A Fast Algorithm for Computing Steiner Edge Connectivity-

Richard Cole
Courant Institute
New York University
NY, NY 10012

cole@cs.nyu.edu

ABSTRACT

Given an undirected graph or an Eulerian directed graph
G and a subset S of its vertices, we show how to deter-
mine the edge connectivity C of the vertices in S in time
O(C®*nlogn + m). This algorithm is based on an efficient
construction of tree packings which generalizes Edmonds’
Theorem. These packings also yield a characterization of all
minimal Steiner cuts of size C from which an efficient data
structure for maintaining edge connectivity between vertices
in S under edge insertion can be obtained. This data struc-
ture enables the efficient construction of a cactus tree for
representing significant C-cuts among these vertices, called
C-separations, in the same time bound. In turn, we use the
cactus tree to give a fast implementation of an approxima-
tion algorithm for the Survivable Network Design problem
due to Williamson, Goemans, Mihail and Vazirani.

Categories and Subject Descriptors

F.2.2 [Theory of Computation]: Nonnumerical Algorithms
and Problems

General Terms
Algorithms

Keywords

Steiner points, cactus trees, edge-connectivity

1. INTRODUCTION

The global edge connectivity of a directed graph is defined
as the minimum number of edges whose removal destroys
the strong connectivity of the graph. In many graphs, the

*This work was supported in part by NSF grant CCR-
0105678.

*Work partly done while visiting NYU and while on leave
at Strand Genomics Pvt. Ltd.

Permission to make digital or hard copies of all or part of tiork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyooiherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

STOC' 03, June 9-11, 2003, San Diego, California, USA.

Copyright 2003 ACM 1-58113-674-9/03/000655.00.

R *
Ramesh Hariharan
Indian Institute of Science
Bangalore

ramesh@csa.iisc.ernet.in

edge connectivity of different vertices may vary consider-
ably. An extreme example is provided by directed graphs
with vertices w and v connected by C directed edge-disjoint
paths; u and v have edge connectivity C, but the graph has
edge connectivity 1. This paper is concerned with Steiner
edge connectivity, in which a set of terminal vertices is spec-
ified, and the minimum number of edges with the following
property is sought: removing these edges splits the graph
into at least 2 strongly connected components in such a way
that the terminal vertices are spread over two or more com-
ponents. Similarly, on an undirected graph, one seeks a
minimum number of edges whose removal splits the graph
into at least two connected components, spreading the ter-
minal vertices over two or more components. This problem
was previously studied by Dinitz and Vainshtein [5].

Global Connectivity. For general directed graphs, the
best algorithm for determining global connectivity is due to

Gabow [12] and takes O(Cminm log ’Zn—g) time, where Cpin i8S
the global connectivity. For undirected graphs, the same re-
sult holds (typically, one just converts an undirected graph
to directed by orienting the edges in both directions) with
the additional improvement that m can be held down to
O(Cminn) using a construction due to Nagamochi and Ibaraki
[20]. Gabow’s result is based on an efficient construction of
spanning tree packings, as opposed to previous approaches
which were based on network flows and Menger’s theorem;
the best of these had running time O(min{C2,,,n?, mn}) on
directed graphs and O(Cmmn?) on undirected graphs.

Thus, the spanning tree packing approach led to the first
sub-quadratic (in n) algorithm for determining global con-
nectivity. This approach revolves around two classical theo-
rems by Edmonds [8, 7], stated below. Here, an r-arborescence
is a directed spanning tree rooted at a specified root vertex
r with all edges directed away from r, an r-cut is the set of
edges directed from V — S to S, where S is any subset of
the vertices not containing r, and a directionless r-spanning
tree is like an arborescence but with the weaker constraint
that only edges incident on r must be directed away from
the root.

Edmonds’ Theorem(8]: The maximum number of edge
disjoint r-arborescences equals the minimum cardinality of
an r-cut.

Edmonds’ Relaxed Theorem|[7]: The maximum number
of edge disjoint r-arborescences in a directed graph equals
the maximum number of edge disjoint directionless r-spanning
trees with the property that each vertex v # r has total in-
degree Cpin over all these r-spanning trees.

In [8], Edmonds gave an algorithmic proof of the first the-
orem above, which seems to need exponential time in the
worst case. Subsequent proofs were given by Tarjan[21],
Frank [10], Lovasz [19], Tong and Lawler [22], and Gabow
[12], the last of which reduced the running time to O(CZ,;,,n*)
where C,,in is the size of the minimum r-cut. Note that
all of these are quadratic in n. The advantage of the sec-
ond relaxed theorem above is that it admits fast algorithms.
Gabow [12] showed that, in contrast to arborescences, direc-
tionless spanning trees with the above description could be
constructed in time sub-quadratic in n, i.e., in time
O(Cminmlog T;n—g) This construction was the basis of his fast
global connectivity algorithm.

Steiner Connectivity. The goal of this paper is to gener-
alize this packing approach to the Steiner case to get a fast
(i.e., sub-quadratic in n) Steiner connectivity algorithm. To
address the above problem, we need to go beyond pack-
ings aimed at capturing only the minimum r-cuts in G and
capture higher order connectivity information, for instance,
the minimum r-cut separating r from a particular vertex
v; clearly, this cut could be larger than the minimum r-cut.
Our generalized notion of tree packings is aimed at capturing
this higher order connectivity information; however, the as-
sociated theorems and algorithms will apply only to directed
graphs that are Fulerian. A special case of such a graph will
be the Eulerian directed graph obtained from an undirected
graph by directing the edges in both directions. Thus, our
algorithms will indeed apply to all undirected graphs. In
fact, as Lemma 1 notes, as regards cuts, undirected and
Eulerian graphs are equivalent.

LEMMA 1. Let G = (V, E) be a Eulerian graph and let
G’ be the corresponding undirected graph in which each edge
is made undirected. There 4s a cut of cardinality h in G
separating verter sets C and V — C if and only if there is a
cut of cardinality 2h in G' separating C and V — C.

Let con(v) denote the maximum number of edge disjoint
paths from the special root vertex r to vertex v. The follow-
ing theorem appears in [2], although their setting is slightly
more general (namely, the graphs need not be Eulerian, but
the number of edge-disjoint paths from the root to every
vertex whose in-degree is smaller than its out-degree is at
least the number of trees one is seeking). The proof is based
on the Edge-Splitting lemma of Lovasz [19] and does not
immediately lead to an efficient algorithm.

The Tree Packing Theorem. Given a Eulerian directed
graph G, there exist C = max,x-{con(v)} edge-disjoint di-
rected trees rooted at r such that each vertex v # r in G
appears in exactly con(v) trees (these trees need no longer
contain all vertices in Gj; the directions of edges in a tree are
all away from the root).

The above theorem clearly implies its relaxed version stated
below.

The Relaxed Tree Packing Theorem: Given a Eulerian
directed graph G, there exist C edge-disjoint directionless
trees, T1,Ts,...,T¢c, rooted at r such that each vertex v #
r in G appears exactly min{C, con(v)} times over all trees
(occurring multiple times in a tree possibly) and has in-
degree exactly min{C, con(v)} over these trees.

