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ABSTRACT
Frequent episode discovery is a popular framework for min-
ing data available as a long sequence of events. An episode
is essentially a short ordered sequence of event types and
the frequency of an episode is some suitable measure of how
often the episode occurs in the data sequence. Recently,
we proposed a new frequency measure for episodes based
on the notion of non-overlapped occurrences of episodes in
the event sequence, and showed that, such a definition, in
addition to yielding computationally efficient algorithms,
has some important theoretical properties in connecting fre-
quent episode discovery with HMM learning. This paper
presents some new algorithms for frequent episode discov-
ery under this non-overlapped occurrences-based frequency
definition. The algorithms presented here are better (by a
factor of N , where N denotes the size of episodes being dis-
covered) in terms of both time and space complexities when
compared to existing methods for frequent episode discov-
ery. We show through some simulation experiments, that
our algorithms are very efficient. The new algorithms pre-
sented here have arguably the least possible orders of space
and time complexities for the task of frequent episode dis-
covery.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database Management—
Data mining

General Terms
Algorithms
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1. INTRODUCTION
Frequent episode discovery [8] is a popular framework for

temporal data mining. The framework is applicable on data
available as a single long sequence of ordered pairs, (Ei, ti),
which are called as events. In each event, (Ei, ti), Ei is re-
ferred to as an event type (which takes values from a finite
alphabet, E) and ti is the time of occurrence of the event.
The data, which is also referred to as an event sequence (or
an event stream), is ordered according the times of occur-
rence. There are many applications where data appears in
this form, e.g., alarm sequences in telecom networks [8], web
navigation logs [1, 2], time-stamped fault report logs from
manufacturing plants [6, 7], etc.

The framework of frequent episode discovery [8] can be
used to mine temporal patterns from event streams. The
temporal patterns, referred to as episodes, are essentially
small, (partially) ordered collections of event types. For ex-
ample, (A → B → C) denotes a temporal pattern where an
event type A, is followed (some time later) by a B and a C,
in that order. When events of appropriate types appear in
the data sequence, in the same order as in the episode, these
events are said to constitute an occurrence of the episode.
For example, in the data sequence 〈(A, 1), (D, 2), (E, 4),
(B, 5), (D, 6), (C, 10)〉, the episode (A → B → C) occurs
once. An episode is considered interesting if it occurs “of-
ten enough” in the data. Stated informally, the framework
of frequent episodes is concerned with the discovery of all
episodes that occur often in the data. To do this, we need
to define a frequency measure for episodes in the data. The
data mining task is to find all episodes whose frequencies
exceed a user-defined threshold. This paper presents a new
and very efficient algorithm for frequent episode discovery.

The framework of discovering frequent episodes in event
streams was introduced by Mannila, et al. [8]. They define
the frequency of an episode as the number of windows (of
prefixed width) on the time axis in each of which the episode
occurs at least once. They propose a counting algorithm
using finite state automata for obtaining the frequencies of a
set of candidate episodes. The worst case time complexity of
the algorithm is linear in the total time spanned by the event
stream, the size of episodes and the number of candidates.
The space needed by the algorithm is also linear in the size
of episodes and the number of candidates. Some extensions
to this windows-based frequency have also been proposed
[2, 9]. There have also been some theoretical studies into
this framework whereby one can estimate (or bound) the
expected frequency of an episode in a data stream of a given
length if we have a prior Markov or Bernoulli model for the



data generation process. Thus, if sufficient training data is
available, we can first estimate a model for the data source,
and then, on new data from the same source, can assess the
significance of discovered episodes by comparing the actual
frequencies with the expected frequency [3, 4, 10].

Recently, we have proposed [6, 7] a new notion for episode
frequency based on the non-overlapped occurrences of an
episode in the given data sequence. In [6], we have also pre-
sented an efficient counting algorithm (based on finite state
automata) to obtain the frequencies for a set of candidate
episodes. This algorithm has the same order of worst case
time and space complexities as the windows-based counting
algorithm of [8]. However, through some empirical inves-
tigations, it is shown that the non-overlapped occurrences-
based algorithm is much more efficient in terms of the ac-
tual space and time needed, and that, on some typical data
sets, it runs several times faster than the windows-based al-
gorithm. It is also seen that our new frequency definition
results in qualitatively similar kinds of frequent episodes be-
ing discovered (as in the case of windows-based frequency)
and all the prominent correlations in the data come out
among the top few frequent episodes under both frequency
definitions [6]. Another important advantage of the non-
overlapped occurrences count is that it facilitates a formal
connection between discovery of frequent episodes and learn-
ing of generative models for the data sequence in terms of
some specialized family of Hidden Markov Models [6]. This
formal connection allows us to assess statistical significance
of episodes discovered without needing any prior model es-
timation step (and thus obviating the need for any separate
training data). Our formal connection also allows one to fix
a frequency threshold automatically and in empirical stud-
ies, this automatic threshold is seen to be quite effective [6].
All this makes the non-overlapped occurrences count an at-
tractive method for applications involving frequent episode
discovery from event streams.

In this paper, we present a new algorithm for frequent
episode discovery under the frequency count based on non-
overlapped occurrences. The algorithm is significantly supe-
rior to that proposed in [6] both in terms of time and space
complexities. The space complexity is same as number of
candidates input to the algorithm and the time complexity
is linear in the number candidates and the total number of
events in the data stream. Unlike the existing algorithms for
frequent episode discovery [6, 8], the time and space com-
plexities do not depend even on the size of episodes being
discovered. This is because our algorithm needs only one
automaton per episode, while the other algorithms need N
automata per episode, where N is the size of (or number of
nodes in) the episodes being counted. We believe that our
algorithm attains the minimum possible order of worst case
time and space complexities for the frequent episode discov-
ery process. Thus, our new algorithm is a very competitive
alternative to all existing algorithms for frequent episode
discovery.

The paper is organized as follows. Sec. 2 presents a brief
overview of the frequent episode discovery framework. Sec. 3
presents the new frequency counting algorithms. We demon-
strate the effectiveness and efficiency of our new frequency
counting algorithms through some simulations in Sec. 4. In
Sec. 5 we present the conclusions.

