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A Fast Algorithm for Background Tracking in Video
Surveillance, Using Nonparametric Kernel Density
Estimation

Codrut lanag, Vasile Gui, Corneliu I. Toma, and Dan Pescaru

Abstract: Moving object detection and tracking in video surveillance systems is com-
monly based on background estimation and subtraction. For satisfactory performance
in real world applications, robust estimators, tolerating the presence of outliers in the
data, are needed. Nonparametric kernel density estimation has been successfully used
in modeling the background statistics, due to its capability to perform well without
making any assumption about the form of the underlying distributions. However,
in real-time applications, the ®&) complexity of the method can be a bottleneck,
preventing the object tracking and event analysis modules from having the computing
time needed. In this paper, we propose a new background subtraction technique, using
multiresolution and recursive density estimation with mean shift based mode tracking.
An algorithm with complexity independent dvis developed for fast, real-time im-
plementation. Comparative results with known methods are included, in order to attest
the effectiveness and quality of the proposed approach.

Keywords: Background subtraction, motion detection, tracking, nonparametric ker-
nel density estimation, video surveillance.

1 Introduction

Much work has been done in the area of visual surveillance in the last years [1, 2, 3].
Applications include car and pedestrian traffic monitoring, human activity surveil-
lance for unusual activity detection, people counting etc. A typical surveillance
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application consists of three building blocks, responsible of: moving object detec-
tion, object tracking and higher level motion analysis. While the last two blocks

of the system tend to be the most sophisticated, the overall reliability heavily de-
pends on the accuracy and robustness of the moving object detection step. Because
the image is usually captured by a stationary camera, it is easier to detect a still
background than moving objects.

Despite the importance of the subject and the intensive research done, back-
ground detection remains a challenging problem in applications with difficult cir-
cumstances, such as changing illumination, waving trees, water, video displays,
rotating fans, moving shadows, inter-reflections, camouflage (foreground objects
similar to the background), occasional changes of the true background (for exam-
ple removing an object from the scene), high traffic etc. Such problems cannot
be solved by simplistic, static-background models. Various solutions addressing
the mentioned problems exist. Some are very computationally extensive and can-
not be used in applications requiring real-time operation. Even in the case when
visual analysis is used to evaluate later the detected events, the accumulated data
may become too much for off-line processing. Therefore, most systems need to do
real-time processing in order to be able to keep pace with the video data flow.

Although multimodal systems [4, 5], using more than just one type of data
input (such as stereo or multicamera systems), or feedback from the higher level
modules may alleviate some of the problems occurring at background subtraction,
in the present work we concentrate on the most common case of systems using
single, stationary, color cameras and no feedback from higher level modules. We
show that a background tracking approach can be used in the nonparametric kernel
density estimation paradigm, and describe an efficient algorithm for fast, real-time
implementation. The computation complexity is independent of the dimemsion
of the frame buffer, in contrast with the basic nonparametric density estimation
method, with complexity Q¥?). Experimental results are compared with those
obtained through the traditional nonparametric kernel density estimation method.

The structure of the rest of the paper is the following. In Chapter 2, the relevant
work related to the background estimation problem is discussed, with emphasis on
the dominant trend of parametric and nonparametric density estimation techniques.
The proposed background estimation is described in Chapter 3, while the results of
our experiments are described and discussed in the last chapter of the paper.

2 Related Work

The goal of video surveillance systems is to monitor the activity in a specified,
indoor or outdoor area. Since the cameras used in surveillance are typically sta-
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tionary, a straightforward way to detect moving objects is to compare each new
frame with a reference frame, representing in the best possible way the scene back-
ground. By subtracting the background from the current frame in all regions where
the current frame matches the reference frame, a segmentation of the moving ob-
jects is readily achieved. The results of this process, called background subtraction,
are used by the higher level processing modules for object tracking, event detection
and scene understanding purposes. Successful background subtraction plays a key
role in obtaining reliable results in the higher level processing tasks. This is why
many researchers considered carefully the problem of background modeling.