T1,T>,...,Tc are called packing trees if they instantiate the
relaxed tree packing theorem.

Our contribution. Our main contribution is a fast con-
structive proof of the above relaxed theorem. Our construc-
tion runs in time O((C®n + Cm)logn)). For undirected
graphs G = (V,E), the construction of Nagamochi and
Ibaraki applies; with O(m) preprocessing, this construction
finds a subset E' C E of O(Cn) edges such that for each pair
v, w of vertices, the connectivity of v and w in the subgraph
G' = (V,E') is min{C, con(v,w)}. Thus it suffices to run the
connectivity algorithms on G', improving the time bound to
O(C3*nlogn + m). This improvement can be extended to
Euler graphs by applying Lemma 1.

Our algorithm could be viewed as a generalization of Gabow’s

algorithm [12] for directionless spanning tree generation men-

tioned above which runs in time O(Cy,inmlog ’;n—Q) But, the
generalization is non-trivial as we explain next. The crux of
Gabow’s algorithm is an iterative procedure which gathers
a subset of vertices and finally claims that these vertices oc-
cur contiguously in all the packing trees being constructed.
This argument breaks down when not all the vertices are
present in each of these trees. Our algorithm manages to
retain this property but only with the help of a key, non-
trivial relaxation: we ensure that a vertex which does not
appear in all the trees always appears with degree no more
than 2, possibly at the cost of appearing several times in
each tree. Allowing vertices to appear several times in a
tree and thereby ensuring degree at most 2 turns out to be
key in obtaining time sub-quadratic in n in several steps of
the algorithm.

The Steiner connectivity C of a specified collection of ver-

tices is an easy by-product of the above algorithm. Fur-
ther, the trees constructed also give a characterization of
the Steiner minimum cuts which will be useful in the follow-
ing application.
Cactus Trees. The cactus tree for an undirected graph G,
devised by Dinits et al. [4], represents the Cpin-cuts of G =
(V, E), where G is Cmin-edge connected, but not Cmin + 1-
edge connected. For odd Cyin, this cactus tree is a tree; for
even Cmin, it can also include cycles.

We start by describing the structure for odd Cpin. Let 7
be an arbitrary vertex of G. Given a cut F' C E of cardi-
nality Cpmin which partitions the vertices into sets C,V — C,
with r € V — C, we name the cut using vertex set C. Every
node of the cactus tree except the root corresponds to a dis-
tinct cut and is labelled by the vertex set name for this cut.
Cuts associated with pairs of nodes in this tree are either
disjoint or contained one inside the other. Node ancestry in
the cactus tree simply corresponds to set containment for
the cut names. Oftentimes, the cactus tree edge from node
C to its parent is labelled by the edge set (of cardinality
Crmin) forming this cut.

For even Cpin, cuts of cardinality Cmin can overlap, but if
C and D are two such distinct non-disjoint cuts and neither
is contained inside the other then C—D,D—-C, CND,CuUD
are also cuts with cardinality Cpmin. In general, this yields
chains of cuts C;...C, such that U‘Z:pCi is a cut of cardi-
nality Cpin for any 1 < p < g < r. Nodes corresponding
to C1,...,C, are created, forming a cycle together with the
“parent” node to which C; and C, are attached.

We turn to minimum cuts for a collection S C V of C-
connected vertices. We are interested in restrictions of these
cuts to subsets of S. As Dinitz and Vainshtein [5] note (and
credit to each of Naor and Westbrook), these cuts have ex-
actly the same structure as the global minimum cuts above

and so can also be represented by cactus trees. They show
how to construct such a cactus tree using |S| — 1 maxflow
computations. We give an algorithm that starts with C pack-
ing trees, and then runs in time O((Cn + m)logn); this is
bounded by O(Cnlogn + m) using the construction of Nag-
amochi and Ibaraki mentioned above.

An Application to Designing Survivable Networks.
In the The Uniform Survivable Network Problem, each ver-
tex v of a given undirected graph has an associated non-
negative integral label r,, which is usually a small constant
in practice. The aim is to choose a collection of edges of min-
imum cost so that each pair of vertices v, w has min{r,,r,}
edge disjoint paths. This problem has applications to the
design of fiber-optic telecommunication networks [13], and a
more complete discussion of the problem appears in Grotschel
et al. [16].

Williamson, Goemans, Mihail and Vazirani (WGMV, for
short) [23] gave a combinatorial algorithm for this problem
with an approximation factor of 2max,{r,} — 1. Actually,
this algorithm also works for the non-uniform case, i.e., when
each pair of vertices has an associated demand for a certain
number of edge disjoint paths. However, our results will
apply only to the uniform case. We mention that there are
algorithms achieving better approximation factors even for
the non-uniform case, notably the algorithm due to Jain [17];
however, this algorithm requires linear programming and is
therefore much slower.

The WGMYV algorithm performs several iterations of the
Goemans-Williamson clustering procedure [15], a general

technique (which builds on an earlier technique due to Agrawal,

Klein and Ravi [1]) which forms the core of several algo-
rithms and is described below. Broadly, an iteration will
comprise several rounds, in each of which the algorithm will
identify some subsets of vertices as active and some as in-
active and choose two such subsets to merge into one using
an edge addition step. Finally, only a subset of the edges
added over all rounds in an iteration will be retained. To
implement an iteration, three issues need to be addressed:
which sets are active/inactive in each round, which two sub-
sets need to be merged in each round, and which edges must
be discarded in the final pruning step in each iteration.

The original Goemans-Williamson paper [15] addressed
these issues only for the first iteration and the associated
algorithm took O(n”logn) time. This was improved to
O(n+/mlogn) by Klein [18], to O(n® + ny/mIoglogn)) time
by Gabow, Goemans and Williamson [13], to O(ny/m) by
Gabow and Pettie [14], and to O((n + m)log®n) time by
Cole, Hariharan, Lewenstein and Porat [3] (the last algo-
rithm also adds an arbitrarily small additive term to the
approximation factor). Computing active sets for the first
iteration of the WGMYV algorithm is straightforward and
therefore, all the above algorithms focus on determining
which two subsets to merge at each round within an iter-
ation. However, for subsequent iterations of the WGMYV al-
gorithm, determining active sets is more involved and there-
fore, the above results do not generalize to these iterations
(though [3] does show how to do this for one more iteration
with the same time bounds).

For subsequent iterations of the WGMYV algorithm, the
implementation of [23] took O(max, {r, }*n*) total time over
all these iterations, and the implementation due to Gabow,
Goemans and Williamson [13] took O(max, {r,}?n?

+ max, {r, }nv/mloglogn)) total time. Thus, no subquadratic

(in n) implementation was known for the WGMYV algorithm
prior to this work. Further, all these algorithms were based
on network flows and Menger’s theorem based techniques,
and not on tree packings. However, both the above algo-
rithms work for the non-uniform case of the Survivable Net-
work Design problem as well.