2. OVERVIEW OF FREQUENT EPISODES
MINING FRAMEWORK

Formally, an episode, α, is defined by a triple, (Vα,≤α,
gα), where Vα is a collection of nodes, ≤α is a partial or-
der on Vα and gα : Vα → E is a map that associates each
node in α with an event type from a finite alphabet, E .
When ≤α represents a total order among the nodes of α,
the episode is referred to as a serial episode, and when ≤α

is trivial (or empty), the episode is referred to as a paral-
lel episode. Given an event sequence, 〈(E1, t1), . . . , (En, tn),
an occurrence of episode α = (Vα,≤α, gα) in this event se-
quence, is an injective map, h : Vα → {1, . . . , n}, such that
gα(v) = Eh(v) for all v ∈ Vα, and for all v, w ∈ Vα with
v ≤ w we have th(v) ≤ th(w). Finally, an episode β is said to
be a subepisode of α if all the event types in β appear in α
as well, and if the partial order among the event types of β
is the same as that for the corresponding event types in α.

As mentioned earlier, the episode’s frequency is some mea-
sure of how often it occurs in the data. There are many ways
to define episode frequency [2, 6, 8]. In the original frame-
work of [8], the frequency of an episode was defined as the
number of fixed-width sliding windows over the time axis
that each contain an occurrence of the episode. In this pa-
per, we consider the non-overlapped occurrences-based fre-
quency definition proposed in [6]. Two occurrences of an
episode are said to be non-overlapped if no event correspond-
ing to one occurrence appears in between events correspond-
ing to the other. Definition 1 given below, formalizes this
notion of non-overlapped occurrences, using the notation
that was just introduced for episodes and their occurrences
in an event stream.

Definition 1. Consider an N-node episode α = (Vα, <α,
gα) where Vα = {v1, . . . , vN}. Two occurrences, h1 and h2,
of α are said to be non-overlapped if, either (i) h2(v1) >
h1(vj) ∀vj ∈ Vα or (ii) h1(v1) > h2(vj) ∀vj ∈ Vα. A collec-
tion of occurrences of α is said to be non-overlapped if every
pair of occurrences in it is non-overlapped. The correspond-
ing frequency for episode α is defined as the cardinality
of the largest set of non-overlapped occurrences of α in the
given event sequence.

The standard approach to frequent episodes discovery is
to use an Apriori-style level-wise procedure. Starting with
frequent episodes of size 1, frequent episodes of progressively
larger sizes are obtained (till there are no more frequent
episodes at some level). Each level involves two steps – a
candidate generation step and a frequency counting step.
Candidate generation in the (N + 1)th level, takes frequent
episodes of size N and combines them in all possible ways
to obtain a set of potential frequent episodes (referred to
as candidate episodes) of size (N + 1). Candidate gener-
ation exploits the anti-monotonicity of episode frequency,
i.e. frequency of an episode is bounded above by the fre-
quencies of its subepisodes. Hence, whenever an episode
has frequency greater than the user-defined threshold, all
its subepisodes would have also met this frequency thresh-
old criterion at previous levels in the algorithm. The fre-
quency counting step obtains the frequencies for the candi-
date episodes (of a given size) using one pass over the data.
This data pass is the main computationally intensive step in
frequent episodes discovery. In the next section, we present
some very efficient frequency counting algorithms under the



non-overlapped occurrences-based frequency. Before that,
we first illustrate how the choice of definition for episode
frequency has a direct bearing on efficiency of the frequency
counting step of the frequent episode discovery process.

Consider the following example event sequence:

〈(A, 1), (A, 2), (B, 3), (A, 7), (C, 8),

(B, 9), (B, 10), (D, 11), (C, 12), (C, 13)〉. (1)

The occurrence of a serial episode may be recognized using
a finite state automaton that accepts the episode and rejects
all other input. For example, for the episode (A → B → C),
we would have an automaton that transits to state 1 on
seeing an event of type A and then waits for an event of type
B to transit to its next state and so on until it transits to
its final state, when an occurrence of the episode is regarded
as complete. Intuitively, the total number of occurrences of
an episode seems to be a natural choice for frequency of an
episode. However, counting all occurrences turns out to be
very inefficient. This is because different instances of the
automaton of an episode are needed to keep track of all its
state transition possibilities. For example, there are a total
of eighteen occurrences of the episode (A → B → C) in the
event sequence (1). We list four of them here:

1. {(A, 1), (B, 3), (C, 8)}

2. {(A, 1), (B, 3), (C, 12)}

3. {(A, 1), (B, 3), (C, 13)}

4. {(A, 1), (B, 9), (C, 12)}

On seeing the event (A, 1) in the event sequence (1), we can
transit an automaton of this episode into state 1. However,
at the event (B, 3), we cannot simply let this automaton
transit to state 2. That way, we would miss an occurrence
which uses the event (A, 1) but some other occurrence of
the event type B later in the sequence. Hence, at the event
(B, 3), we need to keep one instance of this automaton in
state 1 and transit another new instance of the automaton
for this episode into state 2. As is easy to see, we may need
spawning of arbitrary number of new instances of automata
if no occurrence is to be missed for an episode. Moreover,
counting all occurrences renders candidate generation inef-
ficient as well. This is because, when using total number of
occurrences as the frequency definition, subepisodes may be
less frequent than corresponding episodes. For example, in
(1), while there are eighteen occurrences of (A → B → C),
there are only eight occurrences of the subepisode (A → B).
So, under such a frequency definition, level-wise procedures
cannot be used for candidate generation. Hence, the ques-
tion now is what kind of restrictions on the class of occur-
rences will lead to an efficient counting procedure?

