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Abstract

We consider the problem of learning a ranking function that maximizes a generalization of the

Wilcoxon-Mann-Whitney statistic on the training data. Relying on an ε-accurate approximation for

the error-function, we reduce the computational complexity of each iteration of a conjugate gradient

algorithm for learning ranking functions from O(m2), to O(m), where m is the number of training

samples. Experiments on public benchmarks for ordinal regression and collaborative filtering indicate

that the proposed algorithm is as accurate as the best available methods in terms of ranking accuracy,

when the algorithms are trained on the same data. However, since it is several orders of magnitude

faster than the current state-of-the-art approaches, it is able to leverage much larger training datasets.

Index Terms

ranking, preference relations, fast erfc summation

I. INTRODUCTION

The problem of ranking has recently received significant attention in the statistical machine

learning and information retrieval communities. In a typical ranking formulation, we compare

two instances and determine which one is better or preferred. Based on this, a set of instances

can be ranked according to a desired preference relation. The study of ranking has largely

been motivated by applications in search engines, information retrieval, collaborative filtering,

and recommender systems. For example in search engines, rather than returning a document as

relevant or not (classification), the ranking formulation allows one to sort the documents in the

order of their relevance.

Vikas C. Raykar and Ramani Duraiswami are with the Department of Computer Science, University of Maryland, College

park, MD, USA. Balaji Krishnapuram is with Siemens Medical Solutions, Malvern, PA, USA.

August 22, 2007 DRAFT



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XXXXX 200X 1

A. Preference relation and ranking function

Consider an instance space X . For any (x, y) ∈ X × X we interpret the preference relation

x º y as ‘x is at least as good as y’. We say that ‘x is indifferent to y’ (x ∼ y) if x º y

and y º x. For learning a ranking we are provided with a set of pairwise preferences, based

on which we have to learn a preference relation. In general, an ordered list of instances can

always be decomposed down to a set of pairwise preferences. One way of describing preference

relations is by means of a ranking function. A function f : X → R is a ranking/scoring function

representing the preference relation º if

∀x, y ∈ X , x º y ⇔ f(x) ≥ f(y). (1)

The ranking function f provides a numerical score to the instances based on which the instances

can be ordered. The function f is not unique. For any strictly increasing function g : R → R,

g(f(.)) is a new ranking function representing the same preference relation. It may be noted

that x ∼ y ⇔ f(x) = f(y).

The ranking function is similar to the utility function used in microeconomic theory [1], where

utility is a measure of the satisfaction gained by consuming commodities. A consequence of using

a ranking function is that the learnt preference relation is rational. In economics a preference

relation º is called rational if it satisfies the following two properties [1]:

• Completeness: ∀x, y ∈ X , we have that x º y or y º x.

• Transitivity: ∀x, y, z ∈ X , if x º y and y º z then x º z.

A preference relation can be represented by a ranking function only if it is rational: For all

x, y ∈ X either f(x) ≥ f(y) or f(y) ≥ f(x). This proves the completeness property. For all

x, y, z ∈ X , f(x) ≥ f(y) and f(y) ≥ f(z), implies that f(x) ≥ f(z). Hence transitivity is

satisfied.

A central tenet of microeconomic theory is that many of the human preferences can be assumed

to be rational [1]. In the training data we may have preferences which do not obey transitivity.

However, the learnt ranking function will correspond to a rational preference relation. For the

rest of the paper we shall simply treat the learning of a preference relation as a problem of

learning a rational ranking function.
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B. Problem statement

In the literature, the problem of learning a ranking function has been formalized in many

ways. We adopt a general formulation based on directed preference graphs [2], [3].

We are given training data A, a directed preference graph G = (V , E) encoding the preference

relations, and a function class F from which we choose our ranking function f .

• The training data A =
⋃S

j=1(Aj = {xj
i ∈ Rd}mj

i=1) contains S classes (sets). Each class Aj

contains mj samples and there are a total of m =
∑S

j=1 mj samples in A.

• Each vertex of the directed order graph G = (V , E) corresponds to a class Aj . The existence

of a directed edge Eij from Ai → Aj means that all training samples in Aj are preferred

or ranked higher than any training sample in Ai, i.e. , ∀(xi
k ∈ Ai, xj

l ∈ Aj), xj
l º xi

k (See

Figure 1).

The goal is to learn a ranking function f : Rd → R such that f(xj
l ) º f(xi

k) for as many pairs

as possible in the training data A and also to perform well on unseen examples. The output

f(xk) can be sorted to obtain a rank ordering for a set of test samples {xk ∈ Rd}.

This general formulation gives us the flexibility to learn different kinds of preference relations

by changing the preference graph. Figure 1 shows two different ways to encode the preferences

for a ranking problem with 4 classes. The first one containing all possible relations is called the

full preference graph.

While a ranking function can be obtained by learning classifiers or ordinal regressors, it is

more advantageous to learn the ranking function directly due to two reasons.

• First, in many scenarios it is more natural to obtain training data for pair-wise preference

relations rather than the actual labels for individual samples.

• Second, the loss function used for measuring the accuracy of classification or ordinal

regression—e.g. the 0-1 loss function—is computed for every sample individually, and then

averaged over the training or the test set. In contrast, to asses the quality of the ranking

for arbitrary preference graphs, we will use a generalized version of the Wilcoxon-Mann-

Whitney statistic [2], [4], [5] that is averaged over pairs of samples

C. Generalized Wilcoxon-Mann-Whitney statistic

The Wilcoxon-Mann-Whitney (WMW) statistic [4], [5] is frequently used to assess the perfor-

mance of a classifier because of its equivalence to the area under the ROC (Receiver Operating
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Fig. 1. (a) A full preference graph and (b) chain preference graph for a ranking problem with 4 classes.

Characteristics) curve (AUC). It is equal to the probability that a classifier assigns a higher value

to the positive example than to the negative example, for a randomly drawn pair of samples.

The generalized version of the WMW statistic for our ranking problem is defined as follows [2]

WMW(f,A,G) =

∑
Eij

∑mi

k=1

∑mj

l=1 1f(xj
l )≥f(xi

k)∑
Eij

∑mi

k=1

∑mj

l=1 1
, (2)

where 1a≥b =





1 if a ≥ b

0 otherwise
. (3)

The numerator counts the number of correct pairwise orderings. The denominator is the total

number of pairwise preference relations available. The WMW statistic is thus an estimate of

Pr[f(x1) ≥ f(x0)] for a randomly drawn pair of samples (x1, x0) such that x1 º x0. This is a

generalization of the area under the ROC curve (often used to evaluate bipartite rankings), to

arbitrary preference graphs between many classes of samples. For a perfect ranking function the

WMW statistic is 1, and for a completely random assignment the expected WMW statistic is

0.5.