We give an implementation of the WGMYV algorithm for
the uniform case which uses the cactus tree and runs in time
O((max, {r, }*n + max, {r, }>m) log n + max, {r, }mlog”® n),
which improves to O((max, {r, }4n log n+max, {r, }2n log® n),
using the construction of Nagamochi and Ibaraki mentioned
above. Under the practical assumption that max,{r,} is a
not too large constant, the above time complexity is close
to linear. Our restriction to the uniform case comes from
the fact that our packings are rooted at particular vertex
v (which will be chosen to be the vertex with the largest
requirement value r,). Our algorithm maintains the cactus
tree under edge insertions (a problem previously studied by
Dinitz and Westbrook [6]).

2. OVERVIEW OF THE ALGORITHMS

In this section, we describe the broad frameworks for Gabow’s
algorithm for directionless spanning tree packing, for our di-
rectionless tree packing and cactus construction algorithms,
and for the WGMYV Survivable Network construction algo-
rithm.

2.1 Gabow’s Algorithm

The directionless spanning trees are constructed one at
a time. Given the first ¢ — 1 spanning trees T4,...,Ti—1,
the ith tree T; is constructed in several rounds. 7T} is built
from a forest initially comprising n singleton vertices. Over-
loading our notation, we name this forest 7;. Each distinct
tree in this forest is called a component. Each round in the
construction process runs in O(n+ m) time and reduces the
number of connected components in the ith forest T; by at
least half, leading to an overall time of O((n + m)logn) per
tree, or O(Cmin (m+mn)logn) time overall (the log factor can
be improved for dense graphs).

Any particular round begins with several connected com-
ponents, each of which has exactly one deficient vertex, i.e.,
a vertex whose total in-degree in Ty ...T; is i — 1 (all other
vertices have in-degree i in 77 ...T;). Each of these con-
nected components gets processed in this round. Consider
one such component C with a deficient vertex v. Gabow’s
algorithm now computes the minimum set M containing
edges satisfying at least one of the following properties:

e ¢ ¢Ti...T; and is directed into v.

e cisin one of T ...T; and is in the fundamental cycle
formed by some edge f in M with respect to that tree.

e ¢ ¢ Th...T; and is directed into a vertex into which
some other edge in M is directed.

Clearly, computing M needs a closure-like algorithm, and
Gabow shows how to perform this efficiently, i.e., in time
proportional to the number of edges and vertices involved
in M. More importantly, Gabow shows that this closure like
algorithm has one of two possible outcomes.

e Either there exists an edge e € M which is directed
from a vertex in T; outside C to a vertex inside C. In
this case, there exists a sequence of swap adjustments

to Ti ... T; culminating in the addition of e to T3, which
ensures that v is no longer deficient; further, no new
deficient vertices are created in the process, and the
number of connected components is reduced by 1.

e Or, when no such edge exists in M, Gabow shows that
the set S of vertices into which edges of M are directed
occur contiguously in T4 ...7T;, and further, S,V — §
actually forms an r-cut of size i — 1.

In the former case, the algorithm has made progress towards
reducing the number of connected components, and in the
latter case, the algorithm terminates as 7 — 1 trees have
already been constructed and i — 1 is also the size of the
min r-cut.

Of critical importance is the proof that S,V — S forms an
r-cut of size ¢ — 1. This proof is based on the following facts.

e FEach vertexin S other than v has in-degree¢in T ... T;
and vertex v has in-degree t — 1 in T4 ... T;.

e Vertices in S occur contiguously in each of Ty ... T;.

e Edges not in T4 ...T; but directed into a vertex in S
lie completely within S. Thus, edges directed into S
from V — S must all be in T ... T;.

An easy consequence of the first two properties is that the
in-degree of S'in T4 ... T; is at most ¢—1. The third property
ensures that the in-degree of S in the whole graph is also at
most ¢ — 1.

2.2 Directionless Tree Packing

Asin Gabow’s algorithm, the packing trees are constructed
one at a time. Given the first i — 1 trees with the property
that each vertex v occurs in exactly min{con(v),i— 1} trees
and has in-degree exactly equal to its number of occurrences
in these trees, the ith tree is constructed in several rounds
as follows. Each round runs in O(i*n+m) time and reduces
the number of connected components in the ith forest by at
least half, leading to an overall time of O((i*n + m)logn)
for constructing T;, or O((C*n + Cm)log n) time overall.

Again, any particular round begins with several connected
components, each of which has exactly one deficient verter,
i.e., a vertex v for which con(v) > i — 1 and con(v) has not
yet been established as being equal to ¢ — 1. The aim now
is as before: to consider a particular connected component
with a deficient vertex v and either to find a sequence of
swap adjustments to 7% ...T; culminating in the addition
of an edge e to T; (in fact, the addition of a path, as we
shall see) increasing the in-degree of v, or to find a subset
S of vertices such that S has in-degree i — 1 and v € S (so
con(v) =i — 1). The differences begin here.

First, unlike Gabow’s algorithm, the algorithm cannot
stop if it finds such a set S, because C could be bigger
than ¢ —1 and this demands that more trees be constructed.
Finding S as above only signifies that vertices in S have
con() =i — 1 and therefore these vertices need not occur in
any more trees.

Second, since not all vertices occur in all trees, the proof
that the vertices in S occur contiguously in each of T1 ... T;
no longer holds. The proof is just the observation that the
closure method for computing M maintains contiguity. To
see the problem, consider Fig.l in which portions of two
trees, 71 and 7> say, are shown. Vertex z occurs only in

the first tree. The edge directions are suppressed. Suppose
edge (z,v) € M; then the closure algorithm would add all
the vertical edges shown in 77 to M. Thus, vertices y and
u will occur eventually in S. Next, consider the point when
edges from 77 newly added to M are considered relative to
T> by the closure algorithm. Since w and z are not present
in T3, it does not follow that the edges on the path from y
to u in T get added to M at this point, nor those from v to
u, and therefore vertices in S need not be contiguous in T5.
Note that if z had in fact been present in 7% then the edges
on the path from y to w in 7> would indeed be added to M.

Figure 1: The Contiguity Problem: Trees 77 and T»

To solve the above problem, we will ensure the following
critical constraint: vertices which do not occur in all trees
(we call such vertices black) will have degree at most two
(in and out combined) in each place they occur. Further,
we will maintain M as a set of paths and not a set of edges
(in other words, our swaps will swap out and swap in whole
paths rather than single edges, where all internal vertices
on such paths will be black). This will ensure the required
contiguity property for vertices in S (for example, in Fig.1,
assuming z has degree 2, the whole path (u,z,y) will be
added to M, and when the closure algorithm considers this
path with respect to T>, both edges (y,a) and (a,u) will
get added to M. To make the above machinery work, we
will need that the graph be Eulerian. Further details of the
algorithm appear in Section 3.

2.3 Cactus Construction

The cactus we aim to construct will have nodes repre-
senting equivalence classes of minimum cuts separating the
given terminal vertices (so not all terminal vertices are on
the same side of the cut). All cuts in an equivalence class
split the terminal vertices in exactly the same way. Non-
terminal vertices could be split in different ways by distinct
cuts in the same equivalence class. We use the term sepa-
ration to denote an equivalence class. As we will see, each
equivalence class has a unique minimal cut associated with
it. While describing the cactus construction algorithm, let
(i — 1) be the cardinality of any minimum cut which sep-
arates the terminal vertices; the minimal cuts representing
the various equivalence classes of such minimum cuts will be
denoted by the term (i — 1)-cuts.