Background modeling is commonly carried out at pixel level. At each pixel, a
set of pixel features, collected in a number of frames, is used to build an appropri-
ate model of the local background. Block-based approaches have also been used,
mostly in older work, at the expense of resolution. Features used for background
modeling can be pixel based, such as intensity or color, local based, such as edges,
disparity or depth and region based, such as block correlation. In an ideal situation,
the background feature at any pixel is constant in time. In this case, the background
feature observed at time ind&can be written as:

X, =b-+n, 1)

whereb is the unknown background feature vector apds the noise value at
observation timé&k. Suppose a collection ®f observation frames are available for
the estimation of the backgroulbd The estimation problem can be put in the form:

b:argymax{sz(y)}, )

with
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which is the well known total least squares estimator, minimizing the sum of squared
Euclidean distances from the estimated point to the observed features, of the L
norm of noise. By taking the derivative of equation (3), it is straightforward to
show that he solution is the mean of the observed feature vectors, or the sample
mean:

:—7 . 4
y NkZOXK (4)

The best way to build such a background model would be to capture the empty
scene for a number of frames and take the average frame as the estimated back-
ground. Unfortunately, such a scenario is hard to be put in practice in many ap-
plications, such as the surveillance at an airport terminal, metro station or on a
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highway. Moreover, each time the background changes, the whole scene should
be cleared up to repeat the background estimation procedure. Therefore, the back-
ground estimation should be carried out during activity in the scene and should be

updated to follow background changes occurring in time. As a consequence, the

estimation procedure should be designed with a method which is able to tolerate

the presence of motion and at the same time to adapt to the true changes of the
background.

The presence of moving objects during background estimation involves the
presence of pixels in equations (1) - (4) considerably deviating from the real back-
ground, called outliers in robust statistics literature [6, 7]. Due to the squaring up
operation in equation (3), outliers tend to dominate the sum, causing significant
deviation of the estimated feature from the true background. This problem can be
alleviated by replacing the sum of squared Euclidean distances in equation (3) with
the sum of absolute deviations ot horm. The solution to the new minimization
problem is the median sample. Note that finding the median for a large sample set,
especially for vector data, is much more computationally expensive than finding
the sample mean. Although the median is known to be a robust estimator, its use
to background estimation is hindered by the fact that it needs to have at least half
of the collected samples taken from the true background. In scenes with heavy
traffic, this condition can hardly be met. A more powerful approach to background
estimation can be obtained starting from the observation that the true background
at a pixel is the most frequently observed feature, consequently the most proba-
ble. Even more realistically, we have to suppose that pixel samples collected at
instances when the background is not covered by any moving object are affected
by noise, due to several factors, like shadows, reflection, camera noise, bulb flicker-
ing etc. Therefore, a better way to model the static background is through a random
variable or a random vector with an associated probability density function (PDF).
In some cases, like trees waving in the background or a rotating fan, more than just
one variable should be used for proper background modeling.

The unknown density functions can be represented parametrically, using some
specified statistical distributions, and the set of associated parameters minimizing
the approximation error with the observed data, can be found through techniques
inspired from the statistical literature on parametric estimation methods. A very
popular approach is to fit the real data with per-pixel mixtures of Gaussians, as
first proposed by Stauffer and Grison [8, 9] and adopted since by many others, like
[4, 10, 11, 12]. The strong point of the Gaussian mixture model is that it can work
without having to store an important set of input data, as nonparametric methods
do. Usually 3 to 5 Gaussians are needed for proper modeling of both background
and foreground objects. The Gaussians are weighted by the number of samples
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clustered in each of them:

K

b\(x) = z mGk(X;uka zk)a (5)
k=1

wherex is the pixel feature vectorg are prior probabilities of the Gaussians and

K, andx, are mean and covariance matrix of the distributions. To reduce the num-
ber of parameters that must be estimated, all feature vector components are usually
considered independent. A simplified, on-line version of the EM algorithm, intro-
duced by Dempster [13] can be used to obtain fast parameter updating for real-time
implementation. Some known problems with this approach are:

the need for good initializations;
slow recovery from failures;
difficult adaptation to fast illumination changes;

dependence of the results on the true distribution law, which can be non-
Gaussian;

¢ the need to specify the number of Gaussians to be fitted.