Recall that each occurrence, h, of episode α, is associated
with a set of events {(Eh(vi), th(vi)) : vi ∈ Vα} in the data
stream. Two occurrences, h1 and h2, of an episode α are
said to be distinct if they do not share any events in the
event sequence, i.e., if h1(vi) 6= h2(vj) ∀vi, vj ∈ Vα. In the
event sequence (1), for example, there can be at most three
distinct occurrences of (A → B → C):

1. {(A, 1), (B, 3), (C, 8)}

2. {(A, 2), (B, 9), (C, 12)}

3. {(A, 7), (B, 10), (C, 13)}

It may appear that if we restrict the count to only dis-
tinct occurrences, we may get efficient counting procedures.
However, while subepisodes now will certainly be at least as
frequent as the episodes, the problem of needing unbounded
number of automata remains. This can be seen from the
following example. Consider the sequence

〈(A, 1), (B, 2), (A, 3), (B, 4), (A, 7), (B, 8), . . .〉. (2)

In such a case, we may need (in principle) any number of
instances of the (A → B → C) automaton, all waiting in
state 2, since there may be any number of events of type
C occurring later in the event sequence. Hence there is a
need for further restricting the kinds of occurrences to count
when defining the frequency.

Definition 1 provides an elegant alternative for defining
frequency of episodes based on non-overlapped occurrences.
Two occurrences of an episode in an event sequence are
non-overlapped if no event corresponding to one occurrence
appears in between events corresponding to the other oc-
currence. In (1) there can be at most one non-overlapped
occurrence of (A → B → C), e.g., {(A, 2), (B, 3), (C, 8)}
(since every other occurrence of (A → B → C) in (1) over-
laps with this one). Similarly, in (2) we need to keep track
of only one of the pairs of event types A and B, since any
other occurrence of (A → B → C) will have to overlap with
this occurrence. In general, there can be many sets of non-
overlapped occurrences of an episode in an event sequence.
For example, in the event sequence (1), {(A, 2), (B, 3)} and
{(A, 7), (B, 9)} are two non-overlapped occurrences of the
2-node episode, (A → B). However, if we consider the oc-
currence {(A, 2), (B, 9)}, then there is no other occurrence
that is non-overlapped with this one in the sequence (1).
This means that the number of non-overlapped occurrences,
by itself, is not well-defined. For this reason, we define the
frequency in Definition 1 as the cardinality of the largest set
of non-overlapped occurrences.

In terms of automata, to count non-overlapped occur-
rences of an episode, only one automaton is needed. Once
an automaton for the episode is initialized, no new instance
of the automaton needs to be started till the one that was
initialized reaches its final state. In Sec. 3.1, we present the
associated frequency counting algorithm and show that, us-
ing just one automaton per episode, it is possible to count
the maximal (or largest) set of non-overlapped occurrences
for a serial episode. Finally we note that although the ex-
amples discussed above are all serial episodes, Definition 1
prescribes a frequency measure for episodes with all kinds
of partial orders (including the trivial partial order case of
parallel episodes). In Sec. 3.2, we present an efficient algo-
rithm for obtaining the non-overlapped occurrences-based
frequency for parallel episodes and indicate later in a dis-
cussion how these may be extended to the case of counting
episodes with general partial orders as well.

3. FAST COUNTING ALGORITHMS
This section presents some new frequency counting algo-

rithms for frequent episode discovery. In Sec. 3.1, we first
present an algorithm for counting non-overlapped occur-
rences of serial episodes. Then in Sec. 3.2, we show how
the algorithm can be adapted to obtain the frequencies of
parallel episodes.



3.1 Frequency counting algorithm for serial
episodes

Counting serial episodes requires the use of finite state
automata. Since we must count the frequencies of several
episodes in one pass through the data, there are many au-
tomata that need to be simultaneously tracked. In order
to access these automata efficiently they are indexed using
a waits(·) list. The automata that are currently waiting
for event type A can be accessed through waits(A). Each
element in the waits(·) list is an ordered pair like (α, j), in-
dicating which episode the automaton represents and which
state it is currently waiting to transit into. More specifi-
cally, (α, j) ∈ waits(A) implies that an automaton for α is
waiting for an event of type A to appear in the data to com-
plete its transition to state j. This idea of efficiently index-
ing automata through a waits(·) list was introduced in the
windows-based frequency counting algorithm [8]. The list
was used to manage up to N automata per N-node episode.
The algorithm we present here requires just one automaton
per episode, and is also time-wise more efficient.

The overall structure of the algorithm is as follows. The
event sequence is scanned in time order. Given the cur-
rent event, say (Ei, ti), we consider all automata waiting for
an event with event type Ei, i.e., the automata in the list
waits(Ei). Automata transitions are effected and fresh au-
tomata for an episode are initialized by adding and removing
elements from appropriate waits(·) lists. In this respect, a
temporary storage called bag is used, if it is found necessary
to add elements to the waits(·) list over which we are cur-
rently looping. We present all algorithms as pseudo code.
In the algorithms, N denotes the size of the episodes whose
frequencies are being counted, α[j] is the event type corre-
sponding to node j of episode α and α.freq is its current
frequency count.

The strategy for counting non-overlapped occurrences is
very simple. An automaton for an episode, say α, is ini-
tialized at the earliest event in the data sequence that cor-
responds to the first node of α. As we go down the data
sequence, this automaton makes earliest possible transitions
into each successive state. Once it reaches its final state, an
occurrence of the episode is recognized and its frequency is
increased by one. A fresh automaton is initialized for this
episode when an event corresponding to its first node ap-
pears again in the data and the process of recognizing an
occurrence is repeated. This way, for each episode, a set of
non-overlapped occurrences is counted. Later in this section,
we prove that this strategy yields the maximal set of non-
overlapped occurrences. Algorithm 1 gives the pseudo code
for counting non-overlapped occurrences of serial episodes.
In the description below we refer to the line numbers in the
pseudo code.

