on the 3-D
lattice. An experimental accuracy of about kT in
the calculation of the electrostatic potential can be
achieved for a very fine lattice spacing, with at
least three grids per Angstrom. The computational
complexity of the FD method greatly depends on
the lattice dimension N , i.e., the number of gridsg

per box length, because the number of variables is
3 ŽN and the convergence rate is about 1 yg

. 22 ] 241rN .g
The BE method has some inherent advan-

tages9,12 ] 14,19 over the FD method because it works
directly with a surface variable, i.e., the polariza-
tion surface charge density on the dielectric
boundary, and presents a numerical solution of an
integral equation over the dielectric boundary, to
which the original Poisson equation is analytically
converted.12,14,27 The BE method is invariant to
rotations and translations of the molecule because
the molecular surface and the distribution of the
surface BEs depend only on the distances between
the atoms. A comprehensive comparison of the BE
and FD methods was made by Bharadwaj et al.,27

who made use of an advanced numerical imple-
mentation of the FD method; they found that the
BE method exhibits a higher degree of consistency
because of the absence of grid dependencies.

We developed the BE method to solve the non-
linear Poisson]Boltzmann equation19 and applied
the BE method to study electrostatic effects in a

Ž . 6,19,28,29highly charged polypeptide, poly- L-lysine .
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In this study new algorithmic advances were added
to the BE method,19 which improve its numerical
accuracy and performance. A new adaptive multi-

Ž .grid BE MBE algorithm implements the multisize
representation of the boundary elements19 and
provides a fast calculation of the electrostatic field
in the multigrid representation of the dielectric
border surface. We show that the MBE method is
suitable for designing a rational algorithm for cal-
culating the solvation free energy, F , and thesolv

free energy of ionization, F , of a peptide in ainz

given conformation. The calculation of the energy
of transfer from the vacuum to water and the free
energy of equilibrium proton binding]releasing
for the 17-residue peptide Ac-ETGTKAEL-
LAKYEATHK-NMe with eight ionizable residues
requires about 400 sec of CPU time in serial code
on one node of the IBM SP2 supercomputer.

Continuum Dielectric Model

The continuum dielectric model assumes that a
solvated molecule is comprised of a cavity of low
dielectric constant, D , embedded in a continuumi

solvent medium of high dielectric constant, D .o

The solute is separated from the solvent by a
boundary, which is defined to be the smooth sur-
face traced by the inward-facing part of a probe
Ž .with the radius of a water molecule as it rolls
over the solute molecule. An analytical description
of this surface was presented by Connolly.30,31 This
boundary confines the solute molecular charge dis-
tribution, which is typically represented as a set of

� 4 � 4fixed charges, q , located at atomic centers, r .k k

The total electrostatic potential, F , in the ab-total
sence of added salt, can be written as

Ž . Ž . Ž . Ž .F r s F r q F r , 2total mol r

where F is the potential due to the solute chargemol

distribution and F is the reaction potential due tor
Ž .the surface polarization charge density s s on the

molecular surface arising from the response of the
solvent dielectric medium to the solute charge
distribution. The sum of the potentials, F q F ,mol r
satisfies the Poisson equation,

Ž . w Ž . Ž .x Ž .= ? D r = F r qF r q4p q d ryr s0,Ýmol r k k
k

Ž .3

where r is the position of a set of fixed chargesk
Ž .within the solute cavity and D r is the dielectric

constant at point r. The Poisson equation can be
converted into an integral equation12,27 for the sur-

Ž .face charge density s s on the molecular surface
S,

Ž .Ž . Ž .s s t y s n t ds
Ž .s t s fH 3< <t y sS

Ž . Ž .f q t y r n tk k Ž .q , 4Ý 3D < <t y ri k k

where the constant f is

1 D y Di o Ž .f s , 5
2p D q Di o

Ž .and n t is the vector normal to the surface S at the
Ž .point t. The last term in eq. 4 is the normal

component of the electrostatic field at the surface
� 4point t due to the solute charges q . This integralk

equation has a unique solution if the molecular
surface S is a Liapunov]Kellogg regular surface,32

i.e., one that satisfies the equation

w Ž . Ž .x < < Ž .arc cos n t n s F C t y s , 6

where t and s are points on the surface S and C is
a constant, which is equal to the inverse local
curvature radius of the surface. The smooth Con-
nolly molecular surface 30,31 satisfies the

Ž .Liapunov]Kellogg equation, eq. 6 , if saddle
pieces of the molecular surface do not contain
cusps.31

The molecular potential F is given straight-mol
forwardly19 by

Ž .1 q d r y rk kŽ . Ž .F r s , 7Ýmol < <D r y ri kk

and the reaction potential F is obtained from ther
surface integral19

Ž .s s ds
Ž . Ž .F r s . 8Hr < <r y sS

In the BE method, the integral appearing in the
Ž .first term on the right-hand side of eq. 4 is

replaced by a discrete sum over a finite number of
BEs, s , with surface area D s and constant polar-a a

ization charge density s . The BEs tesselate thea

molecular surface, so that the integral equation, eq.
Ž .4 , is transformed into a set of linear numerical
equations in matrix form,33,34

Ž .s s s K q b, 9
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where these terms are identified with the terms on
Ž .the left and right side, respectively, of eq. 4 .

