
A Fast Algorithm for Computing Steiner Edge Connectivity�
Richard Cole
Courant Institute

New York University
NY, NY 10012

cole@cs.nyu.edu

Ramesh Hariharan
�

Indian Institute of Science
Bangalore

ramesh@csa.iisc.ernet.in

ABSTRACTGiven an undire
ted graph or an Eulerian dire
ted graphG and a subset S of its verti
es, we show how to deter-mine the edge 
onne
tivity C of the verti
es in S in timeO(C3n log n + m). This algorithm is based on an eÆ
ient
onstru
tion of tree pa
kings whi
h generalizes Edmonds'Theorem. These pa
kings also yield a 
hara
terization of allminimal Steiner 
uts of size C from whi
h an eÆ
ient datastru
ture for maintaining edge 
onne
tivity between verti
esin S under edge insertion 
an be obtained. This data stru
-ture enables the eÆ
ient 
onstru
tion of a 
a
tus tree forrepresenting signi�
ant C-
uts among these verti
es, 
alledC-separations, in the same time bound. In turn, we use the
a
tus tree to give a fast implementation of an approxima-tion algorithm for the Survivable Network Design problemdue to Williamson, Goemans, Mihail and Vazirani.
Categories and Subject DescriptorsF.2.2 [Theory of Computation℄: Nonnumeri
al Algorithmsand Problems
General TermsAlgorithms
KeywordsSteiner points, 
a
tus trees, edge-
onne
tivity
1. INTRODUCTIONThe global edge 
onne
tivity of a dire
ted graph is de�nedas the minimum number of edges whose removal destroysthe strong 
onne
tivity of the graph. In many graphs, the�This work was supported in part by NSF grant CCR-0105678.�Work partly done while visiting NYU and while on leaveat Strand Genomi
s Pvt. Ltd.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’03, June 9–11, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-674-9/03/0006 ...$5.00.

edge 
onne
tivity of di�erent verti
es may vary 
onsider-ably. An extreme example is provided by dire
ted graphswith verti
es u and v 
onne
ted by C dire
ted edge-disjointpaths; u and v have edge 
onne
tivity C, but the graph hasedge 
onne
tivity 1. This paper is 
on
erned with Steineredge 
onne
tivity, in whi
h a set of terminal verti
es is spe
-i�ed, and the minimum number of edges with the followingproperty is sought: removing these edges splits the graphinto at least 2 strongly 
onne
ted 
omponents in su
h a waythat the terminal verti
es are spread over two or more 
om-ponents. Similarly, on an undire
ted graph, one seeks aminimum number of edges whose removal splits the graphinto at least two 
onne
ted 
omponents, spreading the ter-minal verti
es over two or more 
omponents. This problemwas previously studied by Dinitz and Vainshtein [5℄.Global Conne
tivity. For general dire
ted graphs, thebest algorithm for determining global 
onne
tivity is due toGabow [12℄ and takes O(Cminm log n2m ) time, where Cmin isthe global 
onne
tivity. For undire
ted graphs, the same re-sult holds (typi
ally, one just 
onverts an undire
ted graphto dire
ted by orienting the edges in both dire
tions) withthe additional improvement that m 
an be held down toO(Cminn) using a 
onstru
tion due to Nagamo
hi and Ibaraki[20℄. Gabow's result is based on an eÆ
ient 
onstru
tion ofspanning tree pa
kings, as opposed to previous approa
heswhi
h were based on network 
ows and Menger's theorem;the best of these had running time O(minfC2minn2;mng) ondire
ted graphs and O(Cminn2) on undire
ted graphs.Thus, the spanning tree pa
king approa
h led to the �rstsub-quadrati
 (in n) algorithm for determining global 
on-ne
tivity. This approa
h revolves around two 
lassi
al theo-rems by Edmonds [8, 7℄, stated below. Here, an r-arbores
en
eis a dire
ted spanning tree rooted at a spe
i�ed root vertexr with all edges dire
ted away from r, an r-
ut is the set ofedges dire
ted from V � S to S, where S is any subset ofthe verti
es not 
ontaining r, and a dire
tionless r-spanningtree is like an arbores
en
e but with the weaker 
onstraintthat only edges in
ident on r must be dire
ted away fromthe root.Edmonds' Theorem[8℄: The maximum number of edgedisjoint r-arbores
en
es equals the minimum 
ardinality ofan r-
ut.Edmonds' Relaxed Theorem[7℄: The maximum numberof edge disjoint r-arbores
en
es in a dire
ted graph equalsthe maximumnumber of edge disjoint dire
tionless r-spanningtrees with the property that ea
h vertex v 6= r has total in-degree Cmin over all these r-spanning trees.



In [8℄, Edmonds gave an algorithmi
 proof of the �rst the-orem above, whi
h seems to need exponential time in theworst 
ase. Subsequent proofs were given by Tarjan[21℄,Frank [10℄, Lovasz [19℄, Tong and Lawler [22℄, and Gabow[12℄, the last of whi
h redu
ed the running time toO(C2minn2),where Cmin is the size of the minimum r-
ut. Note thatall of these are quadrati
 in n. The advantage of the se
-ond relaxed theorem above is that it admits fast algorithms.Gabow [12℄ showed that, in 
ontrast to arbores
en
es, dire
-tionless spanning trees with the above des
ription 
ould be
onstru
ted in time sub-quadrati
 in n, i.e., in timeO(Cminm log n2m ). This 
onstru
tion was the basis of his fastglobal 
onne
tivity algorithm.Steiner Conne
tivity. The goal of this paper is to gener-alize this pa
king approa
h to the Steiner 
ase to get a fast(i.e., sub-quadrati
 in n) Steiner 
onne
tivity algorithm. Toaddress the above problem, we need to go beyond pa
k-ings aimed at 
apturing only the minimum r-
uts in G and
apture higher order 
onne
tivity information, for instan
e,the minimum r-
ut separating r from a parti
ular vertexv; 
learly, this 
ut 
ould be larger than the minimum r-
ut.Our generalized notion of tree pa
kings is aimed at 
apturingthis higher order 
onne
tivity information; however, the as-so
iated theorems and algorithms will apply only to dire
tedgraphs that are Eulerian. A spe
ial 
ase of su
h a graph willbe the Eulerian dire
ted graph obtained from an undire
tedgraph by dire
ting the edges in both dire
tions. Thus, ouralgorithms will indeed apply to all undire
ted graphs. Infa
t, as Lemma 1 notes, as regards 
uts, undire
ted andEulerian graphs are equivalent.Lemma 1. Let G = (V;E) be a Eulerian graph and letG0 be the 
orresponding undire
ted graph in whi
h ea
h edgeis made undire
ted. There is a 
ut of 
ardinality h in Gseparating vertex sets C and V �C if and only if there is a
ut of 
ardinality 2h in G0 separating C and V � C.Let 
on(v) denote the maximum number of edge disjointpaths from the spe
ial root vertex r to vertex v. The follow-ing theorem appears in [2℄, although their setting is slightlymore general (namely, the graphs need not be Eulerian, butthe number of edge-disjoint paths from the root to everyvertex whose in-degree is smaller than its out-degree is atleast the number of trees one is seeking). The proof is basedon the Edge-Splitting lemma of Lovasz [19℄ and does notimmediately lead to an eÆ
ient algorithm.The Tree Pa
king Theorem. Given a Eulerian dire
tedgraph G, there exist C = maxv 6=rf
on(v)g edge-disjoint di-re
ted trees rooted at r su
h that ea
h vertex v 6= r in Gappears in exa
tly 
on(v) trees (these trees need no longer
ontain all verti
es in G; the dire
tions of edges in a tree areall away from the root).The above theorem 
learly implies its relaxed version statedbelow.The Relaxed Tree Pa
king Theorem: Given a Euleriandire
ted graph G, there exist C edge-disjoint dire
tionlesstrees, T1; T2; : : : ; TC, rooted at r su
h that ea
h vertex v 6=r in G appears exa
tly minfC; 
on(v)g times over all trees(o

urring multiple times in a tree possibly) and has in-degree exa
tly minfC; 
on(v)g over these trees.T1; T2; : : : ; TC are 
alled pa
king trees if they instantiate therelaxed tree pa
king theorem.