Algorithm 1 requires the following inputs: the set of can-
didate episodes, the event stream and a frequency thresh-
old. (Note that frequency threshold is given as a fraction
of data length). The output of the algorithm is the set of
frequent episodes (out of the set of candidates input to the
algorithm). The waits(·) lists are initialized by adding the
pair (α, 1) to waits(α[1]), for each episode α ∈ C, (lines 1-4,
Algorithm 1). The frequencies are initialized to zero (line
5, Algorithm 1) and the temporary storage, bag, is initially
empty (line 6, Algorithm 1). Basically, one automaton for
each episode is set waiting for the event type corresponding
to its first node. The main loop in the algorithm (lines 7-20,

Algorithm 1 Non-overlapped count for serial episodes

Require: Set C of candidate N-node serial episodes, event
stream s = 〈(E1, t1), . . ., (En, tn))〉, frequency threshold
λmin ∈ [0, 1]

Ensure: The set F of frequent serial episodes in C
1: for all event types A do
2: Initialize waits(A) = φ
3: for all α ∈ C do
4: Add (α, 1) to waits(α[1])
5: Initialize α.freq = 0
6: Initialize bag = φ
7: for i = 1 to n do
8: / ∗ n is length of data stream ∗/
9: for all (α, j) ∈ waits(Ei) do

10: Remove (α, j) from waits(Ei)
11: Set j′ = j + 1
12: if j′ = (N + 1) then
13: Set j′ = 1
14: if α[j′] = Ei then
15: Add (α, j′) to bag
16: else
17: Add (α, j′) to waits(α[j′])
18: if j = N then
19: Update α.freq = α.freq + 1
20: Empty bag into waits(Ei)
21: Output F = {α ∈ C such that α.freq ≥ nλmin}

Algorithm 1) looks at each event in the input sequence and
makes necessary changes to the automata in waits(·). When
processing the ith event in the data stream, namely, (Ei, ti),
the automata in waits(Ei) are considered. Every automaton
(α, j) waiting for Ei is transited to its next state. This in-
volves removing (α, j) from waits(Ei) (line 10, Algorithm 1)
and adding, either (α, j + 1) or (α, 1) to the appropriate
waits(·) list (lines 11-17, Algorithm 1). More specifically, if
the automaton has not yet reached its final state, it waits
next for α[j + 1] i.e., (α, j + 1) is added to waits(α[j + 1]).
If instead, an automaton has reached its final state, then a
new automaton for the episode is initialized by adding (α, 1)
to waits(α[1]). Note that since this process of adding to the
waits(·) list is performed inside the loop over all elements
in waits(Ei) (i.e., loop starting line 9, Algorithm 1), it is in-
appropriate to add to this list from within the loop. Hence,
as was mentioned earlier, we use a temporary storage called
bag. Whenever we want to add an element to waits(Ei) it
is stored first in bag which is later emptied into waits(Ei)
after exiting from the loop (line 20, Algorithm 1). Finally,
the episode frequency is incremented every time its automa-
ton reaches the final state (lines 18-19, Algorithm 1). Since
a new automaton for the episode is initialized only after
an earlier one reached its final state, the algorithm counts
non-overlapped occurrences of episodes.

3.1.1 Space and time complexity
At any stage in the algorithm, there is only one active

automaton per episode which means that there are |C| au-
tomata being tracked simultaneously. The maximum possi-
ble number of elements in bag is also |C|. Thus, the space



complexity of Algorithm 1 is O(|C|). The initialization time
is O(|C| + |E|), where |E| denotes the size of the alphabet.
The time required for the actual data pass is linear in the
length, n, of the data sequence. Thus, to count frequen-
cies for all episodes in the set, C, the time complexity of
Algorithm 1 is O(n|C|).

The space required by the serial episode counting algo-
rithms of both [8] and [6] are O(N |C|), where C is a collec-
tion of N-node candidate episodes. The time complexity of
the algorithm in [8] is O(∆TN |C|), where ∆T denotes the
total number of time ticks in the data sequence, while that
for the algorithm in [6] is O(nN |C|). Thus, both these algo-
rithm suffer an increase in time complexity due to the size,
N , of episodes being discovered. In addition to this, some-
times, when the time span of the event sequence far exceeds
the number of events in it, the windows-based algorithm
would take an even longer time (since ∆T ≫ n).

Thus, Algorithm 1, both time-wise and space-wise, is an
extremely efficient procedure for obtaining frequencies of a
set of serial episodes. In fact, it appears difficult to do better
than this algorithm in terms of order complexities. This is
because, at the least, we need to store and access all the
candidate episodes in C, and so space required cannot be
less than O(|C|). Similarly, at least one pass through the
data is required for obtaining the episode frequencies, and
in the worst case, at each event in the given event sequence,
every candidate might require an update. Thus, it looks like
O(n|C|) is the best possible worst-case time complexity that
can be achieved for counting frequencies of |C| candidates in
a data sequence of n events.

3.1.2 Proof of correctness of Algorithm 1
Algorithm 1 uses only one automaton per episode and

hence we wait for the first event type again only after one
complete occurrence of the episode. Thus, it is clear that the
occurrences of any episode counted by Algorithm 1 would be
non-overlapped. Hence, to establish correctness of the algo-
rithm, we have to only show that it counts maximum possi-
ble number of non-overlapped occurrences which is what we
do in this subsection. Fix an N-node serial episode α. Let H
be the (finite) set of all occurrences of α in the given event se-
quence. (We emphasize that H contains all occurrences of α,
including overlapping ones as well as non-distinct ones that
share events). Based on the definition of episode occurrence,
it is possible to associate with each occurrence, h ∈ H, a
unique N-tuple of integers, (h(v1), . . . , h(vN )). (Essentially,
the events {(Eh(v1), th(v1)), . . . , (Eh(vN ), th(vN ))} constitute
the occurrence.) The lexicographic ordering among these
N-tuples, imposes a total order, <⋆, on the set H. (The
notation h ≤⋆ g will be used to denote that either h = g
or h <⋆ g.) This orders the elements of H such that when
h ≤⋆ g, the occurrence times of events corresponding to
these two occurrences must satisfy the following conditions.
The first event corresponding to h never occurs later than
that for g, i.e., h(v1) ≤ g(v1). Now, if h(v1) = g(v1), then
h(v2) ≤ g(v2). (If instead, h(v1) < g(v1), then the remain-
ing occurrence times for h and g need not satisfy any further
constraints.) Again, if h(v1) = g(v1) and h(v2) = g(v2),
then h(v3) ≤ g(v3), and so on.