A slightly more general formulation can be found in [3], [6], [7], where each edge in the

graph has an associated weight which indicates the strength of the preference relation. In such

a case each term in the WMW statistic must be suitably weighted.
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While the WMW statistic has been used widely to evaluate a learnt model, it has only recently

been used as an objective function to learn the model. Since maximizing the WMW statistic

is a discrete optimization problem most previous algorithms optimize a continuous relaxation

instead. Previous algorithms often incurred O(m2) effort in order to evaluate the relaxed version

or its gradient. This led to very large training times for massive datasets.

D. Our proposed approach

In this paper we directly maximize the relaxed version of the WMW statistic using a

conjugate gradient (CG) optimization procedure. The gradient computation scales as O(m2)

which is computationally intractable for large datasets. Inspired by the fast multipole methods in

computational physics [8], we develop a new algorithm that allows us to compute the gradient

approximately to ε accuracy in O(m) time. This enables the learning algorithm to scale well to

massive datasets.

E. Organization

The rest of the paper is structured as follows. In Section II we describe the previous work

in ranking and place our method in context. The cost function which we optimize is described

in Section III. We also show that the cost function derived from a probabilistic framework can

be considered as a regularized lower bound on the WMW statistic (see Section III-A). The

computational complexity of the gradient computation is analyzed in Section IV-B. In Section V

we describe the fast summation of erfc functions–a main contribution of this paper–which makes

the learning algorithm scalable for large datasets. Experimental results are presented in Section VI

and VII.

II. PREVIOUS LITERATURE ON LEARNING RANKING FUNCTIONS

Many ranking algorithms have been proposed in the literature. Most learn a ranking function

from pairwise relations, and as a consequence are computationally expensive to train as the

number of pairwise constraints is quadratic in the number of samples.
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A. Methods based on pair-wise relations

The problem of learning rankings was first treated as a classification problem on pairs of

objects by Herbrich et al [9] and subsequently used on a web page ranking task by Joachims [10].

The positive and negative examples are constructed from pairs of training examples–e.g., Her-

brich et al [9] use the difference between the feature vectors of two training examples as a new

feature vector for that pair. Algorithms similar to SVMs were used to learn the ranking function.

Burges et al. [6], proposed the RankNet which uses a neural network to model the underlying

ranking function. Similar to our approach it uses gradient descent techniques to optimize a

probabilistic cost function–the cross entropy. The neural net is trained on pairs of training

examples using a modified version of backpropagation algorithm.

Several boosting based algorithms have been proposed for ranking. With collaborative filtering

as an application Freund et al. [7] proposed the RankBoost algorithm for combining preferences.

Dekel et al. [3] present a general framework for label ranking by means of preference graphs

and graph decomposition procedure. A log-linear model is learnt using a boosting algorithm.

A probabilistic kernel approach to preference learning based on Gaussian processes was

proposed by Chu and Ghahramani [11].

B. Fast approximate algorithms

The naive optimization strategy proposed in all the above algorithms suffer from the O(m2)

growth in the number of constraints. Fast approximate methods have only recently been inves-

tigated. An efficient implementation of the RankBoost algorithm for two class problems was

presented in [7]. A convex-hull based relaxation scheme was proposed in [2]. In a recent paper

Yan and Hauptmann [12] proposed an approximate margin-based rank learning framework by

bounding the pairwise risk function. This reduced the computational cost of computing the risk

function from quadratic to linear. Recently an extension of RankNet, called LambdaRank, was

proposed [13], which speeds up the algorithm by reducing the pairwise part of the computation

to a loop which can be computed very quickly. While they showed good experimental evidence

for the speedup obtained the method still has a pair-wise dependence.
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C. Other approaches

A parallel body of literature has considered online algorithms and sequential update methods

which find solutions in single passes through the data. PRank [14], [15] is a perceptron based

online ranking algorithm which learns using one example at a time. RankProp [16] is a neural

net ranking model which is trained on individual examples rather than pairs. However it is not

known whether the algorithm converges. All gradient based learning methods can also be trained

using stochastic gradient descent techniques.

D. WMW statistic maximizing algorithms

Our proposed algorithm directly maximizes the WMW statistic. Previous algorithms which

explicitly try to maximize the WMW statistic come in two different flavors. Since the WMW

statistic is not a continuous function various approximations have been used.

A class of these methods have a Support Vector Machine (SVM)-type flavor where the hinge

loss is used as a convex upper bound for the 0-1 indicator function [7], [17]–[19]. Algorithms

similar to the SVMs were used to learn the ranking function.

Another class of methods use a sigmoid [20] or a polynomial approximation [17] to the 0-1

loss function. Similar to our approach they use a gradient based learning algorithm.

E. Relationship to the current paper

Similar to the papers mentioned, our algorithm is also based on the common approach of trying

to correctly arrange pairs of samples, treating them as independent. However our algorithm differs

from the previous approaches in the following ways–

• Most of the proposed approaches [3], [6], [9]–[11], [21] are computationally expensive to

train due to the quadratic scaling in the number of pairwise constraints. While the number

of pairwise constraints is quadratic the proposed algorithm is still linear. This is achieved by

an efficient algorithm for the fast approximate summation of erfc functions, which allows

us to factor the computations.

• There are no approximations in our ranking formulation as in [12], where in order to reduce

the quadratic growth a bound on the risk functional is used. It should be noted that we use

approximations only in the gradient computation of the optimization procedure. As a result

the optimization will converge to the same solution, but will take a few more iterations.
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• The other approximate algorithm [2] scales well to large datasets computationally, but it

make very coarse approximations by summarizing the slack variables for an entire class by

a single, common scalar value.

• The cost function which we optimize is a lower bound on the WMW statistic–the measure

which is frequently used to asses the quality of rankings. Previous approaches which try to

maximize the WMW statistic [7], [17]–[20] consider only a classification problem and also

incur the quadratic growth in the number of constraints.

• Also to optimize our cost function we use the nonlinear conjugate gradient algorithm–which

converges much more rapidly than the steepest gradient method used for instance by the

backpropagation algorithm in RankNet [6].