Our 
ontribution. Our main 
ontribution is a fast 
on-stru
tive proof of the above relaxed theorem. Our 
onstru
-tion runs in time O((C3n + Cm) log n)). For undire
tedgraphs G = (V;E), the 
onstru
tion of Nagamo
hi andIbaraki applies; with O(m) prepro
essing, this 
onstru
tion�nds a subset E0 � E of O(Cn) edges su
h that for ea
h pairv; w of verti
es, the 
onne
tivity of v and w in the subgraphG0 = (V;E0) isminfC; 
on(v; w)g. Thus it suÆ
es to run the
onne
tivity algorithms on G0, improving the time bound toO(C3n log n + m). This improvement 
an be extended toEuler graphs by applying Lemma 1.Our algorithm 
ould be viewed as a generalization of Gabow'salgorithm [12℄ for dire
tionless spanning tree generation men-tioned above whi
h runs in time O(Cminm log n2m ). But, thegeneralization is non-trivial as we explain next. The 
rux ofGabow's algorithm is an iterative pro
edure whi
h gathersa subset of verti
es and �nally 
laims that these verti
es o
-
ur 
ontiguously in all the pa
king trees being 
onstru
ted.This argument breaks down when not all the verti
es arepresent in ea
h of these trees. Our algorithm manages toretain this property but only with the help of a key, non-trivial relaxation: we ensure that a vertex whi
h does notappear in all the trees always appears with degree no morethan 2, possibly at the 
ost of appearing several times inea
h tree. Allowing verti
es to appear several times in atree and thereby ensuring degree at most 2 turns out to bekey in obtaining time sub-quadrati
 in n in several steps ofthe algorithm.The Steiner 
onne
tivity C of a spe
i�ed 
olle
tion of ver-ti
es is an easy by-produ
t of the above algorithm. Fur-ther, the trees 
onstru
ted also give a 
hara
terization ofthe Steiner minimum 
uts whi
h will be useful in the follow-ing appli
ation.Ca
tus Trees. The 
a
tus tree for an undire
ted graph G,devised by Dinits et al. [4℄, represents the Cmin-
uts of G =(V;E), where G is Cmin-edge 
onne
ted, but not Cmin + 1-edge 
onne
ted. For odd Cmin, this 
a
tus tree is a tree; foreven Cmin, it 
an also in
lude 
y
les.We start by des
ribing the stru
ture for odd Cmin. Let rbe an arbitrary vertex of G. Given a 
ut F � E of 
ardi-nality Cmin whi
h partitions the verti
es into sets C; V �C,with r 2 V �C, we name the 
ut using vertex set C. Everynode of the 
a
tus tree ex
ept the root 
orresponds to a dis-tin
t 
ut and is labelled by the vertex set name for this 
ut.Cuts asso
iated with pairs of nodes in this tree are eitherdisjoint or 
ontained one inside the other. Node an
estry inthe 
a
tus tree simply 
orresponds to set 
ontainment forthe 
ut names. Oftentimes, the 
a
tus tree edge from nodeC to its parent is labelled by the edge set (of 
ardinalityCmin) forming this 
ut.For even Cmin, 
uts of 
ardinality Cmin 
an overlap, but ifC and D are two su
h distin
t non-disjoint 
uts and neitheris 
ontained inside the other then C�D;D�C;C\D;C[Dare also 
uts with 
ardinality Cmin. In general, this yields
hains of 
uts C1 : : : Cr su
h that [qi=pCi is a 
ut of 
ardi-nality Cmin for any 1 � p � q � r. Nodes 
orrespondingto C1; : : : ; Cr are 
reated, forming a 
y
le together with the\parent" node to whi
h C1 and Cr are atta
hed.We turn to minimum 
uts for a 
olle
tion S � V of C-
onne
ted verti
es. We are interested in restri
tions of these
uts to subsets of S. As Dinitz and Vainshtein [5℄ note (and
redit to ea
h of Naor and Westbrook), these 
uts have ex-a
tly the same stru
ture as the global minimum 
uts above



and so 
an also be represented by 
a
tus trees. They showhow to 
onstru
t su
h a 
a
tus tree using jSj � 1 max
ow
omputations. We give an algorithm that starts with C pa
k-ing trees, and then runs in time O((Cn +m) log n); this isbounded by O(Cn log n+m) using the 
onstru
tion of Nag-amo
hi and Ibaraki mentioned above.An Appli
ation to Designing Survivable Networks.In the The Uniform Survivable Network Problem, ea
h ver-tex v of a given undire
ted graph has an asso
iated non-negative integral label rv, whi
h is usually a small 
onstantin pra
ti
e. The aim is to 
hoose a 
olle
tion of edges of min-imum 
ost so that ea
h pair of verti
es v; w has minfrv; rwgedge disjoint paths. This problem has appli
ations to thedesign of �ber-opti
 tele
ommuni
ation networks [13℄, and amore 
omplete dis
ussion of the problem appears in Grots
helet al. [16℄.Williamson, Goemans, Mihail and Vazirani (WGMV, forshort) [23℄ gave a 
ombinatorial algorithm for this problemwith an approximation fa
tor of 2maxvfrvg � 1. A
tually,this algorithm also works for the non-uniform 
ase, i.e., whenea
h pair of verti
es has an asso
iated demand for a 
ertainnumber of edge disjoint paths. However, our results willapply only to the uniform 
ase. We mention that there arealgorithms a
hieving better approximation fa
tors even forthe non-uniform 
ase, notably the algorithm due to Jain [17℄;however, this algorithm requires linear programming and istherefore mu
h slower.The WGMV algorithm performs several iterations of theGoemans-Williamson 
lustering pro
edure [15℄, a generalte
hnique (whi
h builds on an earlier te
hnique due to Agrawal,Klein and Ravi [1℄) whi
h forms the 
ore of several algo-rithms and is des
ribed below. Broadly, an iteration will
omprise several rounds, in ea
h of whi
h the algorithm willidentify some subsets of verti
es as a
tive and some as in-a
tive and 
hoose two su
h subsets to merge into one usingan edge addition step. Finally, only a subset of the edgesadded over all rounds in an iteration will be retained. Toimplement an iteration, three issues need to be addressed:whi
h sets are a
tive/ina
tive in ea
h round, whi
h two sub-sets need to be merged in ea
h round, and whi
h edges mustbe dis
arded in the �nal pruning step in ea
h iteration.The original Goemans-Williamson paper [15℄ addressedthese issues only for the �rst iteration and the asso
iatedalgorithm took O(n2 log n) time. This was improved toO(npm log n) by Klein [18℄, to O(n2+npm log log n)) timeby Gabow, Goemans and Williamson [13℄, to O(npm) byGabow and Pettie [14℄, and to O((n + m) log2 n) time byCole, Hariharan, Lewenstein and Porat [3℄ (the last algo-rithm also adds an arbitrarily small additive term to theapproximation fa
tor). Computing a
tive sets for the �rstiteration of the WGMV algorithm is straightforward andtherefore, all the above algorithms fo
us on determiningwhi
h two subsets to merge at ea
h round within an iter-ation. However, for subsequent iterations of the WGMV al-gorithm, determining a
tive sets is more involved and there-fore, the above results do not generalize to these iterations(though [3℄ does show how to do this for one more iterationwith the same time bounds).For subsequent iterations of the WGMV algorithm, theimplementation of [23℄ took O(maxvfrvg3n4) total time overall these iterations, and the implementation due to Gabow,Goemans and Williamson [13℄ took O(maxvfrvg2n2+maxvfrvgnpm log log n)) total time. Thus, no subquadrati