The matrix elements K define the normala b

component of the electrostatic field on the BE t ,a

which is produced by the uniformly charged BE
s . The matrix elements are a function of only theb

geometric properties of the BEs that cover the
molecular surface12,13,33:

Ž . Ž .t y s n t D sa b a b Ž .K s f , 10a b 3< <t y sa b

Ž .where f is given by eq. 5 . For a Liapunov]Kel-
32 Ž .logg regular surface S, eq. 6 , the diagonal ma-

< <trix elements K s 0 in the lim t y s s 0.a b a b

Ž .The last term, b, of eq. 9 is the electrostatic
� 4field generated by the charges q of the solutek

molecule and constitutes a permanent source elec-
trostatic field. The value of the source field b on
the BE a, i.e., b is given by19,34

a

Ž . Ž .f q t y r n tk a k a Ž .b s . 11Ýa 3D < <t y ri k a k

Ž .A solution of eq. 9 , in principle, can be ob-
tained by the variety of methods for solving a
system of linear equations with a nonsymmetric
matrix.20

Properties of BE Integral Equation

Ž .The integral equation, eq. 4 , for the polariza-
tion charge density s has several useful proper-
ties, which reflect internal self-consistency of this
integral equation. By integrating both sides of eq.
Ž .4 over the molecular surface S, it is easy to show

Ž .that the total polarization charge s t automati-
cally satisfies Gauss’ theorem,

1 1
Ž . Ž .s s ds s y q , 12ÝH kž /D DS o i k

because, for any point r that is inside a closedk
surface S, the solid angle V covered by the surface
S is the full solid angle 4p , i.e.,

Ž . Ž .t y r n t dtk Ž .s 4p . 13H 3< <t y rS k

If the point r moves on the surface S, and thisk
surface is a Liapunov]Kellogg regular surface, then
for any point s of the surface,32 the surface S will

cover only half of a full solid angle, i.e.,

Ž . Ž .t y s n t dt
Ž .s 2p . 14H 3< <t y sS

Ž . Ž .The BE analogs of eqs. 13 and 14 can be
Ž . Ž .found by using eqs. 11 and 10 , respectively, and

they are

f
Ž .b s 4p q 15Ý Ýa kDia k

and

Ž .K D s s 2p f D s . 16Ý a b b a
b

Ž .The numerical equation, eq. 9 , generally loses
internal self-consistency because of the representa-
tion of the surface S by finite BEs. In turn, it
creates an avalanche of numerical errors in the

Ž .numerical solution of the linear system 9 for the
charge density s . The main idea of designing ana

accurate numerical algorithm, which is imple-
mented in this article, is to construct a system of

Ž .linear eqs. 9 that exhibit the same properties of
Ž .internal self-consistency for matrix elements 16

Ž .and for the source term 15 that the initial inte-
Ž .gral equation, eq. 4 , has. Rashin and Nam-

boodiri33 used normalization of the polarization
Ž .charge s by Gauss’ theorem 12 to obtain thea

correct charge distribution. Purisima and Nilar 35

recently showed that the calculation of the diago-
nal matrix elements K on the basis of the suma a

Ž .rule 15 considerably improves the accuracy of the
solution. Since our first implementation of the iter-

Ž . 19,28,29ative BE method IBE , we have been experi-
Ž .menting with applying self-consistency rules 15

Ž . Žand 16 in a different manner than that used by
35.Purisima and Nilar to achieve maximum accu-

Ž .racy and a speedy solution of eq. 4 for a macro-
molecular surface.

To design an optimal numerical method, we
have to reconcile three principal components of the

Ž .IBE method: i maximum accuracy can be achieved
with a small surface lattice of BEs s to assure aa

Ž . Ž .small variation of s s over the BE s ; ii thea

Ž .variation of s s is proportional to the variationa

Ž .of the source electrostatic field over the BE s ; iiia

to achieve maximum speed in the calculation of
the polarization charge density distribution s , the

Ž .dimensions of the linear system 9 must be as
small as possible. To reconcile these three compo-
nents, we considered multilevel-sized BEs.
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MBE Algorithm

Ž .To solve the matrix equation, eq. 9 , and de-
crease the number of variables where appropriate,
we define three sets of BEs on the molecular sur-