III. THE MAP ESTIMATOR FOR LEARNING RANKING FUNCTIONS

In this paper we will consider the family of linear ranking functions: F = {fw}, where for

any x,w ∈ Rd, fw(x) = wT x.

Although we want to choose w to maximize the generalized WMW(fw,A,G), for computa-

tional efficiency, we shall instead maximize a continuous surrogate, via the log-likelihood:

L(fw,A,G) = log Pr [correct ranking|w]

≈ log
∏
Eij

mi∏

k=1

mj∏

l=1

Pr
[
fw(xj

l ) > fw(xi
k)|w

]
.

(4)

Note that in Equation 4, in common with most papers [6], [9], [11], we have assumed that every

pair (xj
l , x

i
k) is drawn independently, whereas only the original samples are drawn independently.

We use the sigmoid function to model the pairwise probability, i.e.,

Pr
[
fw(xj

l ) > fw(xi
k)|w

]
= σ

[
wT (xj

l − xi
k)

]
, (5)

where σ(z) =
1

1 + e−z
(6)

is the sigmoid function (see Figure 3(a)). The sigmoid function has been previously used in [6]

to model pairwise posterior probabilities. However the cost function used was the cross-entropy.

We will assume a spherical Gaussian prior p(w) = N (w|0, λ−1I) on the weights w. This

encapsulates our prior belief that the individual weights in w are independent and close to zero
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Fig. 2. Log-sigmoid lower bound for the 0-1 indicator function.

with a variance parameter 1/λ. The optimal maximum a-posteriori (MAP) estimator is of the

form

ŵMAP = arg max
w

L(w), (7)

where L(w) is the penalized log-likelihood:

L(w) = −λ

2
‖w‖2 +

∑
Eij

mi∑

k=1

mj∑

l=1

log σ
[
wT (xj

l − xi
k)

]
. (8)

The parameter λ is also known as the regularization parameter. A similar objective function was

also derived in [11] based on a Gaussian process framework.

A. Lower bounding the WMW statistic

Comparing the log-likelihood L(w) (Equation 8) to the WMW statistic (Equation 2) we can

see that this is equivalent to lower bounding the 0-1 indicator function in the WMW statistic by

a log-sigmoid function (see Figure 2), i.e.,

1z>0 ≥ 1 + (log σ(z)/log 2). (9)

The log-sigmoid is appropriately scaled and shifted to make the bound tight at the origin. The

log-sigmoid bound was also used in [3] along with a boosting algorithm. So maximizing the

penalized log-likelihood is equivalent to maximizing a lower bound on the WMW statistic. The

prior acts as a regularizer.
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Fig. 3. (a) Approximation of the sigmoid function σ(z) ≈ 1− 1
2

erfc(
√

3z√
2π

). (b) The erfc function.

IV. THE OPTIMIZATION ALGORITHM

In order to find the w that maximizes the penalized log-likelihood, we use the Polak-Ribière

variant of nonlinear conjugate gradients (CG) algorithm [22]. The CG method only needs the

gradient g(w) and does not require evaluation of L(w). It also avoids the need for computing

the second derivatives (Hessian matrix). The gradient vector is given by (using the fact that

σ
′
(z) = σ(z)σ(−z) and σ(−z) = 1− σ(z)):

g(w) = −λw −
∑
Eij

mi∑

k=1

mj∑

l=1

(xi
k − xj

l )σ
[
wT (xi

k − xj
l )

]
. (10)

Notice that the evaluation of the penalized log-likelihood or its gradient requiresM2 =
∑

Eij
mimj

operations — this quadratic scaling can be prohibitively expensive for large datasets. The main

contribution of this paper is an extremely fast method to compute the gradient approximately

(Section V).

A. Gradient approximation using the error-function

We shall rely on the approximation [See Figure 3(a)]:

σ(z) ≈ 1− 1

2
erfc(

√
3z√
2π

), (11)

August 22, 2007 DRAFT



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XXXXX 200X 10

where the complementary error function [Figure 3(b)] is defined by [23]

erfc(z) =
2√
π

∫ ∞

z

e−t2dt. (12)

Note that erfc(z) = 1− erf(z), where erf(z) = 2√
π

∫ z

0
e−t2dt is the error function encountered in

integrating the normal distribution. As a result, the approximate gradient can be computed—still

with M2 operations—as:

g(w) ≈ −λw

−
∑
Eij

mi∑

k=1

mj∑

l=1

(xi
k − xj

l )

[
1− 1

2
erfc

(√
3wT (xi

k − xj
l )√

2π

)]
.

(13)

B. Quadratic complexity of gradient evaluation

We will isolate the key computational primitive contributing to the quadratic complexity in

the gradient computation. The following summarizes the different variables in analyzing the

computational complexity of evaluating the gradient.

• We have S classes with mi training instances in the ith class.

• Hence we have a total of m =
∑S

i=1 mi training examples in d dimensions.

• |E| is the number of edges in the preference graph, and

• M2 =
∑

Eij
mimj is the total number of pairwise preference relations.

For any x we will define z =
√

3wT x/(π
√

2). Note that z is a scalar and for a given w can be

computed in O(dm) operations for the entire training set. We will now rewrite the gradient as

g(w) = −λw −∆1 +
1

2
∆2 − 1

2
∆3, (14)

where the vectors ∆1, ∆1, and ∆3 are defined as follows–

∆1 =
∑
Eij

mi∑

k=1

mj∑

l=1

(xi
k − xj

l ).

∆2 =
∑
Eij

mi∑

k=1

mj∑

l=1

xi
kerfc(zi

k − zj
l ).

∆3 =
∑
Eij

mi∑

k=1

mj∑

l=1

xj
l erfc(zi

k − zj
l ). (15)
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The vector ∆1 is independent of w and can be written as follows–

∆1 =
∑
Eij

mimj(x
i
mean − xj

mean), where xi
mean =

1

mi

mi∑

k=1

xi
k

is the mean of all the training instances in the ith class. Hence ∆1 can be pre-computed in

O(|E|d + dm) operations.

The the other two terms ∆2 and ∆3 can be written as follows–

∆2 =
∑
Eij

mi∑

k=1

xi
kE

j
−(zi

k) ∆3 =
∑
Eij

mj∑

l=1

xj
l E

i
+(−zj

l ) (16)

where

Ej
−(y) =

mj∑

l=1

erfc(y − zj
l ).

