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A Fast Algorithm for Estimating the Parameters of a
Quadratic FM Signal

Peter O’Shea

Abstract—This paper describes a fast algorithm that can be
used for estimating the parameters of a quadratic frequency
modulated (FM) signal. The proposed algorithm is fast in that it
requires only one-dimensional (1-D) maximizations. The optimal
maximum likelihood method, by contrast, requires a three-di-
mensional (3-D) maximization, which can only be realized with
an exhaustive 3-D grid search. Asymptotic statistical results are
derived for all the estimated parameters. The amplitude estimate
is seen to be optimal, whereas the phase parameters are, in
general, suboptimal. Of the four phase parameter esitmates, two
approach optimality as the signal-to-noise ratio (SNR) tends to
infinity. The other two have mean-square errors that are within
50% of the theoretical lower bounds for high SNR. Simulations are
provided to support the theoretical results. Extensions to multiple
components and higher order FM signals are also discussed.

Index Terms—Cubic phase function, parameter estimation,
polynomial phase signals, statistical signal processing.

I. INTRODUCTION

THE noisy quadratic frequncy modulated (FM) signals con-
sidered in this paper conform to the model

(1)

(2)

where is complex white Gaussian noise of power, , and
are the parameters to be estimated. is

assumed to be odd, and the sampling rate is assumed (without
loss of generality) to be unity.

Quadratic FM signals arise in a number of applications. Two
such applications are described in [14]. The first is passive
intelligent radar surveillance, where one tries to determine
whether a linear FM, quadratic FM, or other type of radar
pulse is being transmitted. The second application is in the
processing of echolocation signals from brown bats. These
signals are multiple component quadratic FM sonar signals,
with the parameters of the FM signals varying according to the
activity of the bat.

Maximum likelihood (ML) estimation of the parameters of
FM signals can be achieved by a simple generalization of ML
estimation of the parameters of tones [1], [16]. This generaliza-
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tion gives rise to the following estimators for the parameters of
a quadratic FM signal:

arg

(3)

(4)

angle (5)

where , , , , and are the ML estimates of , , ,
, and , respectively, and “argmax” denotes “the argument

which maximizes.”
It is clear from (3) that a three-dimensional (3-D) maximiza-

tion is required to implement the ML algorithm. If the 3-D su-
face being maximized were convex, the maximization could be
achieved very simply with gradient based techniques. The sur-
face, however, is not, in general, convex. In particular, when
there is heavy noise, there can be many local maxima. To im-
plement the ML solution, therefore, one would have to do an
exhaustive 3-D grid search to find the vicinity of the global max-
imum. Once this vicinity is found, a gradient-based Newton al-
gorithm can be used for refinement. This type of approach is
described in [1] for a linear FM signal.

A direct 3-D grid search in (3) would require
operations. To avoid this kind of multidimensional search,
Djuric and Kay proposed the use of phase unwrapping and
linear regression. This method is computationally very efficient
and provides statistically optimal parameter estimates above
about 7 dB but only for mono-component signals. The algo-
rithms in [3]–[5], [6], and [12] are another computationally
efficient alternative and can be used to obtain parameter
estimates which are almost asymptotically optimal. These
techniques also have the advantage that they can be used for
processing multiple components [13]; a disadvantage, however,
is that they involve fourth- or higher order nonlinearities,
which is a fact that limits their performance below SNRs of
about 0 dB. This paper presents an algorithm that is based
on the CP function introduced in [9]. This function involves
only second-order nonlinearities and, as a consequence, allows
parameter estimation at lower SNRs.

The proposed algorithm is outlined in Section II. Asymptotic
statistical results are presented in Sections III, and Section IV
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presents simulations that support the theoretical results. Sec-
tion V comments on multicomponent analysis, whereas Sec-
tion VI discusses extensions to parameter estimation for higher
order FM signals. The derivations of the first-order statistical
results are provided in the appendices.