The computation of the cactus tree proceeds in two phases.
First, we determine those (i—1)-cuts found by the algorithm
when computing the ith packing tree T;. We call these cuts
visible cuts. These visible cuts are arranged in a prelimi-
nary cactus tree according to their set containment. Unfor-
tunately, (i — 1)-cuts which are themselves unions of visible
(¢ — 1)-cuts may not be identified in this process; we call
such cuts invisible. We need an additional procedure to find
these invisible cuts and detect cycles formed by these cuts;

this procedure runs in time O((in + m)logn), as described
in Section 4.

In the case that all the vertices are terminal, Gabow [11]
has shown how to find the cactus from the i — 1 packing
trees in linear time.

2.4 The WGMV algorithm

The algorithm executes max,{r,} iterations, with each
iteration removing a subset of the edges in the given undi-
rected graph G and adding these edges to the final solution
Q. Iteration i begins with several violated sets, i.e., subsets
S of vertices satisfying the following properties: there exists
v € S such that r, > i and dg(S) = ¢ — 1, where dg(S5)
is the total number of edges between S and V — S in Q.
This iteration now has several rounds, each of which will
identify exactly one edge. A violated set is satisfied when
an edge in G connecting a vertex in S to a vertex outside
S is identified (note that edges in @) are removed from G
and therefore are no longer present in G). The aim of this
iteration is to identify sufficiently many edges for addition
to @ so that all violated sets are satisfied. However, only a
minimal subset of these identified edges which can by itself
satisfy all violated sets will actually be removed from G and
added to Q.

Each round proceeds as follows. All currently minimal
unsatisfied violated sets will be active in this round. These
sets will then ezpand (as in the Goemans-Williamson algo-
rithm [15]) until some edge becomes tight; this edge is the
edge identified for this round. All active sets in a round are
disjoint and the collection of all active sets over all rounds
forms a hierarchical laminar family.

Assuming an oracle which provides the active sets in a
suitable form in each round, all rounds in an iteration can
together be performed in O(mlog? n) time, using the algo-
rithm in [3]. Further, determining the minimal subset of the
identified edges in each iteration to add to) can also be done
in O(n) time as shown in [13]. In this paper, we show how
to implement the above oracle so that it runs in O((i*n +
im)logn) time over all the rounds in iteration i. The to-
tal time taken by the algorithm is thus O((max,z, {r, }*n +
maxy£,{Tv }Qm) log n + max,z.{r, }m log2 n).

3. CONSTRUCTING THE PACKING TREES

Consider the ith iteration and suppose several rounds have
been performed in this iteration resulting in trees 7 ... T;—1
and a forest T;.

Note that vertices in G can be partitioned into the follow-
ing categories at this point: vertices v for which con(v) <
i — 1, vertices with con(v) = i — 1 and which have al-
ready been discovered to have con(v) =i — 1, vertices with
con(v) = i — 1 and which have not yet been discovered to
have con(v) = i — 1, and vertices for which con(v) > i. Ver-
tices in the first two categories appear exactly con(v) <i—1
times over all trees, possibly occurring multiple times in a
tree, while vertices in the last two categories occur exactly
once each in each of Ty ... T;. Vertices in the former two cat-
egories are organized hierarchically into supervertices, while
vertices in the latter two categories will appear as singleton
supervertices.

A supervertex will in turn be composed of other superver-
tices (each supervertex could be a singleton vertex by itself
as well). con(v) for a supervertex v is defined as the maxi-
mum of con(w) over all supervertices w contained in v. At

the outermost level of nesting, supervertices which occur in
all trees (including r) are said to be white (these are exactly
the category 3 and 4 singleton supervertices above) and the
remaining supervertices are said to be black. At further lev-
els of nesting, a supervertex w nested immediately within
a supervertex v is said to be white if and only if every oc-
currence of v contains w. Supervertices satisfy the following
properties.

P1. All supervertices nested within a particular superver-
tex occur contiguously in all the trees Th...T;—1 (in
fact, not all of these supervertices occur in all the trees,
but those which do occur, occur contiguously).

P2. White supervertices are necessarily singleton and oc-
cur exactly once in each tree (at the outermost level)
or exactly once in each occurrence of the parent su-
pervertex, i.e., the supervertex at the next outer level
of nesting. A white supervertex w nested inside a
black supervertex v satisfies con(v) = con(w) and a
white vertex at the topmost level of nesting satisfies
con(v) =1 or con(v) =1i— 1.

P3. Each black supervertex v appears exactly con(v) <i—
1 times over all the trees, possibly occurring multiple
times in a single tree. The total in-degree over all these
occurrences of v is exactly con(v).

P4. If a particular occurrence of a black supervertex v con-
tains another supervertex w, then all occurrences of w
occur within occurrences of v.

P5. Each black supervertex has at least one white super-
vertex at the next deeper level of nesting.

P6. A white supervertex v at the outermost level could
have in-degree i or i — 1 over all trees; further, if the
in-degree is ¢ — 1 then the in-degree of v in T; equals
0. White vertices at the outermost level of nesting
with in-degree ¢ — 1 are called deficient. With the
exception of the connected component containing the
root 7, each connected component in 7; has exactly
one deficient vertex.

P7. Each black supervertex has degree at most 2. There
are exactly 2 % con(w) edges in G that are incident on
black supervertices w. On unnesting w one level, one
sees it comprises one or more white vertices of con-
nectivity con(w), joined together in a tree by single
edges and/or paths of black supervertices. The edges
incident on w are either incident on one of these white
vertices nested in w, or joined to such a nested white
vertex by a path of nested black supervertices. Each
of the black supervertices on this path has the same
recursive structure. While w remains a top level black
supervertex, each edge in G incident on w is associated
permanently with such a path of black supervertices,
which may be an empty path; this path is called the at-
tachment path. Further, exactly two attachment paths
will be associated with each instance of w. To allow
an edge incident on w to change its w endpoint from
one copy of w to another in O(1) time, we maintain
pointers to the two vertices, not supervertices, at the
ends of each such path.

Our algorithms will ensure that these invariants can be main-
tained at the end of this round as well, with the number of
components in T; reduced by a factor of at least half. This
round performs the following steps.

3.1 Algorithm for One Round

Step 1. This step will consider only supervertices at the
outermost level of nesting. For each connected component
C in T; such that r € C, a set S(C) of supervertices with the
following properties will be determined, provided it exists.

e S(C) comprises supervertices in C' and possibly some

black supervertices not present in 7}, as explained shortly.

e S(C) contains the only deficient supervertex v in C.
e The in-degree of S(C) in G equals ¢ — 1.

e S(C) is white-marimal and black-minimal, i.e., there
is no set which satisfies the above 3 properties and has
more white vertices, and removal of a black vertex from
S(C) causes a violation of one of the above conditions.