Ei
+(y) =

mi∑

k=1

erfc(y + zi
k). (17)

Note that Ej
−(y) in the sum of mj erfc functions centered at zj

l and evaluated at y–which requires

O(mj) operations. In order to compute ∆2 we need to evaluate it at mi points, thus requiring

O(mimj) operations. Hence each of ∆2 and ∆3 can be computed in O(dSm+M2) operations.

Hence the core computational primitive contributing to the O(M2) cost is the summation

of erfc functions. In the next section we will show how this sum can be computed in linear

O(mi + mj) time, at the expense of reduced accuracy which however can be arbitrary. As a

result of this ∆2 and ∆3 can be computed in linear O(dSm + (S − 1)m) time.

In terms of the optimization algorithm since the gradient is computed approximately the

number of iterations required to converge may increase. However this is more than compensated

by the cost per iteration which is drastically reduced.

V. FAST WEIGHTED SUMMATION OF ERFC FUNCTIONS

In general Ej
−(y) and Ei

+(y) can be written as the weighted summation of N erfc functions

centered at zi ∈ R, with weights qi ∈ R:

E(y) =
N∑

i=1

qi erfc(y − zi). (18)

Direct computation of (18) at M points {yj ∈ R}M
j=1 is O(MN). In this section, we will derive

an ε-accurate approximation algorithm to compute this in O(M + N) time.
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A. ε-accurate approximation

For any given ε > 0, we define Ê to be an ε-accurate approximation to E if the maximum

absolute error relative to the total weight Qabs =
∑N

i=1 |qi| is upper bounded by a specified ε,

i.e.,

max
yj

[
|Ê(yj)− E(yj)|

Qabs

]
≤ ε. (19)

The constant in O(M +N) for our algorithm depends on the desired accuracy ε, which however

can be arbitrary. In fact, for machine precision accuracy there is no difference between the

direct and the fast methods. The algorithm we present is inspired by the fast multipole methods

proposed in computational physics [8]. The fast algorithm is based on using an infinite series

expansion for the erfc function and retaining only the first few terms (whose contribution is at

the desired accuracy).

B. Series expansion for erfc function

Several series exist for the erfc function (see Chapter 7 in [23]). Some are applicable only to

a restricted interval, while other need a large number of terms to converge. We use the following

truncated Fourier series representation derived by Beauliu [24], [25]:

erfc(z) = 1− 4

π

2p−1∑

n=1
n odd

e−n2h2

n
sin (2nhz) + error(z), (20)

|error(z)| <

∣∣∣∣∣∣∣
4

π

∞∑

n=2p+1
n odd

e−n2h2

n
sin (2nhz)

∣∣∣∣∣∣∣
+ erfc

( π

2h
− |z|

)
. (21)

Here, p is known as the truncation number and h is a real number related to the sampling

interval. The series is derived by applying a Chernoff bound to an approximate Fourier series

expansion of a periodic square waveform [24]. This series converges rapidly, especially as z → 0.

Figure 4 shows the maximum absolute error between the actual value of erfc and the truncated

series representation as a function of p. For example for any z ∈ [−4, 4] with p = 12 the error

is less than 10−6.
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Fig. 4. The maximum absolute error between the actual value of erfc and the truncated series representation (Equation 20) as

a function of the truncation number p for any z ∈ [−4, 4]. The error bound (Equation 22) is also shown as a dotted line.

C. Error bound

We will have to choose p and h such that the error is less than the desired ε. For this purpose

we further bound the first term in (21) as follows.

∣∣∣∣∣∣∣
4

π

∞∑

n=2p+1
n odd

e−n2h2

n
sin (2nhx)

∣∣∣∣∣∣∣

≤ 4

π

∞∑

n=2p+1
n odd

e−n2h2

n
|sin (2nhx)|

≤ 4

π

∞∑

n=2p+1
n odd

e−n2h2

n
[ Since |sin (2nhx)| ≤ 1]

<
4

π

∞∑

n=2p+1
n odd

e−n2h2

[ Since1/n ≤ 1]

<
4

π

∫ ∞

2p+1

e−x2h2

dx [ Replacing
∑

by
∫

]

<
2√
πh

[
2√
π

∫ ∞

(2p+1)h

e−t2dt

]

=
2√
πh

erfc((2p + 1)h)
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Hence the final error bound is of the form:

|error(z)| < 2√
πh

erfc ((2p + 1)h) + erfc
( π

2h
− |z|

)
. (22)

The error bound is shown as a dotted line in Figure 4.

D. Fast summation algorithm

We now derive a fast algorithm to compute E(y) based on the series (20).

E(y) =
N∑

i=1

qierfc(y − zi)

=
N∑

i=1

qi


1− 4

π

2p−1∑

n=1
n odd

e−n2h2

n
sin {2nh(y − zi)}+ error


 .

(23)

Ignoring the error term for the time being, the sum E(y) can be approximated as:

Ê(y) = Q− 4

π

N∑
i=1

qi

2p−1∑

n=1
n odd

e−n2h2

n
sin {2nh(y − zi)}, (24)

where Q =
∑N

i=1 qi. The terms y and zi are entangled in the argument of the sin function, leading

to a quadratic complexity. The crux of the algorithm is to separate them using the trigonometric

identity:

sin {2nh(y − zi)}

= sin {2nh(y − z∗)− 2nh(zi − z∗)}

= sin {2nh(y − z∗)} cos {2nh(zi − z∗)}

− cos {2nh(y − z∗)} sin {2nh(zi − z∗)}. (25)

Note that we have shifted all the points by z∗. The reason for this will be more clear later

in Section V-G where we cluster the points and use the series representation around different
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cluster centers. Substituting the separated representation in (24):

Ê(y) = Q

− 4

π

N∑
i=1

qi

2p−1∑

n=1
n odd

e−n2h2

n
sin {2nh(y − z∗)} cos {2nh(zi − z∗)}

+
4

π

N∑
i=1

qi

2p−1∑

n=1
n odd

e−n2h2

n
cos {2nh(y − z∗)} sin {2nh(zi − z∗)}. (26)

Exchanging the order of summation and regrouping the terms we have the following expression.