II. PARAMETER ESTIMATION

A. Preliminary Discussion

The CP function was introduced in [9] for the purposes of
estimating the instantaneous frequency rate (IFR) of a signal.
The latter is defined for a signal with phase as

IFR (6)

The discrete-time CP function for an arbitrary signal is
given by

CP (7)

Note that although there are only terms in the above
summation, the incorporation of the term
ensures that all samples in the data are used. The function in
(7) may be thought of as having two elements. The first element
is the preprocessing operation . The second
element is the application of a bank of quadratic phase filters via
the operator. In order to provide insight
into the working of the CP function, the role of both elements
are considered in the ensuing paragraphs.

The effect of the preprocessing element is to convert a
third-order polynomial phase signal into one that, at any given
value of time , has only quadratic and initial phase terms.
Consider, for example, the third-order polynomial phase signal
in (2). When this signal is subjected to the preprocessing
operation , the result is

(8)

The right-hand side of (8) contains four terms, the first being a
deterministic one, and the subsequent ones being random. For
a given value of time , the deterministic term is a constant
amplitude signal, with one phase component that is quadratic
in and another invariant to . The preprocessed signal is
therefore a constant amplitude signal with “initial phase” and
“quadratic phase” components embedded in random noise. The
quadratic phase coefficient of the preprocessed signal is

, which corresponds to the IFR of the signal.
Because the IFR of the signal is equal to the quadratic phase

coefficient of the preprocessed signal, the problem of IFR esti-
mation essentially amounts to estimation of the quadratic phase
coefficient in the preprocessed signal. This estimation is the task
of the second element of the CP function. The estimation is de-
scribed in the next paragraph.

An obvious way to estimate a quadratic phase coefficient
from a time series is to use the nonlinear least squares estimator.
Given the preprocessed signal on the left-hand side of (8), the
nonlinear least squares estimator for the quadratic phase coeffi-
cient (i.e., for the IFR) is

IFR arg (9)

Thus, the IFR at any point in time can be readily obtained as the
argument which maximizes the CP function magnitude.

Maximization of the CP function directly according to
(9) would require operations. This can be reduced to

operations, however, with the use of subband
decomposition techniques. That is, just as one can efficiently
compute discrete Fourier transforms by using subband decompo-
sition in the frequency domain, one can efficiently compute CP
functions by the use of subband decomposition in the frequency
rate ( ) domain. In practice, one could obtain obtain a coarse
estimate of the maximum with a grid search over . A refined
estimate could be obtained with the algorithm in [1]. A parameter
estimation algorithm that uses the CP function is discussed next.

B. Overview of the Algorithm

For a noiseless quadratic FM signal, the IFR is specified by

IFR (10)

From the above equation, it is clear that if the IFR is known at
two different time positions, then and can be determined.
For a noisy quadratic FM signal, it will not be possible to know
the IFR exactly, but it will be possible to estimate it from the
peak of the CP function.

Motivated by the above facts, the first step of the proposed
algorithm determines IFR estimates at two different time pos-
tions by extracting peaks from the CP function. In Step 2, these
two IFR estimates are then used, along with (10), to determine
estimates of and . The choice of the two different time po-
sitions for the IFR estimates affects the variance of the resulting

and estimates. If one of the time positions is chosen to
be , then both the and estimates will be asymp-
totically optimal at high SNR. (See Appendices B and D). For
this reason, the suggested default setting for the time position
of the first IFR estimate is . The suggested time position
for the second IFR estimate is that which gives rise to minimum
asymptotic mean-square error (MSE) for the estimate at high
SNR. This value is found in Appendix B to be .

Once the and parameters have been estimated, the ob-
servation can be appropriately dechirped to leave a near-linear
phase component in additive noise. Conventional linear-phase
techniques can then be used to estimate the remaining parame-
ters [16]. This is what is done in Steps 4 and 5.

C. Algorithm

The specification of the fast algorithm is as follows.

Step 1) Estimate two IFRs and , at times, and ,
respectively

arg (11)

arg (12)
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(Suggested defaults for and are 0 and ,
respectively).

Step 2) Let , and

. Then, compute (i.e., the vector of

and estimates) according to

(13)

Step 3) Estimate by dechirping and finding the Fourier
transform peak:

arg (14)

Step 4) Find and by evaluating

(15)

angle (16)

Note that to avoid ambiguities inherent in the the phase
parameters, it is assumed that ,
and that .