Let f be the frequency count based on non-overlapped oc-
currences and let Hno = {h1, . . . , hf} denote the sequence
of non-overlapped occurrences of α that is counted by Algo-
rithm 1, i.e., h1 is the first occurrence of α that Algorithm 1

counts, h2 is the second, and so on. Clearly, Hno ⊂ H
and we have, h1 <⋆ · · · <⋆ hf . Algorithm 1 employs one
automaton for α which makes earliest possible transitions
into each of its states and a fresh automaton for α is initi-
ated only after the current automaton reaches its final state.
Thus, h1, which is the first occurrence of α counted by Al-
gorithm 1, is in fact the first occurrence possible for α in the
data stream. Then, h2, the second occurrence of α counted
by Algorithm 1, is basically the earliest possible occurrence
of α in the data stream after h1 is completed. This gives us
two important properties of the set, Hno, that Algorithm 1
counts;

A1-1 The occurrence h1 ∈ Hno is such that, h1 <⋆ h for
all h ∈ H, h 6= h1. In other words, h1 is the earliest
occurrence of α in the data steam and hence is the first
element of H.

A1-2 For each i = 1, . . . , (f−1), the occurrence hi ∈ Hno is
overlapped with any other occurrence, h ∈ H, if hi <⋆

h <⋆ hi+1. That is, hi+1 is the earliest occurrence
after hi which is non-overlapped with hi. (Recall that
f is the number of non-overlapped occurrences of α
counted by Algorithm 1.)

Given an occurrence h ∈ H that appears after some hi ∈
Hno, we now ask the question, what can be the earliest
occurrence after h that is non-overlapped with h? Since
hi <⋆ h, and since hi makes earliest possible transitions
to its states, hi(vN ) ≤ h(vN ). Now consider a later oc-
currence, h̄, that is non-overlapped with h. We must have
h̄(v1) > h(vN ), and hence, h̄(v1) > hi(vN ). Thus, h̄ is non-
overlapped with hi. But the first occurrence after hi which is
non-overlapped with hi is hi+1, because Algorithm 1 effects
the earliest possible transitions for the automaton. Thus,
since h̄ is also non-overlapped with hi and is later than hi,
we must have hi+1 ≤∗ h̄. We state this fact as a third
property of the set, Hno, below:

A1-3 Consider an occurrence, h ∈ H, with hi ≤⋆ h for
some i = 1, . . . , f . If i < f , and if h̄ ∈ H is any
occurrence non-overlapped with h such that h <⋆ h̄,
then hi+1 ≤⋆ h̄. Instead if i = f , then there is no
occurrence h̄ ∈ H such that h <⋆ h̄ and h is non-
overlapped with h̄.

We use the above properties to establish maximality of
Hno (and consequently the correctness of Algorithm 1). As-
sume that there is some other set of f ′ non-overlapped occur-
rences of α in the event sequence with f ′ > f . Let us denote
this set by H′ = {h′

1, . . . , h
′

f ′} and we have h′

1 <⋆ · · · <⋆ h′

f ′ .

From A1-1, we have h1 ≤⋆ h′

1. If f > 1, from A1-2 we
know that h2 is the earliest occurrence after h1 that is non-
overlapped with h1. Thus, since h1 ≤⋆ h′

1, and since h′

2

is non-overlapped with h′

1, using A1-3 we have h2 ≤⋆ h′

2.
This way, by repeated application of A1-2 and A1-3, we
have hi ≤⋆ h′

i for i = 1, . . . , f . Now, since hf ≤⋆ h′

f , there
can be no occurrence after h′

f that is non-overlapped with
h′

f (again, using A1-3), implying that, if f ′ > f , then h′

f+1

must overlap with h′

f , which contradicts our earlier assump-
tion about H′ being a set of f ′ non-overlapped occurrences
of α. Thus, f ′ ≤ f and so f is indeed the maximum number
of non-overlapped occurrences possible in the data stream
for episode α. This proves that, Hno, the set of occurrences
counted by Algorithm 1, is the largest set of non-overlapped
occurrences of α in the given event sequence.



3.2 Frequency counting algorithm for paral-
lel episodes

The non-overlapped frequency definition (i.e.Definition 1)
is applicable to episodes with all kinds of partial orders.
In this section we present an algorithm for counting non-
overlapped occurrences of parallel episodes.

An occurrence of a parallel episode simply requires event
types corresponding all its nodes to appear in the event se-
quence, with no restriction on the order in which they ap-
pear. The difference when recognizing occurrences of paral-
lel episodes (as compared to recognizing occurrences of serial
episodes) is that there is no need to worry about the order
in which events occur. Instead, we are interested in asking
if each event type in the episode has occurred as many times
as prescribed by the episode. For example, each occurrence
of the 6-node parallel episode α = (AABCCC) is associated
with a set of six events in the data sequence in which, two
are of event type A, one is of event type B and the remaining
three are of event type C (and it does not matter in which
time order they appear).

Algorithm 2, presented below, obtains the non-overlapped
occurrences-based frequencies for a set of candidate parallel
episodes. As usual, we present the algorithm as a pseudo
code and refer to it through line numbers in our description.
Algorithm 2 takes as inputs, the set of candidates, the data
stream and the frequency threshold, and outputs the set
of frequent episodes. The main data structure here is once
again a waits(·) list - but it works a little differently from the
one used earlier in Sec. 3.1. Each entry in the list waits(A),
is an ordered pair like, (α, j), which now indicates that there
is a partial occurrence of α which still needs j events of type
A before it can become a complete occurrence. The initial-
ization process (lines 1-8, Algorithm 2) involves adding the
relevant ordered pairs for each episode α into appropriate
waits(·) lists. For example, episode α = (AABCCC) will
initially figure in three lists, namely, waits(A), waits(B)
and waits(C), and they will have entries (α, 2), (α, 1) and
(α, 3) respectively. There are two quantities associated with
each episode, α, namely, α.freq, which stores the frequency
of α, and α.counter, which indicates the number of events in
the sequence that constitute the current partial occurrence
of α.