Ž . sface: i a set of small BEs with coordinates s ,a

normal vectors ns , small areas D s , and polariza-a a
s Ž .tion charge densities s ; ii a set of large BEs witha

coordinates s l , normal vectors nl , large areas D l ,b b b
l Ž .and polarization charge densities s ; iii a set ofb

patch BEs with coordinates s p, large areas D p ,g g
p Žand polarization charge densities s the patchesg

are very large irregularly shaped parts of the sur-
.face . Assume that the polarization charge densi-

ties s s, s l, and s p are constant over the respec-a b g

tive BEs. Each large BE s l is a collection of smallb

Ž s s .BEs s , . . . , s ; the area of a large BE is a sum ofb b1 n

the areas of a collection of small BEs. Likewise,
each patch BE s p is a collection of large BEsg

Ž l l .s , . . . , s . The polarization charge density of ag g1 n

large BE is an average polarization charge density
over the collection of small BEs, i.e.,

Ž .D l s D s , 17Ýb b i
bi

Ž .D p s D l , 18Ýg g k
gk

1
l s Ž .s s s D s , 19Ýb b bi iD lb bi

1
p l Ž .s s s D l . 20Ýg g gk kD pg gk

To take advantage of the slow variation of the
Ž .source term of the linear equation, eq. 4 , on the

macromolecular surface, and consequently the
slow variation of the polarization charge density,

Ž .consider the solution of eq. 4 for each charged
Ž .atom, or group of atoms, separately. If s s is thek

polarization charge density due to charged atom k,
then the total polarization charge density of the
whole molecule is the sum

Ž . Ž . Ž .s s s s s , 21Ý k
k

Ž .due to the linearity of eq. 4 .
Consider charged atom k with coordinate r .k

The macromolecular surface can be divided into
Ž .three regions: i the Local surface S , within aLoc

distance R from the source r of the permanentLoc k
molecular electrostatic field, is represented by the

Ž .small BEs; ii the Intermediate surface S , withInt
BEs within a distance R from the source r ofInt k
the permanent molecular electrostatic field, is rep-

Ž .resented by the large BEs; iii the Distant surface
S , is represented by the patch BEs, which in-Dst
clude the rest of the macromolecular surface at
large distances ) R form the source r of theInt k

Ž .permanent molecular electrostatic field see Fig. 1 .
It should be noted that, for a large macromolecule,
the distant region can be subdivided into a set of
distant regions with a steadily increasing size of
patches. The polarization charge density distribu-
tion can be approximated by the low-dimension

Ž L I D.vector s , s , s ; the source term can be ap-
proximated by bL, b I, bD, and the matrix equation,

Ž .eq. 9 , can be represented as a linear equation of
low dimensions,

s L K LL K LI K LD s L bL

I IL II ID I Is q ,s K K K s b� 0 � 0 � 0 � 0D DL DI DD D Ds K K K s b
Ž .22

where the expression for the matrix elements K LL
a b

Ž .follows from eq. 10 , and is

Ž s s . Ž s .s y s n s D sa b a bLL Ž .K s f . 23a b 3s s< <s y sa b

As mentioned above, the matrix elements K a b

define the average electrostatic field19,33,34 gener-
ated by BE b on BE a. To speed up the calculation

FIGURE 1. Definition of the Local, L, Intermediate, I,
and Distant, D, portions of a molecular surface for the

( )source center S i.e., a charge or group of charges .
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Ž .of the matrix elements in eq. 22 , the fast multi-
grid approximation at the monopole level, similar
to that of Greengard and Rokhlin,36 is imple-
mented for the calculation of the matrix elements
K LI, K IL , K II, K LD, K DL , K ID, K DI, and K DD . The
matrix elements between the local BEs are calcu-
lated on the basis of a fine grid, while the matrix
elements for the distant BEs are calculated on the
basis of a coarse grid,

s s Ž s .s y s n s D sŽ .a b a bk kLIK s fÝa b 3s s< <s y sb a bk k

LL < s l <s K if s ys -RÝ a b a b Lock
bk

s l Ž s .s y s n s D lŽ .a b a b s l< <s f if s ys )R ,a b Loc3s l< <s y sa b

Ž .24

where b is a collection of the small BEs thatk
tesselate a large BE b. The matrix elements K IL

a b

are given by

s s y s s n s s D sf Ž . Ž .a b a bk kILK s Ýa b 3sD l < <s y sa a a bk k

1
LL l s< <s K if s ys -RÝ a b a b LockD la ak

l s Ž l .s y s n s D sŽ .a b a b l s< <s f if s ys )R ,a b Loc3s l< <s y sa b

Ž .25

where D l is the area of the large BE a. The matrixa

elements of the diagonal submatrix K II are given
by

s l y s s n s s D s D sŽ .f ž /a b a b ai j i j iIIK s ÝÝa b 3s sD l < <s y sa a b a bi j i k

LI < s l <s K if s y s - RÝ a b a b Loci
ai

l l Ž l .s y s n s D lŽ .a b a bs f 3l l< <s y sa b

< l l < Ž .if s y s ) R . 26a b Loc

The matrix elements between patches of the diago-
nal submatrix K DD are given by

s s y s s n s s D s D sŽ .f Ž .a b a b ai j i j iDDK s ÝÝa b 3s sD p < <s y sa a b a bi j i k