S(C) is identified using the following criteria: Supervertices
in S(C) occur contiguously in the trees T4 ...T;, and fur-
ther, no edge outside of T1 ...T; is directed into S(C') from
outside. The following simple counting argument shows that
these two conditions are necessary and sufficient for S(C) to
have in-degree ¢ — 1 in G.

LEMMA 2. Let S be a set of supervertices in G. The in-
degree of S in Ty ... T; equals i—1 if the contiguity condition
holds, and exceeds i — 1 otherwise.

Proof. With the exception of v, each supervertex w in S has
as many occurrences #w as its total in-degree over all trees.
v’s total in-degree is exactly one less than its number of
occurrences. Thus the total in-degree over all supervertices
win Sequals (3, g #w)—1. Exactly (3°,, g #w)—i of the
edges which contribute to the above in-degree lie within S if
the contiguity property holds; this number is even smaller if
the contiguity property does not hold. This leaves exactly i—
1 edges directed into S in T ... T; if the contiguity property
holds, and more otherwise, as required. O

The algorithmic details of finding S(C') appear in Section
3.1.1. The time taken for this procedure will be O(i®n+m).
The main reasons why this computation is efficient is that
by Eulerianness, the total degree (in and out combined) of
S(C) in G is 2(i — 1) and further, S(C) occurs i times over
all the trees Ty ...T;; these two facts together imply that
either S(C) is a whole connected component in T; or it is
a leaf subtree in one of T1...T;—1. That S(C) is uniquely
defined in spite of white-maximality, if it exists at all, follows
from the fact that if there are two incomparable candidate
sets A and B for S(C) then AU B is also a candidate. If
S(C) exists then it becomes a new black supervertex s, and
supervertices comprising S(C) are now nested within s; this
is possible due to the contiguity property. The in-degree of
s over all trees equals ¢ — 1.

Step 2. For each component C, if S(C) exists and contains
all of C then C is just removed from 7;. This is fine be-
cause s needs to appear only ¢ — 1 times, and it currently
appears 4 times in 77 ...T;. While if S(C) does not exist or
does not contain all of C' (note the convoluted wording of

this condition; this arises because S(C) may contain black
supervertices that do not occur in C'), we will be able to con-
nect it to another component so C no longer has a deficient
vertex, as we will see. This may entail the restructuring of
some or all of T1...T;.

Next, we process the black supervertices to ensure that
each occurrence has degree at most 2 and obeys Invariant
P7. For each new black supervertex s, as s occurs 4 times in
Ti,...,T;, we will be left with at least two leaf occurrences of
s. Also, as we will see, while this process may restructure
some of the components, for all components in which S(C)
did not exist, it remains the case that S(C) does not exist.
This process takes O(in) time.

The connecting of the remaining components entails find-
ing a suitable set M of paths for each component C. These
are found by means of a closure process starting from a col-
lection of seed paths. The method for finding seed paths, in
time O(in), is described next.

For each new black supervertex s replacing S(C), now
reduced to degree 1 or 2, we form a seed path as follows. If
s has degree 1 in C, we take the path from the remaining leaf
occurrence of s to its nearest white ancestor and concatenate
it with the path from s in C to the nearest white vertex; this
forms the seed path. If s has degree 2 in C, we take the paths
from the remaining leaf occurrences to their nearest white
ancestors and concatenate these paths; this forms the seed
path. Note that in either case both endpoints of the seed
path are white and internal vertices are black.

Finally, if S(C) does not exist, then we define a collection
of one or more seed paths for S(C). Each seed path begins
with a distinct unused non-tree edge directed into vertex v.
There must be such an edge for otherwise {v} = S(C). For
each such edge (z,v), if z is black, the seed path is extended
to a white vertex as follows: from a leaf occurrence of x, of
which there must be one because (z, v) is an unused edge, we
take the path to its nearest white ancestor and concatenate
this path with the edge (z,v) to form a seed path.

Step 3. Starting with the above seed path or collection of
seed paths as the case may be, we find a sequence of swaps
which will connect C' to another component in T;, and in
the case when S(C) does not exist, increase the in-degree of
v by 1. A swap consists of the addition of a path to some
packing tree T}, forming a cycle in T}, and the removal of
a path in T}, breaking this cycle. The initial set of paths for
swapping is provided by the seed path collection. The num-
ber of occurrences and in-degrees of all other vertices will
be unaffected by this swap sequence and black vertices will
continue to have degree at most 2. This process is repeated
sequentially for each connected component of 7; which has
not already joined up to another component. The total time
taken over all these connected components will be O(in+m).

The total time taken for the entire round is O(in + m),
which leads to O((C3n+Cm) log n) time overall. Setting m =
O(Cn) using the construction of Nagamochi and Ibaraki, this
becomes O((C3nlogn + m). Next, we elaborate on some of
the above steps.

3.1.1 Computing S(C)
Given a collection of trees T4 ...T; (the last of these is a
forest), we find all subsets S of vertices satisfying:

e All supervertices in SN 7T}, are contiguous in T} for all
h.

e Either SN T; is a full connected component in T, or
SN Ty is a leaf subtree in T}, for some h, 1 < h < 1.

e All white vertices in S are present in all trees.

e No edge outside T3 ... T; is directed into S from outside

S.

S(C), for each connected component C in Tj, is easily ob-
tained from this computation.

It suffices to find for each leaf subtree @ in T}, h < 4, and
each connected component Q) in T;, whether these exists a
set S O @ of supervertices such that (i) S — @ has only
black supervertices, and (ii) supervertices in S N Ty occur
contiguously in Ty, 1 < g < i. Without loss of generality, we
consider the case when h = 1 and consider all leaf subtrees
of Ty with respect to the above creteria.

The first step is to perform the contiguity check on white
vertices alone, ignoring intervening black supervertices. Each
leaf subtree @, of 11 rooted at = with the property that
white vertices in @), are contiguous in all other trees (possi-
bly with intervening black supervertices) are determined in
this step. For this we consider each tree Ty, g # 1, in turn.
For each white vertex v in Ty, the pair (v, w) is placed in T}
at the node lca(v, w), where w is the nearest white ancestor
of v in T;. Note that if we now process the vertices z of T,
in order of decreasing distance from the root and for each
pair (v,w) placed at x, union the sets containing v and w,
then the number of sets over which white vertices in @), are
spread is exactly the number of connected components of
these vertices in Ty. This number has to be 1 for all Ty,
g # 1, for QQ, to stay in consideration.