(in n) implementation was known for the WGMV algorithmprior to this work. Further, all these algorithms were basedon network 
ows and Menger's theorem based te
hniques,and not on tree pa
kings. However, both the above algo-rithms work for the non-uniform 
ase of the Survivable Net-work Design problem as well.We give an implementation of the WGMV algorithm forthe uniform 
ase whi
h uses the 
a
tus tree and runs in timeO((maxvfrvg4n+maxvfrvg2m) log n+maxvfrvgm log2 n),whi
h improves to O((maxvfrvg4n log n+maxvfrvg2n log2 n),using the 
onstru
tion of Nagamo
hi and Ibaraki mentionedabove. Under the pra
ti
al assumption that maxvfrvg is anot too large 
onstant, the above time 
omplexity is 
loseto linear. Our restri
tion to the uniform 
ase 
omes fromthe fa
t that our pa
kings are rooted at parti
ular vertexv (whi
h will be 
hosen to be the vertex with the largestrequirement value rv). Our algorithm maintains the 
a
tustree under edge insertions (a problem previously studied byDinitz and Westbrook [6℄).
2. OVERVIEW OF THE ALGORITHMSIn this se
tion, we des
ribe the broad frameworks for Gabow'salgorithm for dire
tionless spanning tree pa
king, for our di-re
tionless tree pa
king and 
a
tus 
onstru
tion algorithms,and for the WGMV Survivable Network 
onstru
tion algo-rithm.
2.1 Gabow’s AlgorithmThe dire
tionless spanning trees are 
onstru
ted one ata time. Given the �rst i � 1 spanning trees T1; : : : ; Ti�1,the ith tree Ti is 
onstru
ted in several rounds. Ti is builtfrom a forest initially 
omprising n singleton verti
es. Over-loading our notation, we name this forest Ti. Ea
h distin
ttree in this forest is 
alled a 
omponent. Ea
h round in the
onstru
tion pro
ess runs in O(n+m) time and redu
es thenumber of 
onne
ted 
omponents in the ith forest Ti by atleast half, leading to an overall time of O((n+m) log n) pertree, or O(Cmin(m+n) log n) time overall (the log fa
tor 
anbe improved for dense graphs).Any parti
ular round begins with several 
onne
ted 
om-ponents, ea
h of whi
h has exa
tly one de�
ient vertex, i.e.,a vertex whose total in-degree in T1 : : : Ti is i� 1 (all otherverti
es have in-degree i in T1 : : : Ti). Ea
h of these 
on-ne
ted 
omponents gets pro
essed in this round. Considerone su
h 
omponent C with a de�
ient vertex v. Gabow'salgorithm now 
omputes the minimum set M 
ontainingedges satisfying at least one of the following properties:� e 62 T1 : : : Ti and is dire
ted into v.� e is in one of T1 : : : Ti and is in the fundamental 
y
leformed by some edge f inM with respe
t to that tree.� e 62 T1 : : : Ti and is dire
ted into a vertex into whi
hsome other edge in M is dire
ted.Clearly, 
omputing M needs a 
losure-like algorithm, andGabow shows how to perform this eÆ
iently, i.e., in timeproportional to the number of edges and verti
es involvedinM . More importantly, Gabow shows that this 
losure likealgorithm has one of two possible out
omes.� Either there exists an edge e 2 M whi
h is dire
tedfrom a vertex in Ti outside C to a vertex inside C. Inthis 
ase, there exists a sequen
e of swap adjustments



to T1 : : : Ti 
ulminating in the addition of e to Ti, whi
hensures that v is no longer de�
ient; further, no newde�
ient verti
es are 
reated in the pro
ess, and thenumber of 
onne
ted 
omponents is redu
ed by 1.� Or, when no su
h edge exists inM , Gabow shows thatthe set S of verti
es into whi
h edges ofM are dire
tedo

ur 
ontiguously in T1 : : : Ti, and further, S; V � Sa
tually forms an r-
ut of size i� 1.In the former 
ase, the algorithm has made progress towardsredu
ing the number of 
onne
ted 
omponents, and in thelatter 
ase, the algorithm terminates as i � 1 trees havealready been 
onstru
ted and i � 1 is also the size of themin r-
ut.Of 
riti
al importan
e is the proof that S; V �S forms anr-
ut of size i�1. This proof is based on the following fa
ts.� Ea
h vertex in S other than v has in-degree i in T1 : : : Tiand vertex v has in-degree i� 1 in T1 : : : Ti.� Verti
es in S o

ur 
ontiguously in ea
h of T1 : : : Ti.� Edges not in T1 : : : Ti but dire
ted into a vertex in Slie 
ompletely within S. Thus, edges dire
ted into Sfrom V � S must all be in T1 : : : Ti.An easy 
onsequen
e of the �rst two properties is that thein-degree of S in T1 : : : Ti is at most i�1. The third propertyensures that the in-degree of S in the whole graph is also atmost i� 1.
2.2 Directionless Tree PackingAs in Gabow's algorithm, the pa
king trees are 
onstru
tedone at a time. Given the �rst i� 1 trees with the propertythat ea
h vertex v o

urs in exa
tly minf
on(v); i�1g treesand has in-degree exa
tly equal to its number of o

urren
esin these trees, the ith tree is 
onstru
ted in several roundsas follows. Ea
h round runs in O(i2n+m) time and redu
esthe number of 
onne
ted 
omponents in the ith forest by atleast half, leading to an overall time of O((i2n +m) log n)for 
onstru
ting Ti, or O((C3n+ Cm) log n) time overall.Again, any parti
ular round begins with several 
onne
ted
omponents, ea
h of whi
h has exa
tly one de�
ient vertex,i.e., a vertex v for whi
h 
on(v) � i� 1 and 
on(v) has notyet been established as being equal to i � 1. The aim nowis as before: to 
onsider a parti
ular 
onne
ted 
omponentwith a de�
ient vertex v and either to �nd a sequen
e ofswap adjustments to T1 : : : Ti 
ulminating in the additionof an edge e to Ti (in fa
t, the addition of a path, as weshall see) in
reasing the in-degree of v, or to �nd a subsetS of verti
es su
h that S has in-degree i� 1 and v 2 S (so
on(v) = i� 1). The di�eren
es begin here.First, unlike Gabow's algorithm, the algorithm 
annotstop if it �nds su
h a set S, be
ause C 
ould be biggerthan i�1 and this demands that more trees be 
onstru
ted.Finding S as above only signi�es that verti
es in S have
on() = i� 1 and therefore these verti
es need not o

ur inany more trees.Se
ond, sin
e not all verti
es o

ur in all trees, the proofthat the verti
es in S o

ur 
ontiguously in ea
h of T1 : : : Tino longer holds. The proof is just the observation that the
losure method for 
omputing M maintains 
ontiguity. Tosee the problem, 
onsider Fig.1 in whi
h portions of twotrees, T1 and T2 say, are shown. Vertex z o

urs only in

the �rst tree. The edge dire
tions are suppressed. Supposeedge (x; v) 2 M ; then the 
losure algorithm would add allthe verti
al edges shown in T1 to M . Thus, verti
es y andu will o

ur eventually in S. Next, 
onsider the point whenedges from T1 newly added to M are 
onsidered relative toT2 by the 
losure algorithm. Sin
e w and z are not presentin T2, it does not follow that the edges on the path from yto u in T2 get added to M at this point, nor those from v tou, and therefore verti
es in S need not be 
ontiguous in T2.Note that if z had in fa
t been present in T2 then the edgeson the path from y to u in T2 would indeed be added to M .x
xyzuv vy ua

Figure 1: The Contiguity Problem: Trees T1 and T2To solve the above problem, we will ensure the following
riti
al 
onstraint: verti
es whi
h do not o

ur in all trees(we 
all su
h verti
es bla
k) will have degree at most two(in and out 
ombined) in ea
h pla
e they o

ur. Further,we will maintain M as a set of paths and not a set of edges(in other words, our swaps will swap out and swap in wholepaths rather than single edges, where all internal verti
eson su
h paths will be bla
k). This will ensure the required
ontiguity property for verti
es in S (for example, in Fig.1,assuming z has degree 2, the whole path (u; z; y) will beadded to M , and when the 
losure algorithm 
onsiders thispath with respe
t to T2, both edges (y; a) and (a; u) willget added to M . To make the above ma
hinery work, wewill need that the graph be Eulerian. Further details of thealgorithm appear in Se
tion 3.
2.3 Cactus ConstructionThe 
a
tus we aim to 
onstru
t will have nodes repre-senting equivalen
e 
lasses of minimum 
uts separating thegiven terminal verti
es (so not all terminal verti
es are onthe same side of the 
ut). All 
uts in an equivalen
e 
lasssplit the terminal verti
es in exa
tly the same way. Non-terminal verti
es 
ould be split in di�erent ways by distin
t
uts in the same equivalen
e 
lass. We use the term sepa-ration to denote an equivalen
e 
lass. As we will see, ea
hequivalen
e 
lass has a unique minimal 
ut asso
iated withit. While des
ribing the 
a
tus 
onstru
tion algorithm, let(i � 1) be the 
ardinality of any minimum 
ut whi
h sep-arates the terminal verti
es; the minimal 
uts representingthe various equivalen
e 
lasses of su
h minimum 
uts will bedenoted by the term (i� 1)-
uts.The 
omputation of the 
a
tus tree pro
eeds in two phases.First, we determine those (i�1)-
uts found by the algorithmwhen 
omputing the ith pa
king tree Ti. We 
all these 
utsvisible 
uts. These visible 
uts are arranged in a prelimi-nary 
a
tus tree a