1
LLs K D sÝÝ a b ai j iD pa a bi j

< p p <if s y s - Ra b Loc

s l y s l n s l D l D lf Ž .ž /a b a b ai j i j is ÝÝ 3l lD p < <s y sa a b a bi j i k

< p p <if s y s ) Ra b Loc

1
II Ž .s K D l . 27ÝÝ a b ai j iD pa a bi j

The matrix elements of all other submatrices K LD,
K ID, etc., can be expressed by similar equations.
The important properties of the expressions shown
above are that the matrix element of a high level,
e.g., K DD, is a sum of the subsets of low-level
matrix elements, e.g., K II or K LL .

The diagonal elements K LL for the small BEs ona a

the molecular surface are calculated by

1r2LL Ž . Ž .K s k p D s rR , 28a a a a c

where R is the local radius of curvature of thec
molecular surface and k is an empirical coeffi-a

cient that is found numerically to be q0.75, y0.20,
and 0.0 for convex, concave, and saddle faces,
respectively, of the molecular surface. Equation
Ž . Ž .28 is obtained by analytical integration of eq. 10
over the small BE, which is assumed to have a
circular shape, and the coefficient k reflects thea

real shape of the small BE that is generated by our
program. It should be noted that the usual choice
for the diagonal matrix elements in the BE

12 ] 14 Žmethod is to equate them to zero i.e., assum-
.ing that the small BEs are planar . Purisima and

Nilar 35 obtained the diagonal matrix elements from
Ž .the normalization condition of eq. 14 .

Ž .The Liapunov]Kellogg condition, eq. 6 , en-
ables one to obtain the upper bound for the matrix
elements K between two BEs with centers at sa b a

and s on the molecular surface,b

< < < < Ž .K F s y s r4R . 29a b a b c

Ž .If condition 29 is violated for the given matrix
element K , then K is replaced by the appro-a b a b
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priate upper bound value. Filtering of the matrix
Ž .elements K through this condition 29 is equiv-a b

alent to smoothing singular cusps on the molecu-
lar surface. The physically real dielectric border
surface does not contain singular cusps because an
intramolecular dielectric constant cannot be as-
signed to the infinitesimally thin volume of the
cusp in the vicinity of its singular point. Therefore,
cusps, which appear rarely in the Connolly geo-
metrically constructed molecular surface, have to
be smoothed with a user-defined radius of curva-

˚Ž .ture about 1 A .
Ž .As follows from the sum rule equation, eq. 16 ,

the submatrices K X Y, where X, Y s L, I, D, are
subject to the sum rule

K L X
s D s s q K I X

l D l l q K D X
p D p pÝ Ý Ýa b a a b a a b ai i i i i i

s pla aai ii

X Ž .s 2p D s , 30b

where D s X is the area of the BE X . The sum ruleb b
L I D Ž .for the vector b , b , b , follows from eq. 15 ,

bL
s D s s q b I

l D l l q bL
p D p pÝ Ý Ýa a a a a ai i i i i i

s pla aai ii

f
Ž .s 4p q . 31Ý kDi k

Ž .The solution of the linear equation, eq. 22 , can
be found iteratively. We found that the precondi-

Ž . 20tioned biconjugate gradient PBCG method con-
Ž .verges in all cases, whereas the Gauss]Seidel GS

method20 fails to converge. It should be noted that
the PBCG method can be implemented only if the
full matrix K is calculated. The iterative BE
method, which uses a partially calculated matrix19

K within a local region, or the BE method without
calculation of matrix 27 K, can use only the GS
method, which often fails to attain convergence.
Therefore, to obtain convergence, the iteration with
underrelaxation19,27 must be used.

Our 3-level MBE method for calculating the
polarization charge density can be summarized as:

1. calculation of a set of small and large BEs on
the molecular surface, using the MSEED37

or Connolly30 method;

2. collection of small BEs into the large BEs
and collection of large BEs into the patch

Ž 38,†BEs it should be noted that our method
does not need the expensive surface triangu-
lation used, for example, by Zauhar and

12 .Morgan ;
3. definition of a collection of centers of molecu-

lar electrostatic fields as a set of charged atoms
or compact atom groups;

Ž s l p.4. calculation of the MBE set s , s , s for the
kth center of the molecular electrostatic field;

5. calculation of an appropriate source vector
Ž s l p.b , b , b and a uniform correction by nor-

Ž .malization by the sum rule, eq. 31 ;
6. calculation of the matrix elements of eq.