Next, we bring black supervertices into play. This process-
ing is actually interleaved with the processing for white ver-
tices described above. When processing node z, it is easy to
also obtain the list of intervening black supervertices which
separate the white vertices in (), in each of 17 ...T;. This
is made possible by the fact that black supervertices have
degree at most 2. We pool together the set of all such black
supervertices over all trees Ty. Finally, we check for each
such black supervertex b whether all its occurrences in all
Tys are connected to an occurrence of a white vertex in @),
through only black (hence degree 2) supervertices; if not, b is
called a violating supervertex. This check is done by deter-
mining for each occurrence of b in each tree T, whether or
not any of the (up to) two white supervertices reachable via
paths of black supervertices are in ()., and if not, then de-
termining which of these two white vertices lies on the path
between b and white vertices in @), (call this white vertex y).
This is easily done using LCA queries. If the check succeeds
then all black supervertices between b and the nearest white
vertex in T, are added to the pool of black supervertices be-
ing processed (taking care not to repeatedly add the same
black supervertex to this pool). On the other hand, if the
check fails and results in a violating black supervertex, then
we stop processing x, transfer the list of partly processed
and unprocessed black supervertices to z = lca(x,y) in Ti;
the processing of these black supervertices continues when
z is being processed. Note that ()., ceases to be in consid-
eration for all white vertices w # z on the path from z to
z in Th. . stays in consideration only if a violating black
supervertex is not found. If it stays in consideration then
the set of black supervertices computed at x plus the white
vertices in (), together form a set denoted by S..

Finally, if @), is still in consideration then we check for the
presence of non-tree edges which are directed into a white
vertex in @), from outside S, (a non-tree edge from outside
Q. to inside cannot be incident on a black supervertex, as
all edges directed into black supervertices are already in the
trees T4 ... T;). This check is also interleaved with the above
computation. The total time taken in O(i’n).

3.1.2 Maintaining and Restoring Invariant P7

There are two parts to Invariant P7, the first concerns
attachment paths into black supervertices and the second
concerns the degree of each black supervertex. To maintain
the first part of Invariant P7, two changes to edge incidence
need to be considered. The first arises when edges e; and
e2 incident respectively on instances x1 and z» of black su-
pervertex x are switched in the swapping process, so e; is
now incident on zs and es is incident on zi1. It suffices to
also switch the attachment paths for these edges. Clearly,
this takes O(1) time. The second arises if a non-tree edge e
is made incident on a black leaf supervertex x. Suppose the
attachment path p for e is currently associated with another
leaf instance 2’ of this black supervertex. Then the unused
attachment path associated with z is switched with attach-
ment path p, in O(1) time, and now edge e can be made
incident on x.

It remains to explain how to maintain black nodes at de-
gree 2 or less when a set S(C) is contracted to form a new
black supervertex s (recall that the swaps in Step 3 will en-
sure that black vertices continue to have degree at most 2 in
the packing trees thereby preserving P7). Before performing
the contraction, we redistribute paths of black supervertices
leading to non-tree edges incident on S(C). Each such path
has one incident edge. The paths are redistributed so that
all these paths are incident on copies of S(C) that contract
to a leaf instance of s. These paths, concatenated with the
attachment paths at their two ends, will form attachment
paths for the new supervertices s. The attachment paths for
tree edges are obtained similarly.

Suppose an instance of s has degree 3 or more, its degree
is reduced by the following reattachment process. As s has
degree 3 or more, there is a leaf instance s’ of s. The path
from s’ to its nearest white ancestor z is traversed and cut
at x; then the path s’z is attached to the instance of x in s's
packing tree, called the reattachment point, and finally for
a neighbour y of s the edge ys is replaced by ys’, where y is
chosen so that z is not in the subtree rooted at y (treating s
as a root). Note that there is still one instance of each white
vertex in each packing tree.

In order to perform all needed reattachments efficiently,
we proceed as follows. In each packing tree, for each super-
vertex s of degree d, we choose d — 2 paths for the reattach-
ment process. It remains to determine which subtrees of s
to attach to which paths. Let si,..., s, be the supervertices
in T), needing degree reductions, reductions of total amount
d. Choose s1 to be the temporary root of 7}, and consider
the subtrees of s1 ...s,. There will be exactly d+ 1 leaf sub-
trees, subtrees containing none of s1,...,s,. One at least of
these subtrees does not contain a reattachment point; this is
the subtree chosen to be reattached first. Its reattachment
point is declared used and the above process is iterated with
the unused reattachment points. When a supervertex sy has
its degree reduced to 2, it is removed from consideration and
a new leaf subtreee is brought into play for its nearest an-

cestral black supervertex sy. This takes time O(in) for all
the degree reductions in one iteration.

3.1.3 Finding the Svap Sequence.

Let w denote the vertex v if S(C) is not defined or the
vertex s if it is indeed defined (recall s is the new black
supervertex obtained by condensing S(C')).

We now perform a cyclic scanning process in which we
scan T4 ... T; repeatedly in round-robin order. We start with
the set S comprising all vertices which lie on any of the
seed paths constructed above. The set M is initialized to
comprise all these seed paths. As the process evolves, new
paths will be added to M and each path in M will have the
following property: all strictly internal nodes are black and
at least one of the terminal vertices is white. For each of
T: ...T;, this process will also maintain contiguous portions
Ty ... T}, respectively, which will expand over time.

Cyclic Scanning Process. Given a collection of paths in
M, a set of supervertices S, and a tree T = T}, this step
redefines S and M as follows. Paths for which at least one
of the terminal vertices is absent from 7" continue to be in
M. All other paths are removed from M; for each such path
p, we consider the edges g € T which lie in the fundamental
cycle formed by p. These edges are organized into maximal
paths in T with internal vertices being black. For each such
path, all prefixes of that path which do not lie completely
in T' = T}, and whose black endpoint is not already in S are
added to M, where a prefix is defined from the white node
end. One complication arises from the fact that 7" could
have several occurrences of the same supervertex. In this
case, a path p could define not one but several fundamental
cycles. All of these cycles are considered while defining M
above. All vertices on paths in M which are not yet in S are
now added to S. T' is now redefined to be the original T’
augmented with the vertices newly added to S. We claim
that T' remains a contiguous portion of T

Finally, we add some more paths to M as follows. For
each path newly added to M, if its end edge is directed into
its white endpoint w, then all unused edges (those which
do not appear in any of T4, ..., T;_1,T;) directed into w are
added to M. Further, for each such edge, (z,w), if z is
a black supervertex, the following paths are added to M.
For each leaf instance of x, consider the path p from z to
its nearest white ancestor, and let ¢ be the concatenation
of p and (z,w). All prefixes of ¢ starting at w are added
to M. Black supervertices will not have any unused edges
directed into them. Also note that the fact that at least one
endpoint of each path in M is white can be shown from the
above description.

The cyclic scanning process is continued until M has a
path 7 which goes out of C to another connected component
in T; (i.e., one endpoint lies outside C). Let 71, w2, ,mp =
7 be the sequence of paths this process produces, where the
application of 7; frees w11 from the tree containing it, for
1 < i < k. We would like to apply this sequence of paths to
the packing trees T4, - , T but we face several difficulties.

First, note that the cyclic scanning procedure always works
with the original trees 77 ...T;. Once some swaps are ap-
plied these trees will change. Therefore, if a path 7 in T}
enters M because of the application of path ' to T} in the
cyclic scanning process, then it is not obvious that ' can
be swapped in for 7, once the previous swaps have been ex-
ecuted. The reason why it will still be possible to perform

this swap is that 7' is not completely in T} when it enters
M, and all the previous swaps on T; would have happened
completely within T}

Second, for each path added to M between white vertices
having intermediate degree 2 black vertices, all prefixes of
this path will enter M and conceivably several of these pre-
fixes could be involved in pulling other paths into M. We
need to show that the actual swap sequence will not involve
the successive use of several of these prefixes (since the re-
moval of one of these prefixes affects the other prefixes).