Alternatively, the density function modeling the background at each pixel can
be obtained through nonparametric kernel density estimation methods [14, 15].
They are known to be able to produce smooth, continuous, differentiable and ac-
curate estimates without having to assume any particular underlying distribution.
The number of modes does not have to be known in advance and adaptation to new
data is automatic. Although falling in the class of honparametric methods, kernel
density estimation methods still require one scale parameter to be specified or com-
puted from the data. Given a sampleMtlata pointsy;, drawn from a distribution
with multivariate probability density functiop(x), an estimate of this density =t
can be written as:

N
PO = 3 Kulk—X), ©

whereK,, is the kernel function with scale. Equation (6) can be seen as a super-
position sum of effects of all samples at the currently estimated poi@pmmon
choices for the kernel function are the hypercube and Gaussian shapes. The last
one has been successfully used in background and foreground modeling for visual
surveillance by Elgamal et al. in [16] and more recently in [17]. Nonparametric
methods are less frequently used in visual surveillance applications than the para-
metric ones, mainly because of their heavier computational load. If the PDF is
evaluated at each input point,(l8?) operations are needed for a direct computa-
tion from the equation (6). One way to reduce the computational load2bl Ot
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is based on the use fast Gauss transform, data clustering and clever data structures
[17].

3 Nonparametric Background Detection and Tracking

Starting from a careful analysis of the use of kernel density estimation technique in
the specific case of background modeling, we develop a new algorithm which is at
the same time accurate and fast.

3.1 Adopting the proper size of frame buffer

An important simplifying assumption made in the present work is that, in the set
of N frames, used for background estimation, the background feature vector is ob-
served at least once within the desired measurement error margin. We consider that
in practice, the frame buffer size, should be selected big enough to fulfill such a re-
guirement. As a consequence, the background feature value at any spatial location
can be found by selecting one of tNepixels collected at that location in the frame
buffer.

When deciding for a big buffer sizé\, two other limiting aspects should be
considered. The most important one is adaptivity. ANigesults in slow adapta-
tion to illumination changes. The second aspect may be computational complexity.
For one dimensional data, the dependence of the computational Iddccan be
avoided by storing and processing a histogram of the input data instead of the real
data. If the number of bingyl, is smaller tharlN, histogram processing is faster.
On the other hand, for multichannel data, such as color video input, a histogram
with M3 cells results, making the histogram approach less likely to be faster. In our
experiments, we found that valuesMfin the range of 128-256 worked well in a
large variety of surveillance scenes. RMscannot be taken smaller than 64 without
introducing significant quantization errors, we ruled out the histogram approach
for probability density estimation. Instead, we developed a recursive method to
track background changes within the framework of nonparametric kernel density
estimation methods and used a roughly quantized 3D histogram to speed up the
computations.

3.2 Initial background estimation

We divided our background subtraction task into two stages. The first one is the
initial background estimation, while the second one is background tracking. Initial
background estimation is carried out only once, when the system is started. A set
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of N input frames are accumulated and stored in a frame buffer. No assumption
about the absence of foreground object is needed. The input data consists of color

vectors of the form:
Xy R
X = X2 = G .
Xg B

At each spatial location, the PDF is estimated by evaluating equation (6) for all
N data points from the frame buffer:

o 13
p(xk):NZlKh(xk—Xi)a for k=1,2,..,N (7)
with
3 X — %
Ky, (% —X) = [ rect{ ¢ (8)
05=%) =[] ()
and
. 1 Ju<i )
ectu) = 0 otherwise ©)

For simplicity, the spatial coordinates of data vectors are omitted. At each pixel,
the kernel bandwidth or scale parameters are computed from the equation:

he=a : medianx;,; — X(i—1) (10)