Ê(y) = Q − 4

π

2p−1∑

n=1
n odd

An sin {2nh(y − z∗)}

+
4

π

2p−1∑

n=1
n odd

Bn cos {2nh(y − z∗)}. (27)

where

An =
e−n2h2

n

N∑
i=1

qi cos {2nh(zi − z∗)}, and

Bn =
e−n2h2

n

N∑
i=1

qi sin {2nh(zi − z∗)}. (28)

E. Computational and space complexity

Note that the coefficients {An, Bn} do not depend on y. Hence each of An and Bn can

be evaluated separately in O(N) time. Since there are p such coefficients the total complexity

to compute A and B is O(pN). The term Q =
∑N

i=1 qi can also be pre-computed in O(N)

time. Once A, B, and Q have been pre-computed, evaluation of Ê(y) requires O(p) operations.

Evaluating at M points is O(pM). Therefore, the computational complexity has reduced from

the quadratic O(NM) to the linear O(p(N + M)). We need space to store the points and the

coefficients A and B. Hence, the storage complexity is O(N + M + p).

F. Direct inclusion and exclusion of far away points

From Equation 22 it can be seen that for a fixed p and h as |z| increases the error increases.

Therefore as |z| increases, h should decrease and consequently the series converges slower

leading to a large truncation number p.
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Note that s = (y − zi) ∈ [−∞,∞]. The truncation number p required to approximate erfc(s)

can be quite large for large |s|. Luckily erfc(s) → 2 as s → −∞ and erfc(s) → 0 as s →∞ very

quickly [See Figure 3(b)]. Since we only want an accuracy of ε, we can use the approximation:

erfc(s) ≈





2 if s < −r

p-truncated series if −r ≤ s ≤ r

0 if s > r

(29)

The bound r and the truncation number p have to be chosen such that for any s the error is

always less than ε. For example, for error of the order 10−15 we need to use the series expansion

for −6 ≤ s ≤ 6. However we cannot check the value of (y − zi) for all pairs of zi and y.

This would lead us back to the quadratic complexity. To avoid this, we subdivide the points into

clusters.

G. Space sub-division

We uniformly sub-divide the domain into K intervals of length 2rx. The N source points

are assigned into K clusters, Sk for k = 1, . . . , K with ck being the center of each cluster.

The aggregated coefficients are computed for each cluster and the total contribution from all

the influential clusters is summed up. For each cluster, if |y − ck| ≤ ry, we will use the series

coefficients. If (y− ck) < −ry, we will include a contribution of 2Qk; if (y− ck) > ry, we will

ignore that cluster. The cut off radius ry has to be chosen to achieve a given accuracy. Hence

Ê(y) =
∑

|y−ck|≤ry

Qk

−
∑

|y−ck|≤ry

4

π

2p−1∑

n=1
n odd

Ak
n sin {2nh(y − ck)}

+
∑

|y−ck|≤ry

4

π

2p−1∑

n=1
n odd

Bk
n cos {2nh(y − ck)}

+
∑

(y−ck)<−ry

2Qk. (30)
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where

Ak
n =

e−n2h2

n

N∑
i=1

qi cos {2nh(zi − ck)},

Bk
n =

e−n2h2

n

N∑
i=1

qi sin {2nh(zi − ck)}, and

Qk =
∑

∀zi∈Sk

qi. (31)

The computational complexity to compute A,B, and Q is still O(pN) since each zi belongs

to only one cluster. Let l be the number of influential clusters, i.e., the clusters for which

|y − ck| ≤ ry. Evaluating Ê(y) at M points due to these l clusters is O(plM). Let m be the

number of clusters for which (y − ck) < −ry. Evaluating Ê(y) at M points due to these m

clusters is O(mM). Hence the total computational complexity is O(pN + (pl + m)M). The

storage complexity is O(N + M + pK).

H. Choosing the parameters

Given any ε > 0, we want to choose the following parameters, rx (the interval length), ry (the

cut off radius ), p (the truncation number) and h such that for any target point y∣∣∣∣∣
Ê(y)− E(y)

Qabs

∣∣∣∣∣ ≤ ε, (32)

where Qabs =
∑N

i=1 |qi|.
Let us define ∆i to be the point wise error in Ê(y) contributed by the ith source zi. We now

require that

|Ê(y)− E(y)| =
∣∣∣∣∣

N∑
i=1

∆i

∣∣∣∣∣ ≤
N∑

i=1

|∆i| ≤
N∑

i=1

|qi|ε. (33)

One way to achieve this is to let |∆i| ≤ |qi|ε ∀i = 1, . . . , N. For all zi such that |y− zi| ≤ r we

have (Equation 22)

|∆i| < |qi| 2√
πh

erfc ((2p + 1)h)

︸ ︷︷ ︸
Te

+ |qi|erfc
( π

2h
− r

)

︸ ︷︷ ︸
Se

. (34)

We have to choose the parameters such that |∆i| < |qi|ε. We will let Se < |qi|ε/2. This implies

that
π

2h
− r > erfc−1 (ε/2) . (35)
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Hence we have to choose

h <
π

2
(
r + erfc−1 (ε/2)

) . (36)

We will choose

h =
π

3
(
r + erfc−1 (ε/2)

) . (37)

We will choose p such that Te < |qi|ε/2. This implies that

2p + 1 >
1

h
erfc−1

(√
πhε

4

)
. (38)

We choose

p =

⌈
1

2h
erfc−1

(√
πhε

4

)⌉
. (39)

Note that as r increases h decreases and consequently p increases. If s ∈ (r,∞] we approximate

erfc(s) by 0 and if s ∈ [−∞,−r) then approximate erfc(s) by 2. If we choose

r > erfc−1(ε), (40)

then the approximation will result in a error < ε. In practice we choose

r = erfc−1(ε) + 2rx, (41)

where rx is the cluster radius. For a target point y the number of influential clusters

(2l + 1) =

⌈
2r

2rx

⌉
. (42)

Let us choose rx = 0.1erfc−1(ε). This implies 2l + 1 = 12. So we have to consider 6 clusters

on either side of the target point. Summarizing the parameters are given by

• rx = 0.1erfc−1(ε).

• r = erfc−1(ε) + 2rx.

• h = π/3
(
r + erfc−1 (ε/2)

)
.

• p =
⌈

1
2h

erfc−1
(√

πhε
4

)⌉
.

• (2l + 1) = dr/rxe.
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I. Numerical experiments

We present experimental results for the core computational primitive of erfc functions. Ex-

periments when this primitive is embedded in the optimization routine will be provided in the

next section.