Third, and most problematic, as some of the swaps are
made, black nodes with high degree could result and then
it may not be possible to free up a path between a black
node and a white node in a tree because there is now an
intervening black node of high degree. Thus, in general, one
cannot mimic the swaps obtained implicitly from the cyclic
scanning procedure (in which all black nodes had degree at
most 2) once some swaps have been made.

We address these problems by identifying a sequence of
swaps which will indeed connect two connected components
in T; with the property that as each swap is made, all black
nodes retain the degree at most 2 restriction. Specifically,
we show there exist paths 7}, 7}, _;, ... 7 with the following
properties:

e The 7's run from white vertices to white vertices pos-
sibly with intervening black vertices.

o Swapping in 7T; and swapping out 7T;+1 in sequence
for each each j from 1 to k — 1 will free m},, which
connects two components, possibly but not necessarily
those that 7, was supposed to connect.

e Each swap maintains the degree 2 restriction on black
nodes.

Our algorithm will need to maintain two versions of the
tree T}, one which remains unchanged and is used for the
scanning process, and one which changes and reflects the
restructuring due to swapping paths in and out; the latter
is denoted by T},. Likewise, we maintain T} and T}, which
is the restructured T}. As we will see, Ty, — Tj, = Ty — T},

Next, we show how to construct 71';-. Suppose ; is added
to M during iteration I of the cyclic scanning process by
being taken from tree Tj,. m; has two parts, a portion ;1
which consists of the edges with one or both endpoints out-
side T}, (there is at least one such edge), and a possibly
empty portion m; 2, which comprises those edges with both
endpoints in T, If 7; is a path in T}, then 7 comprises m; 3
(which lies in T}, — T} = T, — T,;) extended at one or both
ends in T}, if need be, to reach the nearest white vertices.
Otherwise, m; comprises a path whose last edge is a non-tree
edge (z,y) into white vertex y. If the other endpoint of =;
is black, recall that 7; was obtained by traversing a portion
of the path p from a leaf instance of x to its nearest white
ancestor w; 7r;- is simply the concatenation of all of p with
edge (z,y).

Note that if all of 7; lies outside T}, then m; is a prefix of
wj. Further, if an endpoint of m; outside T} is white then
this white vertex will also be an endpoint of .

7 is swapped into T, as follows, where T} is the tree into
which 7; is swapped. If m; has two white endpoints, then =

!
T

simply connects its two white endpoints in T,. If m; has a
black endpoint, = say, then 7r3- may be swapped in in one of

Figure 2: Swapping on tree T;

two ways. Let the instance of x to which 7; connects in Ty
lie on the path of black supervertices between white vertices

a and z. Let 7 connect vertices y and w. If, on rooting

Tg at a, w lies in the subtree rooted at z, then 71';- simply
connects y and w; if not, the neighbours of the two copies
of = are switched as shown in Fig.2. In every case, if mj41,1
lies in Ty — T, = T, — Ty, it will also lie on the cycle formed

g
by the swapping in of ;. Consequently, T, is maintained
as a tree, either by removal of 7}, from T, if mj41 lies in
Ty, or by removal of the cycle edge into b, where b was the
white endpoint of ;41 with the last edge of 741 being a
non-tree edge into b. Note that in the latter case, the cycle

edge into b lies in T, — T}, and hence is also in T, — T}.

To determine whether to apply the restructuring of Fig.2,
one can simply traverse the paths from w and y in Ty, using
LCA queries on Ty to guide one (for T, — T, = T, — T}).
The Fig.2 scenario applies if node z is not encountered in
this traversal. As all traversed nodes are added to S at the
end of the current iteration of the scanning process, this has
cost O(ni) over all iterations.

Next, we consider which two components are connected
by 7. If m had two white endpoints then 7}, connects the
same two components as 7. If m; has a black endpoint =
in some component C' # C, 7}, need not have an endpoint
outside C. If 7, has an endpoint in component C" # C,
then it is used to connect C” and C. If not, a crossover, as
in Fig.2, is performed at x, and this will connect C and C’.

4. THE CACTUS CONSTRUCTION ALGO-
RITHM

Recall the notion of visible and invisible cuts from Section
2.3. Visible (i—1)-cuts are explicitly identified in the process
of constructing 7;. Since we always compute black-minimal
cuts, a visible cut cannot correspond to several consecutive
nodes on a cycle in the cactus tree, for it can be shown that
such a cut would span several components in T;. Therefore,
each visible cut computed will form a node in the cactus
tree. Set containment for these cuts is readily determined,
first within individual components in a single iteration (note,
we find all (¢ — 1)-cuts containing the deficient vertex and
not only the largest one, in each component) and second
between iterations by keeping track of black supervertices
into which (i — 1)-cuts from the previous iteration have been
contracted.

Next, we describe the procedure for finding invisible (i —
1)-cuts. Consider a visible cut D with visible children cuts
Ci,...,Cr. We show how to find invisible cuts which are
contained within D and which contain two or more children
of D.

To this end, we form subtrees of the packing trees by con-
tracting C; ... Cy as well the portions of the packing trees
outside D to single nodes. Each node in the reduced packing
trees has combined degree at most 2¢ — 2, for all white ver-
tices in D are contained in some Cj, 1 < h < k. Thus every
node occurs as a leaf in some tree or has degree two in every
tree. We seek cuts in this reduced collection of packing trees
which do not include vertices outside D. These correspond
exactly to cuts lying between D and its children in the final
cactus tree.

The invisible cuts are found by means of a closure process,
which given a vertex set R, finds the smallest vertex set .S,
if any, such that R C S, S is contiguous in each reduced
packing tree, and no unused edge (which is not present in
the packing trees) is directed into S. Let mgs denote the
number of unused edges with both endpoints in S. This
procedure runs in time O(i|S| + ms), if S exists, and in
time O(¢|D| + mp), otherwise. This closure procedure is
very similar to the processing of black supervertices in the
computation of S(C) and is left to the reader.

We find invisible cuts using the closure process as a black
box as follows. Choose some reduced packing tree 71, say.
Let v be the centroid of Ti (so every subtree of v in T
has size at most 2/3 |T1|). First, we determine if there
is an invisible cut containing v and if so find the minimal
such cut S in time O(i|S| + ms); if yes, then we contract
S to a single vertex in all reduced packing trees and again
seek the minimal invisible cut containing this shrunk ver-
tex, iterating this process until no further cuts containing
the shrunk vertex exist within D. Once all such cuts have
been found we return to tree 77 and find invisible cuts not
containing v by recursing on each of the subtrees obtained
by removing vertex v. Clearly, the iterative step takes time
O(i*np+mp) and the recursion adds a further log n factor.
Summing over all subproblems created by different nodes of
the preliminary cactus tree yields a overall running time of
O((in + m)logn).