As we go down the event sequence, for each event (Ei, ti),
the partial occurrences waiting for an Ei are considered for
update (line 11, Algorithm 2). If, (α, j) ∈ waits(Ei), then
having seen an Ei now, (α, j) is replaced by (α, j − 1) in
waits(Ei) if sufficient number of events of type Ei for α
are not yet accounted for in the current partial occurrence
(lines 13-15, Algorithm 2). Note that this needs to be done
through the temporary storage bag since we cannot make
changes to waits(Ei) from within the loop. Also, α.counter
is incremented (line 12, Algorithm 2), indicating that the
partial occurrence for α has progressed by one more node.
When α.counter = |α| = N , it means that the N events
necessary for completing an occurrence have appeared in
the event sequence. We increment the frequency by one
and start waiting for a fresh occurrence of α by once again
adding appropriate elements to the waits(·) lists (lines 16-
23, Algorithm 2).

3.2.1 Space and time complexity
Each waits(·) list can have at most |C| entries and so

the space needed by Algorithm 2 is O(N |C|) (because there

Algorithm 2 Non-overlapped count for parallel episodes

Require: Set C of candidate N-node parallel episodes,
event stream s = 〈(E1, t1), . . ., (En, tn))〉, frequency
threshold λmin ∈ [0, 1]

Ensure: The set F of frequent parallel episodes in C
1: for all event types A do
2: Initialize waits(A) = φ
3: for all α ∈ C do
4: for each event type A in α do
5: Set a = Number of events of type A in α
6: Add (α, a) to waits(A)
7: Initialize α.freq = 0
8: Initialize α.counter = 0
9: Initialize bag = φ

10: for i = 1 to n do
11: for all (α, j) ∈ waits(Ei) do
12: Update α.counter = α.counter + 1
13: Remove (α, j) from waits(Ei)
14: if j > 1 then
15: Add (α, j − 1) to bag
16: if α.counter = N then
17: Update α.freq = α.freq + 1
18: for each event type A in α do
19: Set a = Number of events of type A in α
20: if A = Ei then
21: Add (α, a) to bag
22: else
23: Add (α, a) to waits(A)
24: Reset α.counter = 0
25: Empty bag into waits(Ei)
26: Output F = {α ∈ C such that α.freq ≥ nλmin}

can be at most N distinct event types in an episode of size
N). To analyze the time complexity, note that, some ex-
tra work needs to be done during initialization (as com-
pared to the serial episode algorithms) to obtain the num-
ber of times each event type in an episode repeats (lines
4-5, Algorithm 2). This means the initialization time com-
plexity is O(|E| + N |C|). The main loop, as usual, is over
n events in the data, and any of the waits(·) loops, can
at most be over |C| partial occurrences. Re-initialization of
appropriate waits(·) lists whenever an occurrence is com-
plete (lines 16-23, Algorithm 2) takes O(N) time. This re-
initialization needs to be done at most n

N
times for each

episode. Hence, the total worst case time complexity of Al-
gorithm 2 is O(n|C|). The space complexity of the windows-
based algorithm for N-node parallel episodes is O(N |C|) and
the time complexity is O(∆T |C|), where ∆T denotes the
number of time ticks in the data sequence. Thus, except for
the fact that, sometimes, the time, ∆T , spanned by the data
sequence can be much larger than the number, n, of events
in it, the time and space complexities of the non-overlapped
occurrences-based algorithm and the windows-based algo-
rithm are identical.

3.2.2 Correctness of Algorithm 2

Earlier, in Sec. 3.1, we proved that Algorithm 1 always
yields the maximum possible number of non-overlapped oc-
currences in the data. The basic idea was that, by mak-
ing earliest possible transitions in the automata, we ensure
that we track the largest number of non-overlapped occur-
rences available in the data, for each (serial) episode being



counted. As we have seen from Algorithm 2, there is no need
for any automata when tracking non-overlapped occurrences
of parallel episodes. However, Algorithm 2 is similar to Al-
gorithm 1 in respect of how they both track occurrences in
the data by recognizing the earliest possible events for each
node of an episode. This strategy ensures that we will count
the maximum number of parallel episodes. Since the argu-
ments needed to show this formally follow the same lines as
our proof for the case of serial episodes in Sec. 3.1, for the
sake of brevity, we do not explicitly prove the correctness of
Algorithm 2 here.

3.3 Discussion
In this section, we have presented two new algorithms –

one that obtains the non-overlapped occurrences-based fre-
quencies for a set of serial episodes, and the other that ob-
tains the same for a set of parallel episodes. Algorithm 1,
which is the counting algorithm for serial episodes, requires
just one automaton per candidate episode. This makes it
an extremely efficient algorithm, both in terms of time and
space, compared to all currently known algorithms [8, 6]
for frequent serial episode discovery. We have also provided
a proof of correctness for the algorithm to show that Al-
gorithm 1 indeed obtains the frequency of serial episodes
as prescribed by Definition 1. The algorithm for parallel
episodes (i.e. Algorithm 2) is also very efficient. We note
that this is the first time an algorithm has been reported for
obtaining the non-overlapped occurrences-based frequencies
for parallel episodes. However, its space and time complex-
ities are same as that for the windows-based counting algo-
rithm for parallel episodes [8].

In general, Definition 1, is applicable to episodes with all
kinds of partial orders. Any general partial order can be rep-
resented as a combination of serial and parallel episodes. For
example, consider an episode having three nodes with event
types, A, B and C. Let the partial order be such that both
A and B must occur before C, but there is no restriction
on the order among A and B. We can denote this episode
as (AB) → C. Such an episode is like a serial episode with
two nodes, where the first node corresponds to a parallel
episode, (AB), and the second node is C. Occurrences of
such partial orders can be recognized using automata-type
structures, where parallel episodes recognition needs to be
used as a subroutine. Viewed like this, it is possible, in
principle, to design algorithms for counting non-overlapped
occurrences of episodes with general partial orders. How-
ever, more work is needed to transform this strategy into an
efficient counting algorithm. Moreover, there is also a need
to design efficient candidate generation strategies which can
exploit the fact that the number of non-overlapped occur-
rences of an episode is never greater than that of any of
its subepisodes. Therefore, developing algorithms for dis-
covering frequent episodes with general partial orders under
the non-overlapped occurrences-based frequency, would be
a useful extension of the work presented here.