ording to their set 
ontainment. Unfor-tunately, (i� 1)-
uts whi
h are themselves unions of visible(i � 1)-
uts may not be identi�ed in this pro
ess; we 
allsu
h 
uts invisible. We need an additional pro
edure to �ndthese invisible 
uts and dete
t 
y
les formed by these 
uts;



this pro
edure runs in time O((in +m) log n), as des
ribedin Se
tion 4.In the 
ase that all the verti
es are terminal, Gabow [11℄has shown how to �nd the 
a
tus from the i � 1 pa
kingtrees in linear time.
2.4 The WGMV algorithmThe algorithm exe
utes maxvfrvg iterations, with ea
hiteration removing a subset of the edges in the given undi-re
ted graph G and adding these edges to the �nal solutionQ. Iteration i begins with several violated sets, i.e., subsetsS of verti
es satisfying the following properties: there existsv 2 S su
h that rv � i and ÆQ(S) = i � 1, where ÆQ(S)is the total number of edges between S and V � S in Q.This iteration now has several rounds, ea
h of whi
h willidentify exa
tly one edge. A violated set is satis�ed whenan edge in G 
onne
ting a vertex in S to a vertex outsideS is identi�ed (note that edges in Q are removed from Gand therefore are no longer present in G). The aim of thisiteration is to identify suÆ
iently many edges for additionto Q so that all violated sets are satis�ed. However, only aminimal subset of these identi�ed edges whi
h 
an by itselfsatisfy all violated sets will a
tually be removed from G andadded to Q.Ea
h round pro
eeds as follows. All 
urrently minimalunsatis�ed violated sets will be a
tive in this round. Thesesets will then expand (as in the Goemans-Williamson algo-rithm [15℄) until some edge be
omes tight; this edge is theedge identi�ed for this round. All a
tive sets in a round aredisjoint and the 
olle
tion of all a
tive sets over all roundsforms a hierar
hi
al laminar family.Assuming an ora
le whi
h provides the a
tive sets in asuitable form in ea
h round, all rounds in an iteration 
antogether be performed in O(m log2 n) time, using the algo-rithm in [3℄. Further, determining the minimal subset of theidenti�ed edges in ea
h iteration to add toQ 
an also be donein O(n) time as shown in [13℄. In this paper, we show howto implement the above ora
le so that it runs in O((i3n +im) log n) time over all the rounds in iteration i. The to-tal time taken by the algorithm is thus O((maxv 6=rfrvg4n+maxv 6=rfrvg2m) log n+maxv 6=rfrvgm log2 n).
3. CONSTRUCTING THE PACKING TREESConsider the ith iteration and suppose several rounds havebeen performed in this iteration resulting in trees T1 : : : Ti�1and a forest Ti.Note that verti
es in G 
an be partitioned into the follow-ing 
ategories at this point: verti
es v for whi
h 
on(v) <i � 1, verti
es with 
on(v) = i � 1 and whi
h have al-ready been dis
overed to have 
on(v) = i� 1, verti
es with
on(v) = i � 1 and whi
h have not yet been dis
overed tohave 
on(v) = i� 1, and verti
es for whi
h 
on(v) � i. Ver-ti
es in the �rst two 
ategories appear exa
tly 
on(v) � i�1times over all trees, possibly o

urring multiple times in atree, while verti
es in the last two 
ategories o

ur exa
tlyon
e ea
h in ea
h of T1 : : : Ti. Verti
es in the former two 
at-egories are organized hierar
hi
ally into superverti
es, whileverti
es in the latter two 
ategories will appear as singletonsuperverti
es.A supervertex will in turn be 
omposed of other superver-ti
es (ea
h supervertex 
ould be a singleton vertex by itselfas well). 
on(v) for a supervertex v is de�ned as the maxi-mum of 
on(w) over all superverti
es w 
ontained in v. At

the outermost level of nesting, superverti
es whi
h o

ur inall trees (in
luding r) are said to be white (these are exa
tlythe 
ategory 3 and 4 singleton superverti
es above) and theremaining superverti
es are said to be bla
k. At further lev-els of nesting, a supervertex w nested immediately withina supervertex v is said to be white if and only if every o
-
urren
e of v 
ontains w. Superverti
es satisfy the followingproperties.P1. All superverti
es nested within a parti
ular superver-tex o

ur 
ontiguously in all the trees T1 : : : Ti�1 (infa
t, not all of these superverti
es o

ur in all the trees,but those whi
h do o

ur, o

ur 
ontiguously).P2. White superverti
es are ne
essarily singleton and o
-
ur exa
tly on
e in ea
h tree (at the outermost level)or exa
tly on
e in ea
h o

urren
e of the parent su-pervertex, i.e., the supervertex at the next outer levelof nesting. A white supervertex w nested inside abla
k supervertex v satis�es 
on(v) = 
on(w) and awhite vertex at the topmost level of nesting satis�es
on(v) = i or 
on(v) = i� 1.P3. Ea
h bla
k supervertex v appears exa
tly 
on(v) � i�1 times over all the trees, possibly o

urring multipletimes in a single tree. The total in-degree over all theseo

urren
es of v is exa
tly 
on(v).P4. If a parti
ular o

urren
e of a bla
k supervertex v 
on-tains another supervertex w, then all o

urren
es of wo

ur within o

urren
es of v.P5. Ea
h bla
k supervertex has at least one white super-vertex at the next deeper level of nesting.P6. A white supervertex v at the outermost level 
ouldhave in-degree i or i � 1 over all trees; further, if thein-degree is i � 1 then the in-degree of v in Ti equals0. White verti
es at the outermost level of nestingwith in-degree i � 1 are 
alled de�
ient. With theex
eption of the 
onne
ted 
omponent 
ontaining theroot r, ea
h 
onne
ted 
omponent in Ti has exa
tlyone de�
ient vertex.P7. Ea
h bla
k supervertex has degree at most 2. Thereare exa
tly 2 � 
on(w) edges in G that are in
ident onbla
k superverti
es w. On unnesting w one level, onesees it 
omprises one or more white verti
es of 
on-ne
tivity 
on(w), joined together in a tree by singleedges and/or paths of bla
k superverti
es. The edgesin
ident on w are either in
ident on one of these whiteverti
es nested in w, or joined to su
h a nested whitevertex by a path of nested bla
k superverti
es. Ea
hof the bla
k superverti
es on this path has the samere
ursive stru
ture. While w remains a top level bla
ksupervertex, ea
h edge in G in
ident on w is asso
iatedpermanently with su
h a path of bla
k superverti
es,whi
h may be an empty path; this path is 
alled the at-ta
hment path. Further, exa
tly two atta
hment pathswill be asso
iated with ea
h instan
e of w. To allowan edge in
ident on w to 
hange its w endpoint fromone 
opy of w to another in O(1) time, we maintainpointers to the two verti
es, not superverti
es, at theends of ea
h su
h path.



Our algorithms will ensure that these invariants 
an be main-tained at the end of this round as well, with the number of
omponents in Ti redu
ed by a fa
tor of at least half. Thisround performs the following steps.
3.1 Algorithm for One RoundStep 1. This step will 
onsider only superverti
es at theoutermost level of nesting. For ea
h 
onne
ted 
omponentC in Ti su
h that r 62 C, a set S(C) of superverti
es with thefollowing properties will be determined, provided it exists.� S(C) 
omprises superverti
es in C and possibly somebla
k superverti
es not present in Ti, as explained shortly.� S(C) 
ontains the only de�
ient supervertex v in C.� The in-degree of S(C) in G equals i� 1.� S(C) is white-maximal and bla
k-minimal, i.e., thereis no set whi
h satis�es the above 3 properties and hasmore white verti
es, and removal of a bla
k vertex fromS(C) 
auses a violation of one of the above 
onditions.S(C) is identi�ed using the following 
riteria: Superverti
esin S(C) o

ur 
ontiguously in the trees T1 : : : Ti, and fur-ther, no edge outside of T1 : : : Ti is dire
ted into S(C) fromoutside. The following simple 
ounting argument shows thatthese two 
onditions are ne
essary and suÆ
ient for S(C) tohave in-degree i� 1 in G.Lemma 2. Let S be a set of superverti
es in G. The in-degree of S in T1 : : : Ti equals i�1 if the 
ontiguity 
onditionholds, and ex
eeds i� 1 otherwise.Proof. With the ex
eption of v, ea
h supervertex w in S hasas many o