Ž .22 , and a uniform correction to satisfy the
Ž .sum rule, eq. 30 ;

Ž .7. solution of the linear equation, eq. 22 , by
the PBCG iterative method;

8. uniform normalization of the resulting po-
larization charge vector s s, s j, s p by

Ž .Gauss’ theorem, eq. 12 ;
9. collection of the polarization charge densi-

ties on the MBE;
10. go back to step 4 and consider the next

charged center of the molecular electrostatic field;

The present 3-level MBE implementation con-
siders the small grid and large grid as collections of
pseudoregularly distributed BEs on the molecular

˚2surface with a high density d , about 10 pointsrA ,s
˚2and a low density d , about 1 pointrA , respec-l

tively, and each patch BE represents the whole
surface of one surface atom. The multigrid method
can be generalized for any unrestricted multilevel
set of surface BEs, whose size is increased continu-

† Molecular surface triangulation is used to approximate the
surface polarization charge density inside the triangle BE lin-
early on the basis of the charge densities at the vertices of the
triangle, to achieve an accurate approximation of the nonsingu-

Ž .lar surface integral in eq. 4 with relatively large areas of the
BEs. The same accuracy of the approximation of the surface
integral can be achieved by using the average value of the
polarization charge density at the center of the BEs and smaller
Ž .about 2]3 times areas of the BEs, because the difference in the
accuracy between these two approximations scales as the sec-
ond power of the area of the BEs, i.e., ;D s2. Yoon and
Lenhoff38 provided a numerical comparison between the linear
and constant approximation and showed that comparable accu-
racy can be obtained in the framework of the constant approxi-
mation with twice the smaller areas of the BEs. A proper
triangulation of the molecular surface is a complicated and
time-consuming procedure that can produce long triangles with
small areas or other unpleasant features in the molecular sur-
face tesselation.12
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ously, by considering a set of compact groups of
surface atoms. An estimate of the number of inde-
pendent surface variables n in the unrestrictedMBE
multilevel MBE method for a large macromolecule
is given by

Ž .n ; n log N , 32MBE L s

where N is the total number of surface atoms of as
macromolecule, n is the average number of BEsL
for each level of BEs, i.e., Local, Intermediate, and
Distant regions, see Figure 1. If the size of the BEs
at level i increases by any constant factor m com-

Ž .pared to the size of the BEs at level i y 1 , and the
number of BEs at each size level is approximately
constant, then the maximum level of the BEs is
; log N and the total number of the multilevels

Ž .BEs is defined by expression 32 .
The computational complexity for calculating

the matrix elements is on the order of ; n2 ,MBE
and the complexity for solving the linear system
Ž .22 by the PBCG method is also on the order of
; n2 . To obtain the total polarization chargeMBE
distribution, we must repeat the solution of the

Ž .linear system 22 for each source of electrostatic
Žfield of the macromolecule in the worst case for

. Ž .each charged atom , see eq. 21 ; consequently,

2Ž . Ž .complexity ; N n log N , 33at L s

i.e,. the complexity scales as N , the number ofat
atoms in the macromolecule. The actual complex-
ity scales as ; N , because the surface atoms cans
be united into a set of compact charged groups
and the atoms of the molecular core produce a
more uniform polarization of a solvent on the
molecular surface and, consequently, can be united
in a set of large clusters. Then, each charged clus-
ter can be considered as one effective source of an
electrostatic field on the molecular surface.

MBE Algorithm Combined with
Calculation of Transfer Energy and
Ionization Equilibrium

The main goal of designing methods to solve
the Poisson equation is to calculate the total elec-
trostatic free energy of a macromolecule in a solu-

Ž . Ž .tion, i.e., eq. 1 . The solvation or transfer free
energy of a solute macromolecule in a solvent is a
difference of polarization free energies of the
macromolecule in the same conformation in the

solvent and in a vacuum environment, i.e.,

Ž . Ž . Ž . Ž .F r s W D , D y W D , D , 34solv p polz i sol polz i vac

where W is the free energy of the surface polar-polz
ization of the macromolecule, D is the dielectrici
constant of the macromolecule, D is the dielec-sol
tric constant of the solvent, and D is the dielec-vac
tric constant in a vacuum, which were taken as 2.0,
80.0, and 1.0, respectively, in all our calculations.
The polarization free energy W is given bypolz

1 q sk a Ž .W polz s , 35ÝÝ < <2 r y sk aak

where s is the polarization charge and s is thea a

BE on the molecular surface.12,19 For simplicity, it
is reasonable to suppose that the surface, which
defines the dielectric border between two dielec-
tric media, is identical in the aqueous solvent and
in a vacuum. Then, to calculate the polarization
charge densities in the two environments, i.e., to

Ž .obtain the solution of eq. 22 , we need to calculate
the matrix elements K and the source fielda b

vector b s, b l, b p only once. The solution of linear
Ž .equation 22 by the PBCG method is fast and

requires only about five to six iterations.
The proposed MBE method has several advan-

tages when the calculation of the ionization free
energy F is considered. If the number N ofinz
coupled ionization sites of a macromolecule does
not exceed 20, then the partition function over the

Ž . Ž .ionization microstates x s x , . . . , x , x s 0, 11 N i
can be calculated directly as5,6