III. STATISTICAL PROPERTIES OF THE PARAMETER ESTIMATES

The results of a first-order statistical analysis of the param-
eter estimates are summarized in Table I. (The analysis itself is
performed in Appendices A–D). The second column in Table I
shows the ratio of the asymptotic MSE to the Cramér-Rao (CR)
bound for each of the parameter estimates. From this column, it
is evident that the MSEs for , , and meet the CR bounds
asymptotically as SNR , whereas and have asymp-
totic MSEs, which are 38.5 and 45.5%, respectively, above the
CR bound as SNR .

It is important to note that once the estimates have been ob-
tained with the algorithm in Section II-C, it is possible to im-
prove the estimates with some post-processing. This post-pro-
cessing could take the form of either a Newton algorithm (see
[11, App. H]) or the strategy described in the last paragraph of
Section VI. Note also that in Steps 2 and 3 of the algorithm, in-
stead of using just two IFR estimates to compute and , one
could use multiple IFR estimates along with regression tech-
niques. This would increase the accuracy of the estimates but is
not recommended. Post-processing techniques are a computa-
tionally simpler option for improving the accuracy.

A. Comparison With Alternative Methods

As stated already, the optimal way to estimate the quadratic
FM parameters is with the ML algorithm. This method yields
statistically optimal estimates but requires a 3-D search and is
computationally prohibitive. If the SNR is above 7 dB and there
is only one component present, the phase unwrapping method
in [7] would be the preferred parameter estimation technique.
This is so because it gives optimal parameter estimates with rel-
atively little computation. At SNRs below 7 dB, the “multilinear
function methods” in [3], [4], [6], and [12], which all involve

TABLE I
THEORETICAL MSE AND CR BOUNDS FOR PARAMETER ESTIMATES

only 1-D searches, are the most obvious rivals to the CP func-
tion technique. Among these methods, the higher order ambi-
guity function (HAF) approach is perhaps the best known [12].
MSEs for the various HAF parameter estimates can be com-
puted from the results in [15]. For cubic phase signals, the HAF
method yields greater asymptotic MSEs than the CP function
method for all phase parameters at all SNRs. At high SNR, the
asymptotic MSEs for the two methods are relatively close (the
HAF-based MSE for the parameter, for example, is about 7%
higher than the CP function based one). At low SNR, however,
the asymptotic MSEs for the HAF method are much greater than
those of the CP function method. This is due to the fact that at
low SNR the HAF-based MSEs vary approximately in propor-
tion to SNR (see [15, Sect. III and IV]), whereas the CP func-
tion based MSEs vary approximately in proportion to SNR .
The superior performance of the CP function at low SNR is
a direct consequence of the fact that it is based on a bi-linear
function, whereas the HAF method is based on a function with
fourth-order nonlinearities.

Barbarossa and co-workers modified the HAF to improve its
performance in the presence of noise and multiple components
[3]. Three innovations were introduced. First, the “lags” in the
HAF were all made distinct. Second, the HAF was symmetrised
with respect to lag. Third, the HAFs were computed for mul-
tiple sets of lags and multiplied together with some appropriate
scaling. As discussed in [3], these innovations introduced sig-
nificant improvements with respect to noise and multiple com-
ponent performance. The poor performance at low SNRs (i.e.,
below 0 dB), however, essentially remained. The HAFs were
also extended in [2] to enable processing of signals at low SNR.
This extension, however, requires a multidimensional search
and is computationally daunting.

The Polynomial Wigner–Ville Distributions (PWVDs) are
another multilinear function method used for analysing poly-
nomial phase signals [6], [10]. In [4], some constraints were
introduced into the PWVDs to improve noise performance.
One of the main constraints imposed was that all the lags used
in the PWVD should be distinct. For the method in [4], only
the performance of the instantaneous frequency (i.e., the
parameter) has been fully analyzed. For this parameter, the
PWVD-based asymptotic MSE is marginally greater than the
CP function based MSE at high SNR; at low SNR, however, the
PWVD MSE is very much greater. (This is due to the fact that
there are sixth-order nonlinearities in the PWVD of a quadratic
FM signal).
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(a) (b)

(c) (d)

(e)

Fig. 1. Estimate MSEs versus SNR for 515 sample signal. (Full lines are the CR bounds, dotted lines are the predicted MSEs, and circles indicate measured
MSEs).