urren
es #w as its total in-degree over all trees.v's total in-degree is exa
tly one less than its number ofo

urren
es. Thus the total in-degree over all superverti
esw in S equals (Pw2S#w)�1. Exa
tly (Pw2S #w)�i of theedges whi
h 
ontribute to the above in-degree lie within S ifthe 
ontiguity property holds; this number is even smaller ifthe 
ontiguity property does not hold. This leaves exa
tly i�1 edges dire
ted into S in T1 : : : Ti if the 
ontiguity propertyholds, and more otherwise, as required. 2The algorithmi
 details of �nding S(C) appear in Se
tion3.1.1. The time taken for this pro
edure will be O(i2n+m).The main reasons why this 
omputation is eÆ
ient is thatby Eulerianness, the total degree (in and out 
ombined) ofS(C) in G is 2(i� 1) and further, S(C) o

urs i times overall the trees T1 : : : Ti; these two fa
ts together imply thateither S(C) is a whole 
onne
ted 
omponent in Ti or it isa leaf subtree in one of T1 : : : Ti�1. That S(C) is uniquelyde�ned in spite of white-maximality, if it exists at all, followsfrom the fa
t that if there are two in
omparable 
andidatesets A and B for S(C) then A [ B is also a 
andidate. IfS(C) exists then it be
omes a new bla
k supervertex s, andsuperverti
es 
omprising S(C) are now nested within s; thisis possible due to the 
ontiguity property. The in-degree ofs over all trees equals i� 1.Step 2. For ea
h 
omponent C, if S(C) exists and 
ontainsall of C then C is just removed from Ti. This is �ne be-
ause s needs to appear only i � 1 times, and it 
urrentlyappears i times in T1 : : : Ti. While if S(C) does not exist ordoes not 
ontain all of C (note the 
onvoluted wording of

this 
ondition; this arises be
ause S(C) may 
ontain bla
ksuperverti
es that do not o

ur in C), we will be able to 
on-ne
t it to another 
omponent so C no longer has a de�
ientvertex, as we will see. This may entail the restru
turing ofsome or all of T1 : : : Ti.Next, we pro
ess the bla
k superverti
es to ensure thatea
h o

urren
e has degree at most 2 and obeys InvariantP7. For ea
h new bla
k supervertex s, as s o

urs i times inT1; : : : ; Ti, we will be left with at least two leaf o

urren
es ofs. Also, as we will see, while this pro
ess may restru
turesome of the 
omponents, for all 
omponents in whi
h S(C)did not exist, it remains the 
ase that S(C) does not exist.This pro
ess takes O(in) time.The 
onne
ting of the remaining 
omponents entails �nd-ing a suitable set M of paths for ea
h 
omponent C. Theseare found by means of a 
losure pro
ess starting from a 
ol-le
tion of seed paths. The method for �nding seed paths, intime O(in), is des
ribed next.For ea
h new bla
k supervertex s repla
ing S(C), nowredu
ed to degree 1 or 2, we form a seed path as follows. Ifs has degree 1 in C, we take the path from the remaining leafo

urren
e of s to its nearest white an
estor and 
on
atenateit with the path from s in C to the nearest white vertex; thisforms the seed path. If s has degree 2 in C, we take the pathsfrom the remaining leaf o

urren
es to their nearest whitean
estors and 
on
atenate these paths; this forms the seedpath. Note that in either 
ase both endpoints of the seedpath are white and internal verti
es are bla
k.Finally, if S(C) does not exist, then we de�ne a 
olle
tionof one or more seed paths for S(C). Ea
h seed path beginswith a distin
t unused non-tree edge dire
ted into vertex v.There must be su
h an edge for otherwise fvg = S(C). Forea
h su
h edge (x; v), if x is bla
k, the seed path is extendedto a white vertex as follows: from a leaf o

urren
e of x, ofwhi
h there must be one be
ause (x; v) is an unused edge, wetake the path to its nearest white an
estor and 
on
atenatethis path with the edge (x; v) to form a seed path.Step 3. Starting with the above seed path or 
olle
tion ofseed paths as the 
ase may be, we �nd a sequen
e of swapswhi
h will 
onne
t C to another 
omponent in Ti, and inthe 
ase when S(C) does not exist, in
rease the in-degree ofv by 1. A swap 
onsists of the addition of a path to somepa
king tree Th, forming a 
y
le in Th, and the removal ofa path in Th breaking this 
y
le. The initial set of paths forswapping is provided by the seed path 
olle
tion. The num-ber of o

urren
es and in-degrees of all other verti
es willbe una�e
ted by this swap sequen
e and bla
k verti
es will
ontinue to have degree at most 2. This pro
ess is repeatedsequentially for ea
h 
onne
ted 
omponent of Ti whi
h hasnot already joined up to another 
omponent. The total timetaken over all these 
onne
ted 
omponents will be O(in+m).The total time taken for the entire round is O(in +m),whi
h leads toO((C3n+Cm) log n) time overall. Settingm =O(Cn) using the 
onstru
tion of Nagamo
hi and Ibaraki, thisbe
omes O((C3n log n+m). Next, we elaborate on some ofthe above steps.
3.1.1 Computing S(C)Given a 
olle
tion of trees T1 : : : Ti (the last of these is aforest), we �nd all subsets S of verti
es satisfying:� All superverti
es in S \ Th are 
ontiguous in Th for allh.



� Either S \ Ti is a full 
onne
ted 
omponent in Ti, orS \ Th is a leaf subtree in Th, for some h, 1 � h < i.� All white verti
es in S are present in all trees.� No edge outside T1 : : : Ti is dire
ted into S from outsideS.S(C), for ea
h 
onne
ted 
omponent C in Ti, is easily ob-tained from this 
omputation.It suÆ
es to �nd for ea
h leaf subtree Q in Th, h < i, andea
h 
onne
ted 
omponent Q in Ti, whether these exists aset S � Q of superverti
es su
h that (i) S � Q has onlybla
k superverti
es, and (ii) superverti
es in S \ Tg o

ur
ontiguously in Tg, 1 � g � i. Without loss of generality, we
onsider the 
ase when h = 1 and 
onsider all leaf subtreesof T1 with respe
t to the above 
reteria.The �rst step is to perform the 
ontiguity 
he
k on whiteverti
es alone, ignoring intervening bla
k superverti
es. Ea
hleaf subtree Qx of T1 rooted at x with the property thatwhite verti
es in Qx are 
ontiguous in all other trees (possi-bly with intervening bla
k superverti
es) are determined inthis step. For this we 
onsider ea
h tree Tg, g 6= 1, in turn.For ea
h white vertex v in Tg, the pair (v; w) is pla
ed in T1at the node l
a(v; w), where w is the nearest white an
estorof v in Tg. Note that if we now pro
ess the verti
es x of T1in order of de
reasing distan
e from the root and for ea
hpair (v; w) pla
ed at x, union the sets 
ontaining v and w,then the number of sets over whi
h white verti
es in Qx arespread is exa
tly the number of 
onne
ted 
omponents ofthese verti
es in Tg. This number has to be 1 for all Tg,g 6= 1, for Qx to stay in 
onsideration.Next, we bring bla
k superverti
es into play. This pro
ess-ing is a
tually interleaved with the pro
essing for white ver-ti
es des
ribed above. When pro
essing node x, it is easy toalso obtain the list of intervening bla
k superverti
es whi
hseparate the white verti
es in Qx in ea
h of T1 : : : Ti. Thisis made possible by the fa
t that bla
k superverti
es havedegree at most 2. We pool together the set of all su
h bla
ksuperverti
es over all trees Tg. Finally, we 
he
k for ea
hsu
h bla
k supervertex b whether all its o

urren
es in allTgs are 
onne
ted to an o

urren
e of a white vertex in Qxthrough only bla
k (hen
e degree 2) superverti
es; if not, b is
alled a violating supervertex. This 
he
k is done by deter-mining for ea
h o

urren
e of b in ea
h tree Tg, whether ornot any of the (up to) two white superverti
es rea
hable viapaths of bla
k superverti
es are in Qx, and if not, then de-termining whi
h of these two white verti
es lies on the pathbetween b and white verti
es in Qx (
all this white vertex y).This is easily done using LCA queries. If the 
he
k su

eedsthen all bla
k superverti
es between b and the nearest whitevertex in Tg are added to the pool of bla
k superverti
es be-ing pro
essed (taking 
are not to repeatedly add the samebla
k supervertex to this pool). On the other hand, if the
he
k fails and results in a violating bla
k supervertex, thenwe stop pro
essing x, transfer the list of partly pro
essedand unpro
essed bla
k superverti
es to z = l
a(x; y) in T1;the pro
essing of these bla
k superverti
es 
ontinues whenz is being pro
essed. Note that Qw 
eases to be in 
onsid-eration for all white verti
es w 6= z on the path from x toz in T1. Qx stays in 
onsideration only if a violating bla
ksupervertex is not found. If it stays in 
onsideration thenthe set of bla
k superverti
es 
omputed at x plus the whiteverti
es in Qx together form a set denoted by Sx.