¢l

asin [16]. The median of absolute differences between intensities from consecutive
frames is a robust estimate of the intraclass data variance, as is relatively unaffected
by a few high-amplitude jumps expected to occur when edges separating moving
objects are projected on a certain pixel. In order to obtain a fast estimation of the

scale, an on-line approximation of the median is used. The updating equation for a
new sample is:

mediar{i) = mediar{i — 1) + n sign(X,; — x(i_l)c), (12)

with n a small learning rate.
Foreground detectiorij can be obtained by thresholding the density functions:

x €F ] px)<Th (12)
while the maximum likelihood background estimate is

b= arng max{ p(X,) }. (13)
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3.3 Foreground/background segmentation

Although the foreground/background segmentation can be done from equation (12)
without explicit extraction of the background distribution molemay be needed

for example in shadow detection and/or as an alternative solution to the segmenta-
tion problem. We decided to adopt this second approach, as it separates the seg-
mentation from the density estimation stage, allowing the estimation to be done at
a much lower rate than the frame rate needed for motion tracking. Consequently, a
pixel x can be classified as belonging to the foreground if

d(x,b) > Th, (14)

whered(x,b) is an appropriate measure of color similarity drlda threshold. Sev-

eral solutions to evaluate color similarity exist. The most straightforward is the use
of Euclidean norm of the difference vector in the RGB space. Better correspon-
dence with subjective ratings can be obtained using Yuv or Lab color spaces. An
additional advantage of these spaces is the direct access to the luminance informa-
tion, which can be better used in shadow detection. The same is true for the HSV
space or the simpler, linear solution:

s=(R+G+B)/3,

r=R/s, (15)
g=G/s

In order to facilitate shadow detection, apparently luminance information should
be totally discarded. For example, chroma coefficiergadg could be used with-
out the "sum” terms. However, such a solution would make gray objects on gray,
black or white background undetectable. More, the color of the very dark objects
is ill defined. The same is true with very bright objects, leading sometimes to cam-
era saturation. While the shadow detection is a problem on its own and subject of
recent research [18], we obtained satisfactory results with equation [15] and scaled
L norm:

d(cy,C,) =[S — S| + M]ry — 15|+ Mgy — gy, (16)
whereM is the maximum value of the R,G,B signals, that is 256 in the present

work. Scaling is needed to compensate for the very different range of grends
variables.

Foreground object segmentation masks obtained after thresholding the differ-
ence between the current frame and the estimated background, using equation (14)
are affected by several sources of errors. Some, such as those produced by the pres-
ence of the shadows or camouflage may need special attention and perhaps multi-
modal sensing. Others consist of scattered groups of pixels forming small regions
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representing false objects or holes in the true objects. Such errors can be effectively
corrected by spatial filtering. While morphological filtering of the binary segmenta-
tion mask is a common approach, we decided to exploit the additional information
contained in the difference image. Instead of directly thresholding the difference
image and filtering the result, we first filter the difference image and then threshold
the result in a processing step called thresholded convolution. To obtain fast con-
volution, we used a separablex9 binomial filter. The horizontal filtering kernel

is:

B, = [1, 8, 28 56, 70, 56, 28 8, 1]/256 (17)

3.4 Fast background tracking

We propose a fast background tracking technique that combines strong points from
parametric, nonparametric and histogram based density estimation methods. A
straightforward implementation of nonparametric density estimation from a set of
N data points involves the evaluation of equations (7) and (13) at each data point,
leading to a number dfl2 operations. A careful analysis reveals that, after doing
so for the firstN frames, a background tracking approach can be used, based on
recursive data processing and simple heuristics.

When a new frame is received, a new data point replaces the oldest data point,
at each pixel in a buffer of lengtN. For the unchangedll — 1 data points, the
new densities can be obtained from the old ones recursively, by simply adding the
contributions of the new pixel and subtracting the contributions of the old, outgoing
pixel:

. R 1 1
PrewdX) = Pgq(X) + NKh(x_xnew) - NKh(x_xold)' (18)

This means only two operations per data point, tha{ié$-2 1) operations. For the
new pixel, there is no previous estimate of the PDF and apparently tiperations
from equation (7) are needed. While recursive evaluation of densities can reduce
the processing load from (@2) to O(3N), more can be done. First, we notice
that for most of the old data points not belonging to the background distribution,
the density is much lower than for the background. The chances of such points to
win the density competition in equation (13), even with the possible contribution
of the new data point, are zero. Therefore, an accurate evaluation of the PDF at
such points would be a waist of time, once they were identified. A cheap solution
to identify low density points is to keep a low resolution histogram for each spa-
tial location of the image frame. Histogram updating can be done with only one
increment and one decrement operation per new estimation frame. Low resolution
is beneficial for both dealing with data sparseness and memory considerations. In
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this work, we used a 1616x 16 color histogram to fast discard low density points
from accurate evaluation.