Benidir and Ouldali defined a class of general time-frequency
distributions based on polynomial derivative decompositions

[5]. Their definitions included generalizations of the ambiguity
function and the Wigner distribution. The analysis performed
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in [5] shows that the generalized class of ambiguity functions
has similar theoretical performance to that of the HAFs when
applied to the task of analysing polynomial phase signals. The
performance of the generalized Wigner distributions was found
to be poorer than that of the ambiguity function approach when
applied to the same task.

IV. SIMULATIONS

The parameter estimation algorithm proposed in Section II-C
was applied to a quadratic FM signal in additive, white Gaussian
noise. The parameter values for the signal were chosen to be

, , , , ,
and , and the sampling rate was 1. The SNR for the
signal was varied in 1-dB increments between 3 dB and 12
dB. For each SNR value, 500 simulations were performed, and
the measured MSEs for the parameter estimates are shown in
Fig. 1(a)–(e). In addition to the measured MSEs (circles), the CR
bounds (full lines) and the theoretically predicted MSEs (dotted
lines) are plotted. The measured MSEs are seen to all be very
close to the predicted ones, and they are also in general close to
the CR bounds at high SNR.

The algorithm in Section II-C was also applied to the same
quadratic FM signal that was tested in [12, Sect. IV.A]. (Note,
however, that 257 samples were used in the simulation here, as
opposed to the 256 samples used in [12]. This minor difference
was introduced because of the requirement that the CP func-
tion have an odd number of input samples). The SNR was in-
cremented in 1–dB intervals between 6 and 15 dB, and 250
Monte Carlo simulation runs were performed for each SNR
value. The MSE is plotted in Fig. 2. The measured MSEs
are indicated with circles, whereas the theoretical first-order
asymptotic MSEs are shown as dotted lines. The straight line
in the plot is the CR bound. It is evident from the plot in Fig. 2
that there is a threshold at around 2 dB. A threshold value of
of 2 dB was obtained for the other phase parameter esti-
mates as well, although the plots are not shown in the interests
of brevity. Corresponding plots for the HAF-based parameter
estimates are shown in [12]. The HAF algorithm is seen in [12]
to threshold at a significantly higher value of SNR, i.e., at 6
dB. The difference in threshold values can largely be attributed
to the differing orders of nonlinearity used in the two methods.

V. EXTENSIONS TO MULTI-COMPONENT ANALYSIS

The CP function, like the ambiguity function, is bilinear. It
therefore produces “cross-terms” when multiple components
are present. The cross-terms in the CP function are typically
dispersed across the (frequency rate) domain, analogously
to the way the cross-terms are dispersed across the Doppler
domain of the ambiguity function. Accordingly, the sharply
peaked “auto-terms” can often be detected against the back-
ground of dispersed cross-terms in the CP function, just as they
can in the ambiguity function [13].

VI. EXTENSIONS TO HIGHER ORDER FM SIGNALS

In the same way that the Wigner distribution was extended in
[6] to estimate the instantaneous frequency (IF) of higher order

Fig. 2. â MSE versus SNR for 257 sample signal. (Full line is the CR bound,
dotted line is the predicted first order asymptotic MSE, and circles indicate the
measured MSEs).

phase signals, the CP function can be extended to estimate the
instantaneous frequency rate (IFR) of higher order phase sig-
nals. These “higher order phase (HP) functions” are defined in
the discrete-time domain as

HP (17)

where is the order of the signal phase,
, and indicates

conjugation of iff . The parameters , , , and are
selected to yield unbiased IFR estimates for a phase polynomial
of order in much the same way that similar parameters were
chosen to give unbiased estimates of the IF in [4] and [6]. With
the help of these HP functions the algorithm in Section II-C
can be extended to parameter estimation for FM signals of
arbitrary order. A description of how to achieve this extension
is provided below.