Finally, if Qx is still in 
onsideration then we 
he
k for thepresen
e of non-tree edges whi
h are dire
ted into a whitevertex in Qx from outside Sx (a non-tree edge from outsideQx to inside 
annot be in
ident on a bla
k supervertex, asall edges dire
ted into bla
k superverti
es are already in thetrees T1 : : : Ti). This 
he
k is also interleaved with the above
omputation. The total time taken in O(i2n).
3.1.2 Maintaining and Restoring Invariant P7There are two parts to Invariant P7, the �rst 
on
ernsatta
hment paths into bla
k superverti
es and the se
ond
on
erns the degree of ea
h bla
k supervertex. To maintainthe �rst part of Invariant P7, two 
hanges to edge in
iden
eneed to be 
onsidered. The �rst arises when edges e1 ande2 in
ident respe
tively on instan
es x1 and x2 of bla
k su-pervertex x are swit
hed in the swapping pro
ess, so e1 isnow in
ident on x2 and e2 is in
ident on x1. It suÆ
es toalso swit
h the atta
hment paths for these edges. Clearly,this takes O(1) time. The se
ond arises if a non-tree edge eis made in
ident on a bla
k leaf supervertex x. Suppose theatta
hment path p for e is 
urrently asso
iated with anotherleaf instan
e x0 of this bla
k supervertex. Then the unusedatta
hment path asso
iated with x is swit
hed with atta
h-ment path p, in O(1) time, and now edge e 
an be madein
ident on x.It remains to explain how to maintain bla
k nodes at de-gree 2 or less when a set S(C) is 
ontra
ted to form a newbla
k supervertex s (re
all that the swaps in Step 3 will en-sure that bla
k verti
es 
ontinue to have degree at most 2 inthe pa
king trees thereby preserving P7). Before performingthe 
ontra
tion, we redistribute paths of bla
k superverti
esleading to non-tree edges in
ident on S(C). Ea
h su
h pathhas one in
ident edge. The paths are redistributed so thatall these paths are in
ident on 
opies of S(C) that 
ontra
tto a leaf instan
e of s. These paths, 
on
atenated with theatta
hment paths at their two ends, will form atta
hmentpaths for the new superverti
es s. The atta
hment paths fortree edges are obtained similarly.Suppose an instan
e of s has degree 3 or more, its degreeis redu
ed by the following reatta
hment pro
ess. As s hasdegree 3 or more, there is a leaf instan
e s0 of s. The pathfrom s0 to its nearest white an
estor x is traversed and 
utat x; then the path s0x is atta
hed to the instan
e of x in s'spa
king tree, 
alled the reatta
hment point, and �nally fora neighbour y of s the edge ys is repla
ed by ys0, where y is
hosen so that x is not in the subtree rooted at y (treating sas a root). Note that there is still one instan
e of ea
h whitevertex in ea
h pa
king tree.In order to perform all needed reatta
hments eÆ
iently,we pro
eed as follows. In ea
h pa
king tree, for ea
h super-vertex s of degree d, we 
hoose d� 2 paths for the reatta
h-ment pro
ess. It remains to determine whi
h subtrees of sto atta
h to whi
h paths. Let s1; : : : ; sr be the superverti
esin Th needing degree redu
tions, redu
tions of total amountd. Choose s1 to be the temporary root of Th and 
onsiderthe subtrees of s1 : : : sr. There will be exa
tly d+1 leaf sub-trees, subtrees 
ontaining none of s1; : : : ; sr. One at least ofthese subtrees does not 
ontain a reatta
hment point; this isthe subtree 
hosen to be reatta
hed �rst. Its reatta
hmentpoint is de
lared used and the above pro
ess is iterated withthe unused reatta
hment points. When a supervertex sg hasits degree redu
ed to 2, it is removed from 
onsideration anda new leaf subtreee is brought into play for its nearest an-




estral bla
k supervertex sg0 . This takes time O(in) for allthe degree redu
tions in one iteration.
3.1.3 Finding the Swap Sequence.Let w denote the vertex v if S(C) is not de�ned or thevertex s if it is indeed de�ned (re
all s is the new bla
ksupervertex obtained by 
ondensing S(C)).We now perform a 
y
li
 s
anning pro
ess in whi
h wes
an T1 : : : Ti repeatedly in round-robin order. We start withthe set S 
omprising all verti
es whi
h lie on any of theseed paths 
onstru
ted above. The set M is initialized to
omprise all these seed paths. As the pro
ess evolves, newpaths will be added to M and ea
h path in M will have thefollowing property: all stri
tly internal nodes are bla
k andat least one of the terminal verti
es is white. For ea
h ofT1 : : : Ti, this pro
ess will also maintain 
ontiguous portionsT 01 : : : T 0i , respe
tively, whi
h will expand over time.Cy
li
 S
anning Pro
ess. Given a 
olle
tion of paths inM , a set of superverti
es S, and a tree T = Th, this steprede�nes S and M as follows. Paths for whi
h at least oneof the terminal verti
es is absent from T 
ontinue to be inM . All other paths are removed fromM ; for ea
h su
h pathp, we 
onsider the edges g 2 T whi
h lie in the fundamental
y
le formed by p. These edges are organized into maximalpaths in T with internal verti
es being bla
k. For ea
h su
hpath, all pre�xes of that path whi
h do not lie 
ompletelyin T 0 = T 0h and whose bla
k endpoint is not already in S areadded to M , where a pre�x is de�ned from the white nodeend. One 
ompli
ation arises from the fa
t that T 
ouldhave several o

urren
es of the same supervertex. In this
ase, a path p 
ould de�ne not one but several fundamental
y
les. All of these 
y
les are 
onsidered while de�ning Mabove. All verti
es on paths inM whi
h are not yet in S arenow added to S. T 0 is now rede�ned to be the original T 0augmented with the verti
es newly added to S. We 
laimthat T 0 remains a 
ontiguous portion of T .Finally, we add some more paths to M as follows. Forea
h path newly added to M , if its end edge is dire
ted intoits white endpoint w, then all unused edges (those whi
hdo not appear in any of T1; : : : ; Ti�1; Ti) dire
ted into w areadded to M . Further, for ea
h su
h edge, (x;w), if x isa bla
k supervertex, the following paths are added to M .For ea
h leaf instan
e of x, 
onsider the path p from x toits nearest white an
estor, and let q be the 
on
atenationof p and (x;w). All pre�xes of q starting at w are addedto M . Bla
k superverti
es will not have any unused edgesdire
ted into them. Also note that the fa
t that at least oneendpoint of ea
h path in M is white 
an be shown from theabove des
ription.The 
y
li
 s
anning pro
ess is 
ontinued until M has apath � whi
h goes out of C to another 
onne
ted 
omponentin Ti (i.e., one endpoint lies outside C). Let �1; �2; � � � ; �k =� be the sequen
e of paths this pro
ess produ
es, where theappli
ation of �i frees �i+1 from the tree 
ontaining it, for1 � i < k. We would like to apply this sequen
e of paths tothe pa
king trees T1; � � � ; Tk but we fa
e several diÆ
ulties.First, note that the 
y
li
 s
anning pro
edure always workswith the original trees T1 : : : Ti. On
e some swaps are ap-plied these trees will 
hange. Therefore, if a path ~� in Thenters M be
ause of the appli
ation of path �0 to Th in the
y
li
 s
anning pro
ess, then it is not obvious that �0 
anbe swapped in for ~�, on
e the previous swaps have been ex-e
uted. The reason why it will still be possible to perform