PSN2 Ž .qDG xH nm n Ž .Z s exp y , 36Ý kTns1

where x is the nth protonation microstate, then
total number of protonation microstates being
equal to 2 N. The free energy F isinz

Ž .F s ykT ln Z. 37inz

The free energy of the ionization microstate x is
given by

N
oŽ . Ž . w xDG PS; x s x pH y pK y DpK ln 10 kTÝ i i i

is1

N

Ž .q W x x , 38Ý i j i j
i , js1; i-j

where K o is the intrinsic dissociation constant ofi
the ith single isolated residue in the solvent and
DpK is the shift in pK of a single isolated residuei
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due to its transfer from the solvent to the protein
Ž .environment. The last sum in eq. 38 represents

the free energy of interaction between the N titrat-
able sites in terms of the pairwise PMFs, W . Thei j
pK shift is given by

q 0w x Ž . Ž .DpK ln 10 kT s E PS y E PSi i i

q 0Ž . Ž . Ž .y E S y E S , 39i i

Ž q. Ž 0.where E S and E S are the total electrostatici i
energies of the ith single isolated residue in the
ionized and neutral state, respectively, in the sol-

Ž q. Ž 0.vent, and E PS , E PS are the total electrostatici i
energies of the ith residue in the ionized and
neutral state, respectively, in the protein environ-
ment in the solvent. The total electrostatic energy

Ž .is given as the sum of the last two terms in eq. 1 .
The potential of mean force W is given by thei j
following equation6:

Ž . Ž .1 s s ds 1 s s dsj i
W s q q q ,H Hi j i j< < < <2 r q r y s 2 r q r y sS Sji j i j im m

Ž .40

Ž . Ž .where s s and s s are the polarization chargei j
densities due to charged groups i and j, respec-

Ž .tively. It is easy to see from eq. 40 that all pKi
shifts and PMFs W can be calculated sequentiallyi j
while only one loop over all charged groups is
carried out; therefore, these calculations are com-
bined into the algorithm described in the previous
section as step 8a, following step 8, calculation of
pK shift and PMFs W . These calculations of pKi i j
shifts and pairwise PMFs are carried out faster in
the framework of the proposed MBE method com-
pared to what can be achieved by a straightfor-
ward application of the FD method,5,39 because
calculations by the FD method have to be repeated

Ž .for each N single ionized and N N y 1 r2 double
ionized microstates.

Results

The MBE method has some intrinsic parame-
ters, d , d , R , and R that are defined in thes l Loc Int
previous sections and that affect the accuracy and
performance of the MBE method. We compared
the MBE method for a spherical cavity,19,20,27,35

which contains a point charge and is embedded in
a polar solvent, with the analytical results.35 For
real molecular systems, comparisons were made
with the results of calculations by the multigrid

version of the improved DelPhi program.40 In all
calculations, we used PARSE10 atomic charges and
radii to define a molecular surface, which was
calculated with the MSEED37 or Connolly30 meth-

˚ods with a probe radius of 1.4 A.
Figure 2 shows the relative errors between the

MBE method and the analytical solution35 for the
polarization free energy of the off-center point

˚charge in a spherical cavity of radius 5 A versus
the displacement D of the point charge from the
center of the cavity. It can be seen that an accuracy
of about 1% is achieved when the size of the small
BEs is less than the distance between the point
charge and the surface of the cavity. It should be
noted that, in real molecular systems, the smallest
distance between any point charge and the molec-
ular surface is larger than the smallest atomic

˚radius of ;1 A, if we assume that all atomic
charges are located at the centers of the atoms.
Figure 3 shows the relative errors for two positions

˚of the point charge, D s 4.5 and 4.75 A, re-
specitvely, versus the parameter R . From thisLoc
figure we conclude that a reasonable value of the
parameter R is about triple the size of the largeLoc
BEs. Further increase of R does not improve theLoc
accuracy of the free energy, because this accuracy
is limited by the accuracy of the polarization charge
density in the local region, which is defined by the
size of the small BEs.

Figure 4 shows the dependence of the polariza-
tion free energy of n-butylamine, W , given bypolz

Ž . Ž .y1r2eq. 35 , versus d . To define the dependences
of W on the size of the small BEs, the values ofpolz
the parameters R and R were taken largerLoc Int
than the maximal size of the molecule, the latter

˚being 10 A. It can be seen that, for values of
Ž .y1r2d - 0.5, the dependence is very flat for thes
MBE method; therefore, the density of the small

˚y2BEs d ) 4.0 A can be considered as an accept-s
able density, which provides a relative accuracy
for the calculation of W of better than 0.5%. Assolv
shown in our previous work,19 a reasonable size of
a large BE is produced with a density parameter of

˚y2d s 1.0]2.0 A . Therefore, for further calcula-l
tions, we fixed the parameters d and d in thes l