4. SIMULATIONS
We present results obtained on some synthetic data gen-

erated by embedding specific temporal patterns in varying
levels of noise. The main objective of the experiments pre-
sented here is to empirically demonstrate the efficiency ad-
vantage of our new algorithm. The utility and effectiveness
of the non-overlapped occurrences-based frequency in real

applications have already been discussed in our earlier work
[6, 7]. We had also shown through simulation experiments
there, that our earlier algorithm for counting non-overlapped
occurrences is itself faster than the windows-based algo-
rithm of [8]. Here, we compare Algorithm 1 with our earlier
algorithm for counting non-overlapped occurrences (which
was reported in [6] and to which we refer to in this sec-
tion as Algorithm 0), as well as, with the windows-based
frequency counting algorithm of [8] (which is referred to as
Algorithm W in this section). We note that the frequency
counts obtained for serial episodes using Algorithm 1 of this
paper are identical to those obtained using Algorithm 0, and
hence, exactly the same set of frequent episodes would be
output by both algorithms. However, it is not possible to
directly relate the frequencies obtained using the windows-
based algorithm (Algorithm W) with those obtained under
the non-overlapped occurrences-based counting algorithms.
In our simulation experiments, we found that the sets of
frequent episodes obtained under both frequency definitions
are qualitatively very similar. Hence, the goal of this sec-
tion is mainly to demonstrate that the gains (by a factor of
N , where N is the size of episodes) in order complexities of
Algorithm 1 over Algorithm 0 and Algorithm W, translate
to actual run-time gains as well. For the case of parallel
episodes, the space and time complexities of our algorithm
is same as that of the windows-based algorithm for paral-
lel episodes reported in [8]. Further, since there is no other
algorithm for counting non-overlapped occurrences of paral-
lel episodes, we do not provide any comparative results for
Algorithm 2.

By varying the control parameters of synthetic data gener-
ation, it is possible to generate qualitatively different kinds
of data sets. In general, the temporal patterns that were
picked up by our algorithm correlated very well with those
that were explicitly inserted in the data even when these
patterns are embedded in varying amounts of noise. Also,
the sets of frequent episodes discovered were same as that
discovered using our earlier algorithm of [6]. However, both
in terms of memory as well as run-times our new algorithm
is much more efficient.

4.1 Synthetic data generation
Each of the temporal patterns to be embedded (in the

synthetically generated data) consists of a specific ordered
sequence of events. A few such temporal patterns are speci-
fied as input to the data generation process which proceeds
is as follows. There is a counter that specifies the current
time instant. Each time an event is generated, it is time-
stamped with this current time as its time of occurrence.
After generating an event (in the event sequence) the cur-
rent time counter is incremented by a small random integer.
Each time the next event is to be generated, we first decide
whether the next event is to be generated randomly with a
uniform distribution over all event types (which would be
called an iid event) or according to one of the temporal
patterns to be embedded. This is controlled by the param-
eter ρ which is the probability that the next event is iid. If
ρ = 1 then the data is simply iid noise with no temporal
patterns embedded. If it is decided that the next event is to
be from one of the temporal patterns to be embedded, then
we have a choice of continuing with a pattern that is already
embedded partially or starting a new occurrence of one of
the patterns. This choice is also made randomly. It may



ρ Algo 1 Algo 0 Algo W
0.0 1 1 1
0.2 1 1 1
0.4 1 1 1
0.6 1 1 1
0.8 1 1 1

Table 1: Ranks of α in frequency-sorted list of 4-
node frequent episodes, for Algorithm 1, Algorithm 0

and Algorithm W, on synthetic data with two pat-
terns embedded in varying levels of noise. Data
length is 50000 and number of event types is 50.

ρ Algo 1 Algo 0 Algo W
0.0 12 12 12
0.2 1 1 1
0.4 1 1 1
0.6 1 1 1
0.8 1 1 1

Table 2: Ranks of β in frequency-sorted list of 3-
node frequent episodes, for Algorithm 1, Algorithm 0

and Algorithm W, on synthetic data with two pat-
terns embedded in varying levels of noise. Data
length is 50000 and number of event types is 50.

be noted here that due to the nature of our data genera-
tion process, embedding a temporal pattern is equivalent to
embedding many episodes. For example, suppose we have
embedded a pattern A → B → C → D. Then if this episode
is frequent in our event sequence then, based on the amount
of noise, episodes such as B → C → D → A can also become
frequent.

4.2 Effectiveness of frequency count based on
non-overlapped occurrences

We now present some simulation results to show that the
episodes discovered as frequent by Algorithm 1 are same as
that discovered by Algorithm 0. (This indeed must be the
case, since Algorithms 1 & 0 are essentially frequency count-
ing algorithms under the same frequency definition.) The
main difference between Algorithms 1 & 0 is that among
any set of overlapped occurrences, Algorithm 1 tracks the
earliest among them, while Algorithm 0 tracks the inner-
most among them. In this section, we illustrate this aspect
empirically by considering some synthetic data generated by
embedding two patterns in varying degrees of iid noise. The
two patterns embedded are: α = (B → C → D → E) and
β = (I → J → K). Data sequences with 50000 events each
are generated for different values of ρ. The objective is to see
whether these two patterns indeed appear among the sets of
frequent episodes discovered (under both frequency counts),
and if so, at what positions. The respective positions of α
and β (referred to as their ranks) in the (frequency) sorted
lists of 3-node and 4-node frequent episodes discovered are
shown in Tables 1 & 2. For comparison, we also show the
ranks obtained using the windows-based algorithm in the
tables. As can be seen from the tables, for all data sets, the
ranks of α and β are identical under all three algorithms.

Size of episodes Algo 1 Algo 0 Algo W Speed-up
1 0.36 0.35 28.25 78
2 0.40 0.37 29.54 74
3 0.44 0.85 29.75 67
4 0.45 1.53 30.52 67
5 0.46 2.22 31.48 68

Table 3: Run-times (in seconds) for Algorithm 1,
Algorithm 0 and Algorithm W, for a fixed num-
ber of candidate episodes but with different sizes
of episodes. The last column records the speed-up
factor of Algorithm 1 with respect to Algorithm W.
Data length is 50000, number of candidates is 500
and number of event types is 500.