this swap is that �0 is not 
ompletely in T 0h when it entersM , and all the previous swaps on Th would have happened
ompletely within T 0h.Se
ond, for ea
h path added to M between white verti
eshaving intermediate degree 2 bla
k verti
es, all pre�xes ofthis path will enter M and 
on
eivably several of these pre-�xes 
ould be involved in pulling other paths into M . Weneed to show that the a
tual swap sequen
e will not involvethe su

essive use of several of these pre�xes (sin
e the re-moval of one of these pre�xes a�e
ts the other pre�xes).Third, and most problemati
, as some of the swaps aremade, bla
k nodes with high degree 
ould result and thenit may not be possible to free up a path between a bla
knode and a white node in a tree be
ause there is now anintervening bla
k node of high degree. Thus, in general, one
annot mimi
 the swaps obtained impli
itly from the 
y
li
s
anning pro
edure (in whi
h all bla
k nodes had degree atmost 2) on
e some swaps have been made.We address these problems by identifying a sequen
e ofswaps whi
h will indeed 
onne
t two 
onne
ted 
omponentsin Ti with the property that as ea
h swap is made, all bla
knodes retain the degree at most 2 restri
tion. Spe
i�
ally,we show there exist paths �0k; �0k�1; : : : �01 with the followingproperties:� The �0s run from white verti
es to white verti
es pos-sibly with intervening bla
k verti
es.� Swapping in �0j and swapping out �0j+1 in sequen
efor ea
h ea
h j from 1 to k � 1 will free �0k, whi
h
onne
ts two 
omponents, possibly but not ne
essarilythose that �k was supposed to 
onne
t.� Ea
h swap maintains the degree 2 restri
tion on bla
knodes.Our algorithm will need to maintain two versions of thetree Th, one whi
h remains un
hanged and is used for thes
anning pro
ess, and one whi
h 
hanges and re
e
ts therestru
turing due to swapping paths in and out; the latteris denoted by ~Th. Likewise, we maintain T 0h and ~T 0h, whi
his the restru
tured T 0h. As we will see, Th � T 0h = ~Th � ~T 0h.Next, we show how to 
onstru
t �0j . Suppose �j is addedto M during iteration I of the 
y
li
 s
anning pro
ess bybeing taken from tree Th. �j has two parts, a portion �j;1whi
h 
onsists of the edges with one or both endpoints out-side T 0h (there is at least one su
h edge), and a possiblyempty portion �j;2, whi
h 
omprises those edges with bothendpoints in T 0h. If �j is a path in Th, then �0j 
omprises �j;1(whi
h lies in Th � T 0h = ~Th � ~T 0h) extended at one or bothends in ~Th, if need be, to rea
h the nearest white verti
es.Otherwise, �j 
omprises a path whose last edge is a non-treeedge (x; y) into white vertex y. If the other endpoint of �jis bla
k, re
all that �j was obtained by traversing a portionof the path p from a leaf instan
e of x to its nearest whitean
estor w; �0j is simply the 
on
atenation of all of p withedge (x; y).Note that if all of �j lies outside T 0h, then �j is a pre�x of�0j . Further, if an endpoint of �j outside T 0h is white thenthis white vertex will also be an endpoint of �0j .�0j is swapped into ~Tg as follows, where Tg is the tree intowhi
h �j is swapped. If �j has two white endpoints, then �0jsimply 
onne
ts its two white endpoints in ~Tg. If �j has abla
k endpoint, x say, then �0j may be swapped in in one of



y yx�0l �l
�l+1x xba ab ab �0l+1

T 0j T 0jFigure 2: Swapping on tree Tjtwo ways. Let the instan
e of x to whi
h �j 
onne
ts in Tglie on the path of bla
k superverti
es between white verti
esa and z. Let �0j 
onne
t verti
es y and w. If, on rooting~Tg at a, w lies in the subtree rooted at z, then �0j simply
onne
ts y and w; if not, the neighbours of the two 
opiesof x are swit
hed as shown in Fig.2. In every 
ase, if �j+1;1lies in Tg �T 0g = ~Tg � ~T 0g, it will also lie on the 
y
le formedby the swapping in of �0j . Consequently, ~Tg is maintainedas a tree, either by removal of �0j+1 from ~Tg if �j+1 lies inTg, or by removal of the 
y
le edge into b, where b was thewhite endpoint of �j+1 with the last edge of �j+1 being anon-tree edge into b. Note that in the latter 
ase, the 
y
leedge into b lies in ~Tg � ~T 0g, and hen
e is also in ~Tg � ~T 0g.To determine whether to apply the restru
turing of Fig.2,one 
an simply traverse the paths from w and y in ~Tg, usingLCA queries on Tg to guide one (for Tg � T 0g = ~Tg � ~T 0g).The Fig.2 s
enario applies if node x is not en
ountered inthis traversal. As all traversed nodes are added to S at theend of the 
urrent iteration of the s
anning pro
ess, this has
ost O(ni) over all iterations.Next, we 
onsider whi
h two 
omponents are 
onne
tedby �0k. If �k had two white endpoints then �0k 
onne
ts thesame two 
omponents as �k. If �k has a bla
k endpoint xin some 
omponent C0 6= C, �0k need not have an endpointoutside C. If �0k has an endpoint in 
omponent C00 6= C,then it is used to 
onne
t C00 and C. If not, a 
rossover, asin Fig.2, is performed at x, and this will 
onne
t C and C0.
4. THE CACTUS CONSTRUCTION ALGO-

RITHMRe
all the notion of visible and invisible 
uts from Se
tion2.3. Visible (i�1)-
uts are expli
itly identi�ed in the pro
essof 
onstru
ting Ti. Sin
e we always 
ompute bla
k-minimal
uts, a visible 
ut 
annot 
orrespond to several 
onse
utivenodes on a 
y
le in the 
a
tus tree, for it 
an be shown thatsu
h a 
ut would span several 
omponents in Ti. Therefore,ea
h visible 
ut 
omputed will form a node in the 
a
tustree. Set 
ontainment for these 
uts is readily determined,�rst within individual 
omponents in a single iteration (note,we �nd all (i � 1)-
uts 
ontaining the de�
ient vertex andnot only the largest one, in ea
h 
omponent) and se
ondbetween iterations by keeping tra
k of bla
k superverti
esinto whi
h (i�1)-
uts from the previous iteration have been
ontra
ted.

Next, we des
ribe the pro
edure for �nding invisible (i�1)-
uts. Consider a visible 
ut D with visible 
hildren 
utsC1; : : : ; Ck. We show how to �nd invisible 
uts whi
h are
ontained within D and whi
h 
ontain two or more 
hildrenof D.To this end, we form subtrees of the pa
king trees by 
on-tra
ting C1 : : : Ck as well the portions of the pa
king treesoutside D to single nodes. Ea
h node in the redu
ed pa
kingtrees has 
ombined degree at most 2i� 2, for all white ver-ti
es in D are 
ontained in some Ch, 1 � h � k. Thus everynode o

urs as a leaf in some tree or has degree two in everytree. We seek 
uts in this redu
ed 
olle
tion of pa
king treeswhi
h do not in
lude verti
es outside D. These 
orrespondexa
tly to 
uts lying between D and its 
hildren in the �nal
a
tus tree.The invisible 
uts are found by means of a 
losure pro
ess,whi
h given a vertex set R, �nds the smallest vertex set S,if any, su
h that R � S, S is 
ontiguous in ea
h redu
edpa
king tree, and no unused edge (whi
h is not present inthe pa
king trees) is dire
ted into S. Let mS denote thenumber of unused edges with both endpoints in S. Thispro
edure runs in time O(ijSj + mS), if S exists, and intime O(ijDj + mD), otherwise. This 
losure pro
edure isvery similar to the pro
essing of bla
k superverti
es in the
omputation of S(C) and is left to the reader.We �nd invisible 
uts using the 
losure pro
ess as a bla
kbox as follows. Choose some redu
ed pa
king tree T1, say.Let v be the 
entroid of T1 (so every subtree of v in T1has size at most 2=3 � jT1j). First, we determine if thereis an invisible 
ut 
ontaining v and if so �nd the minimalsu
h 
ut S in time O(ijSj +mS); if yes, then we 
ontra
tS to a single vertex in all redu
ed pa
king trees and againseek the minimal invisible 
ut 
ontaining this shrunk ver-tex, iterating this pro
ess until no further 
uts 
ontainingthe shrunk vertex exist within D. On
e all su
h 
uts havebeen found we return to tree T1 and �nd invisible 
uts not
ontaining v by re
ursing on ea
h of the subtrees obtainedby removing vertex v. Clearly, the iterative step takes timeO(i�nD+mD) and the re
ursion adds a further log n fa
tor.Summing over all subproblems 
reated by di�erent nodes ofthe preliminary 
a
tus tree yields a overall running time ofO((in+m) log n).To �nd S, we pro
eed as follows. If v o