In Step 1, one finds IFR estimates rather than 2.
These IFR estimates can be obtained by finding the peaks
of a HP function at, say, equidistant points between

and . In Step 2, , , and are all
extended to be vectors of length . In Steps 3 and 4, the
dechirped signal is extended to be

.
Finally, a postprocessing step is used to refine the phase pa-

rameter estimates to the point of optimality. This postprocessing
is achieved by lowpass filtering the dechirped signal such that
the cut-off frequency is about 0.05 Hz. This lowpass filtering ef-
fectively removes about 95% of the noise energy while having
minimal effect on the dechirped signal energy (which is strongly
concentrated around 0 Hz). The lowpass filtered signal then has
its phase unwrapped, and linear regression is used to estimate
its polynomial phase parameters. These estimates constitute the
“fine” phase parameter estimate adjustments that are then added
to the “coarse” estimates obtained in Steps 2–4. Because of the
optimality of the phase unwrapping/regression approach, the re-
sulting phase parameter estimates will be asymptotically op-
timal (at least above SNRs of about 3 dB).
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VII. CONCLUSION

This paper has presented a fast algorithm for estimating the
parameters of a noisy quadratic FM signal. The algorithm re-
quires only 1-D maximizations, as opposed to the maximum
likelihood method, which requires 3-D maximizations. A first-
order statistical analysis has been presented, and it has been
shown that the parameter estimates are all asymptotically op-
timal or near optimal at high SNR. Simulation results have been
presented that show a very close adherence to the theoretically
derived ones. Extensions to higher order FM signals have been
discussed.

APPENDIX A
PERTURBATION ANALYSIS PRELIMINARIES

This appendix presents some key formulae that are needed
for the derivations in subsequent appendices. The formulae pre-
sented herein were derived in [14].

Assume that there exists a complex valued function
that depends on a real variable and on an integer . Assume
further that the magnitude of has a global maximum at

and that is perturbed by a small random func-
tion . This perturbation will cause the point of global
maximum to be modified by an amount . A first-order ap-
proximation for is [14]

(18)

where

Re (19)

and

Re (20)

The mean-squared value of is given by

(21)

where signifies “the expected value.”
The forumulae in (18)–(21) are used in Appendices B–D. The

analysis in the subsequent appendices follows the approach used
in [14]. It is assumed throughout the appendices that the esti-
mates , , , , , , and differ from the true param-
eter values by , , , , , , and , respec-
tively.

APPENDIX B
MEAN-SQUARE ERROR OF THE AND ESTIMATES

Recall that , which is the vector of estimates for and ,
is obtained via (13). , which is the covariance matrix for the
parameter estimate vector , is given by [8]

(22)

where is the covariance matrix for the IFR estimate vector
. The element in the th row and th column of is defined

by

(23)

To find , it is first necessary to find . The following text
is devoted to this task.

In order to apply the general formulae in Appendix A, it is
useful to make the following assignment within this appendix:

(24)

The perturbation to provided by addition of noise to
is

(25)

where

The perturbation in the position of the maximum due to the noise
is .

It is now possible to apply the formulae in (18)–(20) to derive
an expression for . A number of intermediate results are given
below.

(26)

(27)

(28)

(29)

(30)

where .
Substituting the above results into (19) and (20) gives

(31)

Im (32)

where

(33)
Substitution of (31) and (32) into (18) gives

Im
(34)

Equation (34) is a general expression for the perturbation of an
IFR estimate at time . Its expected value can be shown to be
zero, i.e., the bias of the IFR estimate is (to first-order approx-
imation) zero. The covariance between two IFR estimates
and at times and , respectively, is

Im Im
(35)
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where

(36)

(37)

, and . Im
Im in (35) can be simplified with some routine mathe-
matics to

Im Im

(38)

where ,
, and if and is 0

otherwise. Substitution of (38) into (35) yields

SNR SNR

(39)

where SNR is defined as . Equation (39) can be used to
determine the elements of the IFR estimate covariance matrix

. The variance of an IFR estimate at time is obtained from
(39) by setting :

SNR
SNR

(40)

Interestingly, if the IFR is estimated at , the variance of this
estimate is SNR SNR, which is equal to the CR
bound at high SNR. Furthermore, if an IFR estimate is obtained
at and scaled by 1/2, an estimate is obtained, with the
variance of this estimate meeting the CR bound at high SNR.