A concise pseudo-code description of the background tracking algorithm for a
given spatial location is given in Figure 1.

if (K, (Xnew—b)! =0)
update(b andp(b) );
else if ( Hist(Xnew) > threshold
if (P(Xnew) > P(b))
b =: Xnew,

Fig. 1. Pseudo code description of the fast background tracking algorithm.

If the newly entered data point is within the domain of the kernel function
centered at the currently estimated background, the density and the location of the
background mode are updated in the next code line. Otherwise, the histogram
based density estimate at the new data point is checked against a threshold. Only if
the density threshold is passed, the new data point is submitted to accurate density
evaluation by equation (7) and the result is compared to the current density maxima
of the background for possible replacement.

When the new data point falls within the domain of the kernel function, the
background density is updated from equation (18), while the background color is
updated using the following rule:

Such a rule has been successfully used for mean value (mode) updating for
the Gaussian mixture model in parametric background estimation. However, in the
framework of nonparametric density estimation techniques, our theoretical motiva-
tion behind this option is related to the mean shift paradigm [19, 20]. The mean
shift is a gradient ascent algorithm used to detect local maxima of a nonparamet-
rically estimated PDF. It can be shown that for the Epanechnikov kernel function,
the estimated gradient of the estimated PDF at a poipbints in the direction
of the mean shift, that is the difference between the arithmetic mean of the points
lying within the domain of the kernel function centeredxa&nd x itself. This
can be shown in a straightforward manner by differencing equation (7), where the
Epanechnikov kernel:

_X'x i T
=] o (1 i ) i xTx<1 20)
0 otherwise
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is used. At each step, the algorithm shifts from the current point to the mean of
the points lying within the domain of the kernel function. As the move is in the
direction of the increase of the estimated PDF and the function is bounded, conver-
gence is granted. A proof for the discrete case is given in [19]. Note that the mean
shift mode estimate is not confined to any discretization and potentially overper-
forms evaluations restricted at thetarget data points as in the work of Elgamal
[16, 17]. This supposition is also supported by our experimental findings, although
the improvements are barely noticeable.

Suppose we have an estimate of the backgrobggd,and a new pixelXnew
enters the data buffer and it is within the active range of the kernel functib,, If
was the old mode, it also was the old mean. Therefore, the new mean, with the
contribution of the new pixel included, can be computed from equation (18) if we
put
1

In practice, we used a constant and presumably higher value1/8, with

very stable results. Only one mean shift iteration is done for a new data point.

Usually the mean shift algorithm converges in no more than two or three steps.

Since we start from a point supposed to be fairly close to the convergence point, no
further iterations are done. If integer arithmetic is used for background representa-
tion, the learning rate should be related to the scale of the kernel by the constraint
ahe > 1/4. Otherwise, the background newer gets changed by equation (19), due
to quantization the effects of integer representation.

Normally, most of the pixels observed at a location belong to the background,
except for periods with very heavy traffic. New pixels failing to meet the TRUE
condition of the if) statement in the first pseudo code line are checked on the
third line whether or not they represent possible candidates to change the current
background estimate. Most of these pixels belong to the moving foreground and
have very low PDF, therefore they are quickly discarded from further evaluation by
the histogram density test. The quantization cells of the histogram have to be large
in comparison with the kernel scale,, in order to avoid false negative decisions.
When significant background changes accumulate during a number of frames, for
example as a result of a new static object being included in the background or an
object being carried out, the number of counts eventually raise above a threshold
level in one or more of the histogram bins and will be considered for more precise
nonparametric probability density evaluation, through equation (7). If the density
at the new pixel exceeds the density of the currently estimated background, the
background estimate is replaced by the new pixel. The histogram threshold level is
set as a fractiofs of the number of kernel hits at the estimated backgroiii(b).