˚y2range of 5.0]6.0 and 1.0]2.0 A , respectively. The
˚y2set 6.0 and 1.5 A is our standard set for the

parameters d and d . Figure 4 also shows that thes l
MBE results are in excellent agreement with the

y1r2 ˚Ž .DelPhi results for h or d F 0.5 A.s
Table I shows the results of the calculation of

the polarization free energy W by the MBEpolz
method for a large molecule, the 17-residue pep-
tide Ac-ETGTKAELLAKYEATHK-NMe in the a-
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( )FIGURE 2. Relative error in the polarization free energy W , eq. 35 , of the point charge in the spherical cavitypolz
˚embedded in a polar solvent. The radius of the cavity is equal to 5 A; D is the displacement of the point charge from the

˚ ˚y2( )center of the cavity. The parameter R s 3 A, and the densities d , d in A from the bottom to the top curve areLoc s l
( ) ( ) ( ) ( )4, 1 , 6, 1.5 , 8, 2 , 10, 2.5 , respectively.

FIGURE 3. The same relative error as in Figure 2, versus the parameter R . The displacement D is equal to 4.5 andLoc
˚4.75 A for the top and bottom curves, respectively. The densities d , d are 6, 1.5, respectively.s l
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( )FIGURE 4. Polarization free energy W , eq. 35 , of ionized n-butylamine in the extended conformation in anpolz
( ) ( )aqueous solution, calculated by the — MBE method and by the --- DelPhi method versus cell size h of the DelPhi

method, or the size dy1/ 2 of a small BE. The error symbols represent the standard deviations for the polarization frees
energy from the average value. The average polarization free energy is calculated over all rotations and translations of
the molecule relative to the 3-D lattice in the DelPhi method.

helical conformation,41,‡ with different sets of pa-
rameters R and R . As can be seen, the MBELoc Int
method demonstrates good stability as these pa-
rameters are varied. Reasonable values of the pa-
rameters R and R from the point of view ofLoc Int
accuracy and computing time are in the range of

˚4]5 and 8]10 A, respectively. In these calculations,
we considered the whole peptide group and each
group of polar residues as the source of the molec-
ular electrostatic field. Figure 5 shows a compari-
son of the polarization free energy W of thepolz
17-residue peptide Ac-ETGTKAELLAKYEATHK-
NMe in the a-helical conformation, calculated by
the MBE and DelPhi methods. As can be seen, the

ŽMBE values of W are in good agreement withinpolz
.2.5% with the DelPhi values of W .polz

Table II shows free energies of desolvation D gi
of the ionizable residues of the 17-residue peptide
Ac-ETGTKAELLAKYEATHK-NMe in the a-heli-
cal conformation, when the residue is moved from

‡ It is recognized that the a-helical form does not remain
intact as the pH changes. However, this calculation was carried
out only to demonstrate how to obtain D F for a giveninz
conformation. Simulations of the coupling between ionization
and conformational equilibria, which requires the combination
of the Monte Carlo method for the total energy defined by eq.
Ž .1 with the ECEPP method for calculating a conformational
energy in a vacuum, are presented elsewhere.41

a solvent to a protein environment

q 0Ž . Ž .D g s W PS y W PSi polz i polz i

q 0Ž . Ž . Ž .y W S y W S . 41polz i polz i

TABLE I.
Polarization Free Energy, W , Versuspolz
Parameters R and R of MBE Method.Loc Int

˚ ˚( ) ( ) ( ) ( )R A R A W kcal / mol t sLoc Int polz

3.0 6.0 y101.22 191
3.0 8.0 y101.58 218
5.0 8.0 y101.82 305
3.0 10.0 y101.28 280
5.0 10.0 y101.87 390
5.0 12.0 y101.89 496

aDelPhi y99.51 148

( )The polarization free energy is calculated by eq. 35 for a
17-residue peptide Ac-ETGTKAELLAKYEATHK-NMe in the
state of zero ionization for each residue in the a-helical

(conformation with the standard set of parameters d , d sees l
)text . t is the CPU time for a calculation by serial code on

one node of the IBM SP2 supercomputer.
aCalculation by the DelPhi method with lattice dimension

˚N s 129, lattice size h s 0.227 A.g
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FIGURE 5. Polarization free energy W of the 17-residue peptide Ac-ETGTKAELLAKYEATHK-NMe in the neutralpolz
( ) (form in the a-helical conformation in an aqueous solution. — The free energy calculated by the MBE method see

) ( )Table 1 . --- The average free energy of the DelPhi method versus the cell size. The error symbols represent the
standard deviations as in Figure 4.

TABLE II.
Free Energies of Desolvation and PMFs for Ionized Groups of Peptide Ac-ETGTKAELLAKYEATHK-NMe.