No of
candidates Algo 1 Algo 0 Algo W Speed-up

100 0.32 0.34 28.27 88
200 0.34 0.51 28.29 83
300 0.37 0.75 29.34 86
400 0.39 1.03 30.52 78
500 0.45 1.55 30.73 68

Table 4: Run-times (in seconds) for Algorithm 1,
Algorithm 0 and Algorithm W, for a fixed size of
episodes but with different number of candidate
episodes. The last column records the speed-up fac-
tor of Algorithm 1 with respect to Algorithm W. Data
length is 50000, size of episodes is 4 and number of
event types is 500.

4.3 Run-time comparisons
Now we present some run-time comparisons to show that

Algorithm 1 runs faster than both Algorithm 0 and Algo-
rithm W. Recall that the worst-case time complexities of
these algorithms are O(n|C|) and O(nN |C|). In this section,
we empirically show that the better time complexity of Al-
gorithm 1 translates to significant advantages in terms of
actual run-times as well.

We first show how run-times of the algorithms vary with
the size of episodes being discovered. The frequency count-
ing algorithms were presented with several sets of candidate
episodes with each set containing the same number (500)
of episodes. However, the size of the episodes in each set
was different. Table 3 lists the comparison of run-times of
the two algorithms for these sets of candidate episodes. The
input data stream used was a 50000-long uniform iid event
sequence over a large number (500) of event types. In such
a sequence, all episodes of a given size would roughly have
the same frequencies and hence the computation associated
with all candidates in any given set would roughly be of the
same order. It can be seen from the tables that Algorithm 1
is always faster than both Algorithm 0 and Algorithm W. It
can also be seen from the table that, for Algorithm 1, the
run-times do not increase much with the size of episodes,
while for Algorithm 0, the run-times are roughly linear in
the size of episodes.

Next we perform a similar experiment by varying num-
ber of candidates but keeping the size of episodes fixed. We



No of
events Algo 1 Algo 0 Algo W Speed-up
10000 0.19 0.43 5.63 29
20000 0.25 0.72 12.47 49
30000 0.48 0.99 18.39 38
40000 0.52 1.33 25.95 49
50000 0.63 1.55 29.75 47

Table 5: Run-times (in seconds) for Algorithm 1,
Algorithm 0 and Algorithm W, for different lengths
of data sequences. The last column records the
speed-up factor of Algorithm 1 with respect to Al-

gorithm W. Number of candidates is 500, size of
episodes is 4 and number of event types is 500.

ρ Algo 1 Algo 0 Algo W Speed-up
0.0 0.46 2.61 64.82 140
0.2 0.44 4.38 76.66 174
0.4 0.89 5.12 96.80 108
0.6 0.56 3.46 85.23 152
0.8 0.49 2.04 83.64 170

Table 6: Total run-times (in seconds) for Algo-

rithm 1, Algorithm 0 and Algorithm W, for synthetic
data with two patterns embedded in varying lev-
els of noise. The last column records the speed-up
factor of Algorithm 1 with respect to Algorithm W.
Data length is 50000 and number of event types is
500.

consider sets with different number of 4-node candidate se-
rial episodes. The corresponding run-times for the three
algorithms are listed in Table 4. Here again, we see that Al-
gorithm 1, both runs faster and scales better with increasing
number of candidates, than Algorithm 0 and Algorithm W.
Similar results were obtained when we studied the effect of
data length on the run-times of the various algorithms and
the results are shown in Table 5.

Finally, we compare the overall run-times for frequent
episode discovery based on all these algorithms. The algo-
rithms were run on synthetic data generated by embedding
two patterns in varying levels of iid noise. The frequency
thresholds were chosen such that roughly the same number
(100) of frequent 4-node episodes are output by both algo-
rithms. The results are tabulated in Table 6. In all cases, it
can be seen that Algorithm 1 outperforms both Algorithm 0
and Algorithm W.

5. CONCLUSIONS
In this paper, we have presented some new algorithms for

frequency counting under the non-overlapped occurrences-
based frequency for episodes. The new algorithms are, both
space-wise as well as time-wise, significantly more efficient
than the earlier algorithms reported in [6]. These algorithms
arguably have the best space and time complexities for fre-
quency counting of a given set of candidate episodes. This
algorithmic efficiency, together with the theoretical proper-
ties presented in [6], make out a very strong case for us-
ing the non-overlapped occurrences-based frequency for fre-
quent episode discovery in event streams.

In the frequency counting algorithms described in this pa-
per we do not worry about the spread of events within an
occurrence. In some applications, it may be necessary not to
count an episode occurrence if the events constituting it are
widely spread out. The windows-based frequency count of
[8], for example, implements some kind of a time constraint
on the occurrences of an episode, since the width of the win-
dow used is basically an upper bound on the time span of
the occurrences (that are considered for the episode’s fre-
quency). However, the problem with such a scheme is that,
while it eliminates widely spread out occurrences from con-
tributing to the frequency count, it also artificially increases
the frequency when occurrences are very compact.

Since our new frequency counting algorithms explicitly
count episode occurrences, it is possible, when an applica-
tion so requires, to incorporate an extra time constraint di-
rectly on the occurrences being counted [5]. An expiry time
constraint can be used to define the extent to which events
of an occurrence may be spread out in the event sequence.
In case of serial episodes, the expiry time constraint is an
upper bound on the time difference between the events in an
occurrence corresponding to the first and last nodes of the
episode. Incorporating such expiry time constraints does
increase the space and time complexities of the algorithm
a little bit. The counting strategy we now need closely re-
sembles that of the algorithm for serial episodes that we
proposed earlier in [6]. Even when such time constraints
are prescribed, the algorithms for counting non-overlapped
occurrences-based frequencies are both space-wise and time-
wise very efficient, and compare favorably with the windows-
based frequency counting scheme. We will address some of
these issues in our future work.
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