We present numerical studies of the speedup and error as a function of the number of data

points and the desired error ε. The algorithm was programmed in C++ with MATLAB bindings

and was run on a 1.6 GHz Pentium M processor with 512 MB of RAM. Figure 5(a) and 5(b)

shows the running time and the maximum absolute error relative to Qabs for both the direct

and the fast methods as a function of N(= M). The points were normally distributed with zero

mean and unit variance. The weights qi were set to 1. We see that the running time of the fast

method grows linearly, while that of the direct evaluation grows quadratically. We also observe

that the error is well below the permissible error, thus validating our bound. For example for

N = M = 51, 200 points, while the direct evaluation takes around 17.26 hours the fast evaluation

requires only 4.29 seconds with an error of around 10−10. Figure 5(c) shows the tradeoff between

precision and speedup. An increase in speedup is obtained at the cost of slightly reduced accuracy.

VI. RANKING EXPERIMENTS

A. Datasets

We used two artificial datasets and ten publicly available benchmark datasets1 in Table I,

previously used for evaluating ranking [2] and ordinal regression [26]. Since these datasets are

originally designed for regression, we discretize the continuous target values into S equal sized

bins as specified in Table I. For each dataset the number of classes S was chosen such that none

of them were empty. The two datasets RandNet and RandPoly are artificial datasets generated

as described in [6]. The ranking function for RandNet is generated using a random two layer

neural net with 10 hidden units and RandPoly using a random polynomial.

B. Evaluation procedure

For each data set 80% of the examples were used for training and the remaining 20% were

used for testing. The results are shown for a five-fold cross validation experiment. In order to

1The datasets were downloaded from http://www.liacc.up.pt/˜ltorgo/Regression/DataSets.html
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TABLE I

BENCHMARK DATASETS USED IN THE RANKING EXPERIMENTS. N IS THE SIZE OF THE DATA SET. d IS THE NUMBER OF

ATTRIBUTES. S IS THE NUMBER OF CLASSES. M IS THE AVERAGE TOTAL NUMBER OF PAIRWISE RELATIONS PER FOLD OF

THE TRAINING SET.

Dataset name N d S M Dataset name N d S M
1 Diabetes 43 3 2 272 8 Airplane Companies 950 10 5 217301

2 Pyrimidines 74 28 3 1113 9 RandNet 1000 50 6 195907

3 Triazines 186 61 4 7674 10 RandPoly 1000 50 6 225131

4 Wisconsin Breast Cancer 194 33 4 8162 11 Abalone 4177 9 3 3713729

5 Machine-CPU 209 7 4 9820 12 RandNet 5000 50 6 6269910

6 Auto-MPG 392 8 3 30057 13 RandPoly 5000 50 6 5367241

7 Boston Housing 506 14 2 33693 14 California Housing 20640 9 3 82420255

TABLE II

THE MEAN TRAINING TIME AND STANDARD DEVIATION IN SECONDS FOR THE VARIOUS METHODS AND ALL THE DATASETS

SHOWN IN TABLE I. THE RESULTS ARE SHOWN FOR A FIVE FOLD CROSS-VALIDATION EXPERIMENT. THE SYMBOL ?

INDICATES THAT THE PARTICULAR METHOD EITHER CRASHED DUE TO LIMITED MEMORY REQUIREMENTS OR TOOK A

VERY LARGE AMOUNT OF TIME.

RankNCG direct RankNCG fast RankNet linear RankNet two layer RankSVM linear RankSVM quadratic RankBoost

1 0.11 [± 0.02] 0.06 [± 0.01] 1.79 [± 0.03] 3.32 [± 0.11] 0.09 [± 0.04] 0.10 [± 0.01] 1.70 [± 0.09]

2 0.63 [± 0.13] 0.12 [± 0.03] 7.11 [± 0.27] 13.55 [± 0.30] 0.10 [± 0.02] 0.62 [± 0.13] 1.72 [± 0.02]

3 17.63 [± 7.27] 0.70 [± 0.39] 58.14 [± 0.78] 131.41 [± 2.19] 0.55 [± 0.28] 13.96 [± 0.48] 6.70 [± 0.06]

4 13.41 [± 9.35] 0.33 [± 0.43] 48.13 [± 0.85] 97.24 [± 1.05] 0.64 [± 0.03] 23.17 [± 3.37] 1.88 [± 0.04]

5 20.38 [± 4.87] 0.97 [± 0.15] 57.99 [± 0.58] 111.14 [± 1.14] 1.14 [± 0.27] 24.46 [± 0.68] 1.24 [± 0.02]

6 28.05 [± 10.94] 0.40 [± 0.23] 175.63 [± 1.55] 333.49 [± 3.96] 0.43 [± 0.02] 37.27 [± 3.10] 1.54 [± 0.04]

7 18.92 [± 0.63] 0.16 [± 0.01] 195.14 [± 4.75] 381.28 [± 7.93] 0.36 [± 0.03] 13.93 [± 2.15] 2.32 [± 0.04]

8 332.88 [± 26.66] 3.29 [± 0.88] 1264.58 [± 3.21] 2464.84 [± 10.94] 34.32 [± 4.05] 1332.79 [± 69.47] 5.56 [± 0.37]

9 250.37 [± 21.03] 5.08 [± 0.47] 1166.23 [± 17.47] 2380.62 [± 34.53] 83.62 [± 6.30] 13628.23 [± 210.10] 13.55 [± 0.07]

10 102.48 [± 0.59] 0.78 [± 0.04] 1341.20 [± 6.91] 2733.25 [± 23.11] 1656.52 [± 99.89] 14110.48 [± 121.98] 13.99 [± 0.05]

11 1736.47 [± 191.03] 1.47 [± 0.38] ? [± ?] ? [± ?] ? [± ?] ? [± ?] 62.91 [± 0.59]

12 6731.09 [± 312.41] 19.10 [± 1.76] ? [± ?] ? [± ?] ? [± ?] ? [± ?] 147.04 [± 0.16]

13 2556.93 [± 15.03] 3.59 [± 0.41] ? [± ?] ? [± ?] ? [± ?] ? [± ?] 133.42 [± 1.14]

14 ? [± ?] 46.86 [± 1.06] ? [± ?] ? [± ?] ? [± ?] ? [± ?] ? [± ?]
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Fig. 5. (a) The running time in seconds and (b) maximum absolute error relative to Qabs for the direct and the fast methods

as a function of N(= M). For N > 3, 200 the timing results for the direct evaluation were obtained by evaluating the sum

at M = 100 points and then extrapolating (shown as dotted line). (c) The speedup achieved and (d) maximum absolute error

relative to Qabs for the direct and the fast methods as a function of ε for N(= M) = 3, 000. Results are on a 1.6 GHz Pentium

M processor with 512 MB of RAM.

choose the regularization parameter λ, on each fold we used the training split and performed

a five-fold cross validation on the training set. The performance is evaluated in terms of the

generalized WMW statistic (A WMW of one implies perfect ranking). We used a full order

graph to evaluate the ranking performance.