To find S, we proceed as follows. If v occurs as a leaf
in reduced tree T}, then R, the initial set for the closure
algorithm is set to {v, w}, where w is the parent of v in T},.
Otherwise, let z and y be v’s neighbours in 7). The closure
process is run twice, in parallel, with initial sets {v, z} and
{v,y}, respectively; whichever process ends first provides
the set S.

The invisible cuts found in this process need to be incor-
porated into the preliminary cactus tree. Further, note that
not all (¢ — 1)-cuts have been detected yet. In particular,
chains of cuts leading to cycles in the cactus tree get paren-
thesised above and not all pairs of cuts on a chain will be
identified as new cuts. Details of these cases are omitted.

5. APPLICATIONS TO THE UNIFORM SUR-
VIVABLE NETWORK DESIGN PROBLEM

Recall that the WGMV algorithm runs on an undirected
graph. We describe how the above machinery can be used
to get an efficient implementation of this algorithm. In
particular, we show how iteration 7 can be implemented.

Previous iterations would have ensured through edge ad-
ditions that every vertex v for which r, < i — 1 now has
con(v) = min{ry,i — 1} and vertices with r, > 4 have
con(v) > i — 1. In the graph Gg restricted to the edges
already added to @ (see Section 2.4) and made directed by
directing edges in both directions, we first construct the cac-
tus tree as in Section 4.

A vertex r, for which r, > ¢ is called a demand ver-
tex. Those cactus tree nodes whose subtrees contain a de-
mand vertex represent violated sets. The minimal cuts cor-
responding to minimal violated sets provide the active sets.
As edges are added to @, the number of (i — 1)-cuts and of
distinct nodes in the cactus tree are reduced. The active sets
are updated accordingly. One detail is that addition of an
edge may not change a violated set but it may nonetheless
expand the corresponding minimal cut by drawing in more
black supervertices. In fact, this growth, which is computed
by a closure procedure, may require working into black su-
pervertices recursively.

The changes to the cactus tree resulting from edge addi-
tion are standard apart from the effect of black supervertices
(see [6] for the effect on a standard cactus tree).

The overall time taken for iteration i turns out to be
O((i*n-+im) logn), giving a total time of O((max, {r,}*n+
max, {TU}Qm) log n+max, {r, }m log® n), which improves to
O((max, {r, }*nlogn + max,{r, }>nlog”?n), using the con-
struction of Nagamochi and Ibaraki mentioned earlier.

Acknowledgements

We thank Hal Gabow for helpful discussions and pointers to
the tree packing theorem [2].

6. REFERENCES

[1] A. Agrawal, P. Klein, R. Ravi. When trees collide:
an approximation algorithm for the generalized
Steiner problem on networks. Proceedings of the
Twenty-third Annual ACM Symposium on Theory
of Computing, pp. 134 144, 1991.

[2] J. Bang-Jensen, A. Frank, B. Jackson. Preserving
and increasing local edge connectivity in mixed
graphs. STAM Journal of Discrete Mathematics, 8,
2, pp. 155-178, 1995.

[3] R. Cole, R. Hariharan, M. Lewenstein, E. Porat. A
Faster Implementation of the Goemans-Williamson
Clustering Algorithm. Proceedings of the 12th
Annual Symposium on Discrete Algorithms, 2001.

[4] E.A. Dinits, A.V. Karzanov, M.V. Lomonosov. On
the structure of a family of minimal weighted cuts
in a graph. Studies in Discrete Optimization, A.A.
Fridman, Ed., pp. 240-306, 1976. (Original article
in Russian, translation available from National
Translation Center, Library of Congress, Cataloging
Distribution Center, Washington D.C, 20541 (NTC
89-20265)).

[6] Y. Dinitz and A. Vainshtein. The Connectivity
Carcass of a Vertex Subset in a Graph and its
Incremental Maintenance. Proceedings of the 26th
Annual Symposium on Theory of Computing, 1994,
pp. 716 725.

[6] Y. Dinitz and J. Westbrook. Maintaining the classes
of 4-edge-connectivity in a graph on-line.
Algorithmica, 20, pp. 242 276, 1998.

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[21]

[22]

23]

J. Edmonds. Submodular functions, matroids, and
certain polyhedra. Proceedings of the Calgary
International Conference on Combinatorial
Structures and their Application, Gordon and
Breach, New York, 1969, pp. 69 87.

J. Edmonds. Edge Disjoint Branchings.
Combinatorial Algorithms, R. Rustin, editor,
Algorithmics Press, NY, 1972, pp. 91 96.

L. Fleischer. Building chain and cactus
representations of all minimum cuts from Hao-Orlin
in the same run time. Journal of Algorithms, 33, 1,
pp- 51-72, pp. 51-72.

A. Frank. Kernel systems of directed graphs. Acta
Sci. Math., 41, 1979, pp. 63-76.

H. Gabow. Applications of a poset representation to
edge connectivity and graph rigidity. Proceedings of
the 32th IEEE Symposium on Foundations of
Computer Science, 1991, pp. 812 821.

H. Gabow. A matroid approach to finding edge
connectivity and packing arborescences.
Proceedings of the 23th ACM Symposium on
Theory of Computing, 1991, pp. 112-122.

H. Gabow, M. Goemans, D. Williamson. An
efficient approximation algorithm for the survivable
network design problem, Proceedings of IPCO, pp.
57 74, 1993. To appear in Math. Programming.

H. Gabow and S. Pettie. The dynamic vertex
minimum problem and its application to
clustering-type approximation algorithms.
Scandinavian Workshop on Algorithm Theory, 2002.
M. Goemans, D. Williamson. A general
approximation technique for constrained forest
problems, STAM Journal on Computing, 24(2), pp-
296 317, 1995.

M. Grotschel, C.L. Monma, M. Stoer. Design of
Survivable Networks, Handbook of Operations
Research and Management Science, 1993.

K. Jain. A Factor 2 Approximation Algorithm for
the Generalized Steiner Network Problem.
Combinatorica, Vol 21-1, 39-60, 2001.

P. Klein. A data structure for bicategories with
applications to speeding up an approximation
algorithm, Information Processing Letters, 52, pp.
303-307, 1994.

L. Lovasz. On two minimax theorems in graph
theory. Journal of Combinatorial Theory, B, 21,
1976, pp. 96-103.

H. Nagamochi, T. Ibaraki. Linear time algorithm
for finding a sparse k-connected spanning subgraph
of a k-connected graph. Algorithmica, 7, 1992, pp.
583 596.

R. Tarjan. A good algorithm for edge-disjoint
branchings. Information Processing Letters, 3, 1975,
pp. 51 53.

P. Tong, E. Lawler. A faster algorithm for finding
edge disjoint branchings. Information Processing
Letters, 17, 2, 1983, pp. 73 76.

D. Williamson, M. Goemans, M. Mihail, V.
Vazirani. A primal-dual approximation algorithm
for generalized steiner network problems,
Combinatorica, 15, pp. 435-454, 1995.