Wij

q y q y y q qD g K E K Y E H Ki 5 7 11 12 13 16 17

yE 0.52 y1.07 0.33 y0.23 0.25 0.27 y0.20 y0.191
( ) ( )0.34 y1.12

qK 0.13 y0.32 0.24 y0.27 y0.29 0.22 0.205
( ) ( )0.48 y0.30

yE 0.35 y0.38 0.31 0.35 y0.26 y0.257
( ) ( )0.23 y0.52

+K y0.04 y0.35 y0.33 0.28 0.2611
( ) ( )0.13 y0.27

yY 2.11 0.58 y0.93 y0.3112
( ) ( )1.86 0.49

yE 0.51 y0.40 y0.4013
( ) ( )0.54 y0.41

qH 0.96 0.4816
( ) ( )0.91 0.54

qK 0.0017
( )0.04

Values were calculated by the MBE and DelPhi methods and are in kcal / mol. Numbers in parentheses were calculated by the
˚DelPhi method with lattice dimension N s 129 and lattice size h s 0.227 A.g
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FIGURE 6. Excess free energy of ionization of the 17-residue peptide in a fixed a-helical conformation in an aqueous
solution at 300 K versus pH.‡

As can be seen from Table II, D g calculated by thei
MBE method is in reasonable agreement with the
one computed by the DelPhi method. Calculations
of the PMFs W between charged ionizablei j
residues of the peptide Ac-ETGTKAELLAKY-
EATHK-NMe also show results in good agreement
with those computed by the DelPhi method. It
should be noted that these calculations of the de-
solvation free energies D g and the PMFs are veryi
inexpensive with our MBE method; the results of
all these calculations to obtain D g and W werei i j
obtained in one loop over charged groups for an
additional CPU time of less than 120 s. Therefore,
the complete calculation of the two last terms in

Ž .eq. 1 , i.e., the free energy F of transfer from asolv
vacuum to an aqueous solution and the free en-
ergy of ionization F takes about 400 s of CPUinz
time on one node of the IBM SP2 supercomputer.

Figure 6 shows the dependence of the excess
free energy of ionization D F of the peptide Ac-inz
ETGTKAELLAKYEATHK-NMe in the fixed a-heli-
cal form41, ‡ on the pH of the aqueous solution,
where the free energy D F is defined asinz

0 Ž .D F s F y F , 42inz inz inz

where F is the free energy of ionization of theinz
peptide in a given conformation and F 0 is theinz
free energy of ionization of the peptide when all
ionized groups are considered as isolated and non-
interacting, i.e., all desolvation energies D g s 0i
and the PMFs W s 0.i j

Table III shows the dependence of the perfor-
mance CPU time for the MBE method on molecu-
lar size. The ratio trS decreases as the molecularm

surface S area, i.e., the number of BEs, increases;m

therefore, the dependence of the CPU time t on Sm
is less than a linear regression.

Discussion

We designed a 3-level MBE method that ex-
hibits good accuracy and performance for short
peptide molecules. As shown, the MBE method
calculates the free energy of transfer and the ion-
ization free energy for a 17-residue peptide Ac-
ETGTKAELLAKYEATHK-NMe with eight ioniz-
able residues in 400 s of CPU time on the IBM SP2

Ž .supercomputer. The size of the matrix in eq. 22
does not exceed 2000 for this 17-residue peptide;
therefore, the RAM demands do not exceed 120
MB and are about the same RAM size needed by
DelPhi for N s 129. We also showed that theg

MBE method is stable to a variation in the size and
numbers of MBEs, which are tesselated on the
molecular surface. This accuracy and stability are
provided by the intensive use of the different
kinds of sum rules for matrix elements and the
source term vector. The use of the sum rules of the
MBE method is important for a calculation of abso-
lute solvation free energies to treat the conforma-
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TABLE III.
CPU Time for MBE Method.

2˚( )Molecule N S A t t / Sat m m

Lysozyme 1309 7399 51 0.7
a17-res 279 1420 13 1.1

bAla14 152 759 10 1.5
bAla10 112 561 9 1.6

bAla6 72 391 7 1.8
bAla4 52 299 6 2.0
bAla1 22 210 4 3.9

CPU time in seconds to calculate the surface polarization
charge for one center of the molecular electrostatic field, i.e.,

( )to solve eq. 9 for one particular term b.
a Seventeen-residue peptide Ac-ETGTKAELLAKY-
EATHK-NMe in the neutral form in the a-helical conforma-
tion.
b

a-helical conformation.

tional stability of a molecule in a solvent. Using
Ž .the precalculated full matrix in eq. 22 and the

PBCG method, we overcame the problem of bad
Ž .convergence or nonconvergence in some cases of

the iterative solution of the BE integral
equation,19,42 which in the fast multipole approxi-
mation BE method27 is partially solved by itera-
tions with underrelaxation at the price of a slow
convergence rate.

Our proposed MBE method can be generalized,
in an obvious way, beyond the current 3-level size
of the BEs, to include adaptively increasing sets of
BEs tesselated on the molecular surface. As esti-
mated, such a generalized unrestricted MBE
method has a linear, computational complexity with
respect to molecular size and can be used for large
macromolecules.
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