urs as a leafin redu
ed tree Th, then R, the initial set for the 
losurealgorithm is set to fv; wg, where w is the parent of v in Th.Otherwise, let x and y be v's neighbours in T1. The 
losurepro
ess is run twi
e, in parallel, with initial sets fv; xg andfv; yg, respe
tively; whi
hever pro
ess ends �rst providesthe set S.The invisible 
uts found in this pro
ess need to be in
or-porated into the preliminary 
a
tus tree. Further, note thatnot all (i � 1)-
uts have been dete
ted yet. In parti
ular,
hains of 
uts leading to 
y
les in the 
a
tus tree get paren-thesised above and not all pairs of 
uts on a 
hain will beidenti�ed as new 
uts. Details of these 
ases are omitted.
5. APPLICATIONS TO THE UNIFORM SUR-

VIVABLE NETWORK DESIGN PROBLEMRe
all that the WGMV algorithm runs on an undire
tedgraph. We des
ribe how the above ma
hinery 
an be usedto get an eÆ
ient implementation of this algorithm. Inparti
ular, we show how iteration i 
an be implemented.



Previous iterations would have ensured through edge ad-ditions that every vertex v for whi
h rv � i � 1 now has
on(v) = minfrv; i � 1g and verti
es with rv � i have
on(v) � i � 1. In the graph GQ restri
ted to the edgesalready added to Q (see Se
tion 2.4) and made dire
ted bydire
ting edges in both dire
tions, we �rst 
onstru
t the 
a
-tus tree as in Se
tion 4.A vertex rv for whi
h rv � i is 
alled a demand ver-tex. Those 
a
tus tree nodes whose subtrees 
ontain a de-mand vertex represent violated sets. The minimal 
uts 
or-responding to minimal violated sets provide the a
tive sets.As edges are added to Q, the number of (i� 1)-
uts and ofdistin
t nodes in the 
a
tus tree are redu
ed. The a
tive setsare updated a

ordingly. One detail is that addition of anedge may not 
hange a violated set but it may nonethelessexpand the 
orresponding minimal 
ut by drawing in morebla
k superverti
es. In fa
t, this growth, whi
h is 
omputedby a 
losure pro
edure, may require working into bla
k su-perverti
es re
ursively.The 
hanges to the 
a
tus tree resulting from edge addi-tion are standard apart from the e�e
t of bla
k superverti
es(see [6℄ for the e�e
t on a standard 
a
tus tree).The overall time taken for iteration i turns out to beO((i3n+ im) log n), giving a total time of O((maxvfrvg4n+maxvfrvg2m) log n+maxvfrvgm log2 n), whi
h improves toO((maxvfrvg4n log n + maxvfrvg2n log2 n), using the 
on-stru
tion of Nagamo
hi and Ibaraki mentioned earlier.
AcknowledgementsWe thank Hal Gabow for helpful dis
ussions and pointers tothe tree pa
king theorem [2℄.
6. REFERENCES[1℄ A. Agrawal, P. Klein, R. Ravi. When trees 
ollide:an approximation algorithm for the generalizedSteiner problem on networks. Pro
eedings of theTwenty-third Annual ACM Symposium on Theoryof Computing, pp. 134{144, 1991.[2℄ J. Bang-Jensen, A. Frank, B. Ja
kson. Preservingand in
reasing lo
al edge 
onne
tivity in mixedgraphs. SIAM Journal of Dis
rete Mathemati
s, 8,2, pp. 155-178, 1995.[3℄ R. Cole, R. Hariharan, M. Lewenstein, E. Porat. AFaster Implementation of the Goemans-WilliamsonClustering Algorithm. Pro
eedings of the 12thAnnual Symposium on Dis
rete Algorithms, 2001.[4℄ E.A. Dinits, A.V. Karzanov, M.V. Lomonosov. Onthe stru
ture of a family of minimal weighted 
utsin a graph. Studies in Dis
rete Optimization, A.A.Fridman, Ed., pp. 240{306, 1976. (Original arti
lein Russian, translation available from NationalTranslation Center, Library of Congress, CatalogingDistribution Center, Washington D.C, 20541 (NTC89-20265)).[5℄ Y. Dinitz and A. Vainshtein. The Conne
tivityCar
ass of a Vertex Subset in a Graph and itsIn
remental Maintenan
e. Pro
eedings of the 26thAnnual Symposium on Theory of Computing, 1994,pp. 716{725.[6℄ Y. Dinitz and J. Westbrook. Maintaining the 
lassesof 4-edge-
onne
tivity in a graph on-line.Algorithmi
a, 20, pp. 242{276, 1998.

[7℄ J. Edmonds. Submodular fun
tions, matroids, and
ertain polyhedra. Pro
eedings of the CalgaryInternational Conferen
e on CombinatorialStru
tures and their Appli
ation, Gordon andBrea
h, New York, 1969, pp. 69{87.[8℄ J. Edmonds. Edge Disjoint Bran
hings.Combinatorial Algorithms, R. Rustin, editor,Algorithmi
s Press, NY, 1972, pp. 91{96.[9℄ L. Fleis
her. Building 
hain and 
a
tusrepresentations of all minimum 
uts from Hao-Orlinin the same run time. Journal of Algorithms, 33, 1,pp. 51{72, pp. 51-72.[10℄ A. Frank. Kernel systems of dire
ted graphs. A
taS
i. Math., 41, 1979, pp. 63{76.[11℄ H. Gabow. Appli
ations of a poset representation toedge 
onne
tivity and graph rigidity. Pro
eedings ofthe 32th IEEE Symposium on Foundations ofComputer S
ien
e, 1991, pp. 812{821.[12℄ H. Gabow. A matroid approa
h to �nding edge
onne
tivity and pa
king arbores
en
es.Pro
eedings of the 23th ACM Symposium onTheory of Computing, 1991, pp. 112{122.[13℄ H. Gabow, M. Goemans, D. Williamson. AneÆ
ient approximation algorithm for the survivablenetwork design problem, Pro
eedings of IPCO, pp.57{74, 1993. To appear in Math. Programming.[14℄ H. Gabow and S. Pettie. The dynami
 vertexminimum problem and its appli
ation to
lustering-type approximation algorithms.S
andinavian Workshop on Algorithm Theory, 2002.[15℄ M. Goemans, D. Williamson. A generalapproximation te
hnique for 
onstrained forestproblems, SIAM Journal on Computing, 24(2), pp.296{317, 1995.[16℄ M. Grots
hel, C.L. Monma, M. Stoer. Design ofSurvivable Networks, Handbook of OperationsResear
h and Management S
ien
e, 1993.[17℄ K. Jain. A Fa
tor 2 Approximation Algorithm forthe Generalized Steiner Network Problem.Combinatori
a, Vol 21-1, 39-60, 2001.[18℄ P. Klein. A data stru
ture for bi
ategories withappli
ations to speeding up an approximationalgorithm, Information Pro
essing Letters, 52, pp.303{307, 1994.[19℄ L. Lovasz. On two minimax theorems in graphtheory. Journal of Combinatorial Theory, B, 21,1976, pp. 96{103.[20℄ H. Nagamo
hi, T. Ibaraki. Linear time algorithmfor �nding a sparse k-
onne
ted spanning subgraphof a k-
onne
ted graph. Algorithmi
a, 7, 1992, pp.583{596.[21℄ R. Tarjan. A good algorithm for edge-disjointbran
hings. Information Pro
essing Letters, 3, 1975,pp. 51{53.[22℄ P. Tong, E. Lawler. A faster algorithm for �ndingedge disjoint bran
hings. Information Pro
essingLetters, 17, 2, 1983, pp. 73{76.[23℄ D. Williamson, M. Goemans, M. Mihail, V.Vazirani. A primal-dual approximation algorithmfor generalized steiner network problems,Combinatori
a, 15, pp. 435{454, 1995.