We compare the performance and the time taken for the following methods–

1) RankNCG The proposed nonlinear conjugate-gradient ranking procedure. The tolerance

for the conjugate gradient procedure was set to 10−3 . The nonlinear conjugate gradient
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TABLE III

THE CORRESPONDING GENERALIZED WMW STATISTIC AND THE STANDARD DEVIATION ON THE TEST SET FOR THE

RESULTS SHOWN IN TABLE II.

RankNCG direct RankNCG fast RankNet linear RankNet two layer RankSVM linear RankSVM quadratic RankBoost

1 0.677 [± 0.233] 0.650 [± 0.210] 0.579 [± 0.096] 0.479 [± 0.284] 0.545 [± 0.236] 0.400 [± 0.276] 0.675 [± 0.173]

2 0.987 [± 0.019] 0.948 [± 0.077] 0.872 [± 0.088] 0.968 [± 0.038] 0.973 [± 0.048] 0.837 [± 0.142] 0.906 [± 0.144]

3 0.942 [± 0.044] 0.914 [± 0.047] 0.828 [± 0.030] 0.891 [± 0.064] 0.934 [± 0.019] 0.861 [± 0.088] 0.651 [± 0.045]

4 0.764 [± 0.028] 0.771 [± 0.046] 0.773 [± 0.046] 0.750 [± 0.035] 0.793 [± 0.018] 0.795 [± 0.035] 0.748 [± 0.056]

5 0.920 [± 0.015] 0.938 [± 0.020] 0.919 [± 0.035] 0.923 [± 0.040] 0.929 [± 0.026] 0.901 [± 0.014] 0.926 [± 0.018]

6 0.999 [± 0.002] 0.998 [± 0.002] 0.998 [± 0.003] 0.996 [± 0.003] 0.998 [± 0.002] 0.995 [± 0.008] 0.992 [± 0.004]

7 1.000 [± 0.000] 1.000 [± 0.000] 1.000 [± 0.000] 0.800 [± 0.400] 1.000 [± 0.000] 1.000 [± 0.000] 1.000 [± 0.000]

8 0.984 [± 0.004] 0.984 [± 0.003] 0.951 [± 0.004] 0.765 [± 0.245] 0.984 [± 0.004] 0.996 [± 0.001] 0.958 [± 0.003]

9 0.944 [± 0.012] 0.944 [± 0.012] 0.915 [± 0.017] 0.899 [± 0.028] 0.945 [± 0.013] 0.747 [± 0.005] 0.848 [± 0.015]

10 0.625 [± 0.025] 0.625 [± 0.025] 0.688 [± 0.032] 0.644 [± 0.054] 0.625 [± 0.026] 0.823 [± 0.008] 0.618 [± 0.024]

11 0.536 [± 0.011] 0.534 [± 0.008] ? [± ?] ? [± ?] ? [± ?] ? [± ?] 0.535 [± 0.014]

12 0.917 [± 0.005] 0.917 [± 0.005] ? [± ?] ? [± ?] ? [± ?] ? [± ?] 0.845 [± 0.006]

13 0.623 [± 0.008] 0.623 [± 0.008] ? [± ?] ? [± ?] ? [± ?] ? [± ?] 0.607 [± 0.010]

14 ? [± ?] 0.979 [± 0.001] ? [± ?] ? [± ?] ? [± ?] ? [± ?] ? [± ?]
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Fig. 6. Effect of ε-accurate derivatives (a) The time taken and (b) the WMW statistic for the proposed method and the faster

version of the proposed method as a function of ε. The CG tolerance was set to 10−3. Results are for dataset 10. The bars

indicate ± one standard deviation.
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optimization procedure was randomly initialized. We compare the following two versions–

• RankNCG direct This uses the exact gradient computations.

• RankNCG fast This uses the fast approximate gradient computation. The accuracy

parameter ε for the fast gradient computation was set to 10−6.

2) RankNet [6] A neural network which is trained using pairwise samples based on cross-

entropy cost function. For training in addition to the preference relation xi º xj , each pair

also has a associated target posterior Pr[xi º xj]. In our experiments we used hard target

probabilities of 1 for all pairs. The best learning rate for the net was chosen using WMW

as the cross validation measure. Training was done in a batch mode for around 500-1000

epochs or till there are no function decrease in the cost function. We used two versions

of the RankNet–

• RankNet two layer A two layer neural network with 10 hidden units.

• RankNet linear A single layer neural network.

3) RankSVM [9], [10] A ranking function is learnt by training an SVM classifier 2 over pairs

of examples. The tradeoff parameter was chosen by cross validation. We used two version

of the RankSVM–

• RankSVM linear The SVM is trained using a linear kernel.

• RankSVM quadratic The SVM is trained using a polynomial kernel k(x, y) = (x.y+c)p

of order p = 2.

4) RankBoost [7] A boosting algorithm which effectively combines a set of weak ranking

functions. We used {0, 1}-valued weak rankings that use the ordering information provided

by the features [7]. Training a weak ranking function involves finding the best feature and

the best threshold for that feature. We boosted for 50-100 rounds.

C. Results

The results are summarized in Table II and III. All experiments were run on a 1.83GHz

machine with 1.00GB of RAM. The following observations can be made.

2Using the SVM-light packages available at http://svmlight.joachims.org
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1) Quality of approximation: The WMW is similar for (a) the proposed exact method (RankNCG

direct) (b) the approximate method (RankNCG fast). The run time of the approximate method

is one to two magnitudes lower than the exact method, especially for large data sets. Thus we

are able to get very good speedups without sacrificing ranking accuracy.

2) Comparison with other methods: All the methods show very similar WMW scores. In

terms of the training time the proposed method clearly beats all the other methods. For small

datasets RankSVM linear is comparable in time to our methods. For large datasets RankBoost

shows the next best time.