138 C. lamg, V. Gui, C. Toma, and D. Pescaru:

In our experimentsf = 0.5 was most frequently used but the exact value proved
to be noncritical.

Scale parameter updating, based on equations (10) and (11), is done each time
a new image frame is acquired from the video stream. The background information
is also updated every frame, but for only one of pixel fromxalblock at a time.
This way, 16 frames are needed for a complete background update and the compu-
tational load of the background estimation process is correspondingly diminished.
Processing in turn different pixels fromx4l blocks instead of processing all pixels
simultaneously in every 16-th frame is twofold beneficial. First, errors resulting
from biased background values induced by moving foreground objects are spread
in space and therefore can be easier removed by filtering the segmented images.
Second, the processing load is more evenly distributed in time.

4 Results and Discussion

To assess the performance of the proposed background estimation and tracking
technique, we run comparative tests with the traditional background estimation
based on the evaluation of the PDF at each ofNhéata points stored for each
pixel. We performed both qualitative and quantitative tests.

The left side image from Figure 2 was obtained by a direct implementation
of the kernel density estimation technique using the separable rectangular window
from equation (8) with kernel bandwidth scaling factor in equation @G} 1,
while the right side image was obtained with the recursive mean shift tracking
method proposed and the same kernel. Despite of being used from 128 frames
with very heavy traffic, severe shadow and lighting source reflection, both images
have a good quality and can be successfully used for the purpose of background
subtraction. The images are virtually identical, with a very slight and favorable
edge preserving smoothing effect in the case of the proposed approach. The higher
granularity of the background obtained by kernel density estimation is a result the
discrete nature of the method, the density being evaluated only at data points in the
RGB feature space. By contrast, the mean shift based mode tracking theoretically
corresponds to a continuous estimate of the density and benefits from the edge
preserving smoothing effect of the conditional averaging resulting from equation
(19).

Results for other two frames from the same indoor people counting sequence
are illustrated in Figure 3. In Figure 3a), the scaling factdrom equation (10) for
the kernel bandwidth was 1, while in Figure 3b) it was 3. The extracted background
is practically unaffected by the scale factor change, demonstrating the robustness of
the nonparametric estimation approach to the selection of the estimator’s scale. The
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Fig. 2. Left: background obtained by direct implementation of the kernel density estimation
method. Right: background from the same image sequence obtained by the mean shift
based mode tracking.

estimated background is on the bottom-right position. In the bottom-left position,
the results of foreground segmentation are illustrated. The top-left images show the
current frame, while the top-rightimages contain the same image with the enclosing
rectangle of the valid countable moving objects included.

In order to obtain quantitative assessment of the proposed background subtrac-
tion method, we compared the results of the mean shift tracking estimator with the
results of the kernel density estimator on synthetic data, with available background
truth. Namely, we generated a constant background corrupted with zero mean white
noise uniformly distributed between -0.5 and 0.5. We evaluated standard deviation
of the estimation error obtained with the standard kernel density estimation and the
mean shift tracking estimator for 200 samples from a sequence of random samples,
using different kernel bandwidths.

A sliding data window of 40 samples was used for the kernel density estimator.
The results of the performed simulations are shown in Figure 4. Note that the mean
shift tracking estimator was started from the true zero background level. While this
may be considered an idealized start, its much lower variance undoubtedly confirm
the quality of smooth estimator of the mean shift mode tracker noticeable from
Figure 2 too.

To obtain a better insight on the properties of the estimators under test, the
instant estimation error sequence recorded for kernel scale 0.6, which is the best
for the kernel density estimator and the worst for the mean shift tracking estimator,
is illustrated in Figure 5.