Atthispoint, it isusefultotrytodeterminewhatvaluesof and
should be used in the parameter estimation algorithm in Sec-

tion II-C. Clearly, it is desirable to choose those values that give
rise to estimates of and with low variances. Equations (22),
(23),and(39)canbeusedtoevaluate thevariancesof the and
estimates as a function of , , and SNR. This has been
done numerically using MATLAB. A choice of has
been found to give optimal estimates of for long data records
at high SNR, regardless of the value of . (This is in line with
the discussion in the previous paragraph.) For this reason, the rec-
ommended default for is 0. Given , the value of

, which gives rise to minimum variance estimates of at
high SNR, has been found numerically to be . The recom-
mended default for is therefore .

Note that other criteria could be used for the selection of
and . In particular, one could select them to minimize the av-
eragepercentagedeviationof the and variances fromtheCR
bound at high SNR. If this is done, however, only a 1% reduction
in average variance deviation is obtained compared with the case
where and are as recommended in the previous paragraph.
Moreover, as will be seen in Appendix D, the and values
specified in the previous paragraph also have the advantage that
theyguarantee theoptimalityof aswellas athighSNR.With

and , the MSEs of and become

SNR
SNR

(41)

SNR
SNR

(42)

APPENDIX C
MEAN-SQUARE ERROR OF THE ESTIMATE

Once and have been estimated, the observation
is “dechirped” so that the remaining signal is an almost
linear phase component in additive noise. Then, conventional
linear-phase estimation techniques can be used. An expression
for the dechirped signal is

(43)

(44)

(45)

(46)

One can then make the following approximation:

(47)

This approximation is possible because is , and
is . Consequently, and are both

order (or lower) for all . Using the approximation
in (47), an approximation for is

(48)

For the algorithm in Section II-C, the parameter is esti-
mated as the argument that maximizes the peak of the discrete
Fourier transform of . With this in mind, it is pertinent
to now assign the general functions and in Ap-
pendix A to be (49) and (50), shown at the top of the next page.

, which is the point of global maximum of , is ,
and the perturbation from the maximum is given by .
Then, the quantities (51)–(56), shown at the bottom of the next
page, can be determined. Substituting the preceding results into
(19) and (20) gives

(57)

Im (58)
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(49)

(50)

where

(59)

Now

Im (60)

Im (61)

and is given by (41). Combining (60), (61), (41), and
(58) yields

(62)

SNR
(63)

Finally, substituting (57) and (63) into (21) gives

SNR
SNR

(64)

APPENDIX D
MEAN-SQUARE ERROR OF THE AND ESTIMATES

The derivation in this appendix follows a similar derivation
in [14]. According to (15) and (16), estimation of the and
parameters first requires that the observation be dechirped by

. An expression for the signal that has been
obtained after such a dechirping is

(65)

Now, the expression in (15) for can be re-expressed as
Re (66)

where

(67)

Then, one can write

Re (68)

Using (65) and (67) , can be approximated as (69) and
(70), shown at the bottom of the page. Then

Re Re

(71)
Using (71) and (68) leads to

Re (72)

(51)

(52)

(53)

(54)

(55)

(56)

(69)

(70)
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In addition, since
, then

Re (73)

The mean squared error (MSE) of the amplitude error is then

MSE

(74)

(75)

Now, the expression for the estimate in (16) can be rewritten
as Im . Then, using (70), it is evident that

Im (76)

Im

(77)

(78)

where

Im (79)

From (78), it can be deduced that the mean-square error of
is

(80)

An expression for was derived in Appendix B. The
moments involving are

SNR
(81)

(82)

Substituting these results into (80) gives

SNR
SNR

(83)
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