3) Ability to handle large datasets: For dataset 14 only the fast method completed execution.

The direct method and all the other methods either crashed due to huge memory requirements or

took an incredibly large amount of time. Further, since the accuracy of learning (i.e. estimation)

clearly depends on the ability to leverage large datasets, in real life, the proposed methods are

also expected to be more accurate on large-scale ranking problems.

D. Impact of the gradient approximation:

Figure 6 studies the accuracy and the run-time for dataset 10 as a function of the gradient

tolerance, ε. As ε increases, the time taken per-iteration (and hence overall) decreases. However, if

it is too large the total time taken starts increasing (after ε = 10−2 in Figure 6(a)). Intuitively, this

is because the use of approximate derivatives slows the convergence of the conjugate gradient

procedure by increasing the number of iterations required for convergence. The speedup is

achieved because computing the approximate derivatives is extremely fast, thus compensating

for the slower convergence. However, after a certain point the number of iterations dominates

the run-time. Also, notice that ε has no significant effect on the WMW achieved, because the

optimizer still converges to the optimal value albeit at a slower rate.

VII. APPLICATION TO COLLABORATIVE FILTERING

As an application we will show some results on a collaborative filtering task for movie

recommendations. We use the MovieLens dataset 3 which contains approximately 1 million

ratings for 3592 movies by 6040 users. Ratings are made on a scale of 1 to 5. The task is to

3The dataset was downloaded from http://www.grouplens.org/.
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TABLE IV

RESULTS FOR THE EACHMOVIE DATASET: THE MEAN TRAINING TIME AND THE STANDARD DEVIATION IN SECONDS

(AVERAGED OVER 100 USERS) AS A FUNCTION OF THE NUMBER OF FEATURES d.

d RankNCG fast RankBoost

50 0.48 [± 0.19] 6.68 [± 1.65]

100 0.44 [± 0.17] 12.67 [± 2.83]

200 0.42 [± 0.17] 27.53 [± 5.99]

400 0.41 [± 0.17] 68.08 [± 13.95]

800 0.45 [± 0.13] 193.18 [± 39.75]

1600 0.51 [± 0.15] 613.54 [± 124.93]

TABLE V

THE CORRESPONDING GENERALIZED WMW STATISTIC AND THE STANDARD DEVIATION ON THE TEST SET FOR THE

RESULTS SHOWN IN TABLE IV.

d RankNCG fast RankBoost

50 0.693 [± 0.054] 0.672 [± 0.056]

100 0.707 [± 0.049] 0.679 [± 0.050]

200 0.722[± 0.053] 0.685 [± 0.057]

400 0.720 [±0.054] 0.685 [± 0.051]

800 0.721 [± 0.050] 0.673 [± 0.058]

1600 0.719 [± 0.053] 0.682 [± 0.058]

predict the movie rankings for a user based on the rankings provided by other users. For each

user we used 70% of the movies rated by him for training and the remaining 30% for testing. The

features for each movie consisted of the ranking provided by d other users. For each missing

rating, we imputed a sample drawn from a Gaussian distribution with its mean and variance

estimated from the available ratings provided by the other users. Table IV and V shows the time

taken and the WMW score for this task for the two fastest methods. The results are averaged

over 100 users. The other methods took a large amount of time to train just for one user. The

proposed method shows the best WMW and takes the least amount of time for training.
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VIII. CONCLUSION AND FUTURE WORK

In this paper we presented an approximate ranking algorithm which directly maximizes (a

regularized lower bound on) the generalized Wilcoxon-Mann-Whitney statistic. The algorithm

was made computationally tractable using a novel, fast summation method for calculating a

weighted sum of erfc functions 4. Experimental results demonstrate that despite the order of

magnitude speedup, the accuracy was almost identical to exact method and other algorithms

proposed in literature.

A. Future Work

Other applications for fast summation of erfc functions: The fast summation method pro-

posed could be potentially useful in neural networks, probit regression, and in Bayesian models

involving sigmoids.

Nonlinear, kernelized variations: The main focus of the paper was to learn a linear ranking

function. A nonlinear version of the algorithm can be easily derived using the kernel trick (See

[9] for an SVM analog). We kernelize the algorithm by replacing the linear ranking function

f(x) = wT x with f(x) =
∑m

i=1 αik(x, xi) = αTk(x), where k is the kernel used and k(x) is

a column vector defined by k(x) = [k(x, x1), . . . , k(x, xm)]T . The penalized log-likelihood for

this problem changes to:

L(α) = −λ

2
‖α‖2 +

∑
Eij

mi∑

k=1

mj∑

l=1

log σ
[
αT

(
k(xj

l )− k(xi
k)

)]
. (43)

The gradient vector is given by:

g(α) = ∇L(α) = −λα

−
∑
Eij

mi∑

k=1

mj∑

l=1

(
k(xi

k)− k(xj
l )

)
σ

[
αT

(
k(xi

k)− k(xj
l )

)]
. (44)

The gradient is now a column vector of length m, while it was of length d for the linear version.

As a result evaluating the gradient now requires roughly O(m2+M2) computations. The O(M2)

part is due the the weighted sum of sigmoid (or erfc) functions, for which we can use the fast

4The software for the fast erfc summation is available on the first author’s website at http://www.umiacs.umd.edu/

˜vikas/.
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approximation proposed in this paper. The O(m2) part arises due to the multiplication of the

m×m kernel matrix with a vector. Fast approximate matrix-vector multiplication techniques like

dual-tree methods [27] and the improved fast Gauss transform [28], [29] can be used to speedup

this computation. However each of these methods have their own regions of applicability and

more experiments need to be done to evaluate the final speedups that can be obtained.

Independence of pairs of samples: In common with most papers following [9], we have

assumed that every pair (xj
l , x

i
k) is drawn independently, even though they are really correlated

(actually, the samples xi
k are drawn independently). In the future we plan to correct for this lack

of independence using a statistical random-effects-model.

Effect of ε on convergence rate: We plan to study the convergence behavior of the conjugate

gradient procedure using approximate gradient computations. This would give us a formal

mechanism to choose ε.

Other metrics: The paper considers only the WMW statistic, but many information retrieval

metrics (e.g. mean reciprocal rank, mean average precision, normalized discounted cumulative

gain) are more sophisticated. They try to weight the items that appear at the top of the list, more.

In the future we would like to extend the proposed method to other commonly used metrics.
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