The complexity of the method was reduced fronN&)(to O(2N) in the worst
case, the same as for the more elaborated Elgamal solution, based on Fast Gauss
Transform [21]. However, we argue and our experiments confirm that such worst
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a)

b)

Fig. 3. Groups of pictures a) and b) show two frames from the same sequence obtained
wit kernel scale factors 1 and 3. The top-left images show the current frame. Bottom-left
images show the results of foreground segmentation. Bottom-right images show the esti-
mated backgrounds. Top-right images contain the current frame images with the enclosing
rectangle marking the valid, countable, moving objects.

cases consist of the relatively infrequent situation of radical background change, for
example as a result of adding or removing static objects from the scene background.
In order to evaluate the computational complexity of the proposed background esti-
mation method, we set up a radical background changing experiment. To this end,
a black square of 3232 pixels was inserted in a central position of the images
from the incoming video stream, for the fifst/2+ 16 = 80 frames. This signal

was initially detected as the true background at the corresponding pixels. After be-
ing removed, the black rectangle was gradually replaced with the real background,
having much different values. To do so, the algorithm had to go through the long
estimation loop with complexity O(®) operations per pixel. We recorded the num-
ber of times this long estimation was used each frame and illustrated it in Figure
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Fig. 4. Results of kernel and mean shift tracking estimators for different kernel scales.

6, as a percentage of the changed background pixels from the black square. No-
tice in Figure 6 that, except for the transient time of drastic background change,
the long loop was unused for the histogram threstp(b) As a result, we can
conclude that the complexity of the proposed background estimation method is not
dependent oM, except for transient periods, when static objects are removed or
introduced in the background and the complexity it is still only Y2

For the rest of the time, very few operations per pixel are needed: an increment
and a decrement for histogram updating, two operations for background tracking in
equation (18), two subtractions, comparisons and increment/decrement operations
for PDF update with equation (21), a subtraction, comparison and addition for me-
dian updating in equation (11) and a multiplication for scale estimation in equation
(10). All these operations are done for each color channel. A few data shuffling
operations, not seen in this analysis, have to be added for a more realistic evalu-
ation. The computation time for the background tracking step obviously depends
linearly on the number of pixels in the frame. In our experiments, with a 700 MHz
Pentium Il processor based PC, the computing time wasfslper pixel. For a
352%x 240 image resolution and 1/16 of the background image pixels updated each
frame, a computing time of nearly 8ms per frame results, which allows comfortable
real-time implementation and leaves a lot of processing time for object tracking and
scene understanding purposes. On the same computer, we run a version of the Im-
proved Fast Gauss Transform (IFGT) implemented and kindly provided by Yang et
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Fig. 5. Instant estimation errors versus sample number for the kernel density and mean
shift mode tracking estimators.
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Fig. 6. Percentage of the long, Q{2 computations for background estimation, in an
experiment with a radical background change, produced by removing a static object. Each
bin corresponds to a group of 16 frames, needed for a complete background update in the
current work.

al. [21]. The tests confirmed the theoreticalN3M) complexity, withN source

points and M target points and lead on our computer to an average computing time
of 0.387 ms per data sample. This comparison is only made to evaluate the time
saved by using the proposed method instead of the IFGT. We have to underline
that IFGT is a much wider use general purpose density estimation algorithm using
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Gaussian kernel. Its efficiency mainly applies for low dimensional data and big
number (tenths of thousands) of source and target data points, while the mean shift
mode tracker was designed to exploit in the best possible way the particularities of
the background estimation problem in surveillance applications with multidimen-
sional feature spaces and moderate size (several hundreds of samples) data buffer.

5 Conclusions

In this work, we introduced a fast algorithm for background estimation, based on
recursive data processing and a rough histogram based density test used to avoid
useless computations. The algorithm recursively computes a nonparametric kernel
based probability density estimate by means of mean shift mode tracking. Qualita-
tive and quantitative tests performed asses the accuracy of the proposed approach,
while the computation time is not dependent on the length of the data buffer used
for background estimation. That is, the computational complexity N%D(This
compares favorably with the fast nonparametric background estimation techniques
benefiting of the existence of the Improved Fast Gauss Transform algorithm and,
we believe, even with parametric estimation, where up to five Gaussian distribu-
tions from a mixture need to be estimated at each step.
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