
A fast algorithm for learning large scale preference relations

Vikas C. Raykar, Ramani Duraiswami
{vikas,ramani}@umiacs.umd.edu
Department of Computer Science

University of Maryland, CollegePark
CollegePark, MD, USA

Balaji Krishnapuram
balaji.krishnapuram@siemens.com

Computer Aided Diagnosis and Therapy Group
Siemens Medical Solutions

Malvern, PA, USA

Abstract

We consider the problem of learning the rank-
ing function that maximizes a generalization
of the Wilcoxon-Mann-Whitney statistic on
training data. Relying on an ε-exact approx-
imation for the error-function, we reduce the
computational complexity of each iteration
of a conjugate gradient algorithm for learn-
ing ranking functions from O(m2), to O(m),
where m is the size of the training data.
Experiments on public benchmarks for ordi-
nal regression and collaborative filtering show
that the proposed algorithm is as accurate as
the best available methods in terms of rank-
ing accuracy, when trained on the same data,
and is several orders of magnitude faster.

1 Introduction

Largely motivated by applications in search engines,
information retrieval, and collaborative filtering, rank-
ing has recently received significant attention in the
statistical machine learning and information retrieval
communities. In a typical formulation, we compare
two instances and determine which one is better or
preferred. Based on this, a set of instances can be
ranked according to the desired preference relation.

The problem of learning a ranking has been formalized
in many ways. We adopt the most general formulation
based on directed preference graphs [4, 6]. This pro-
vides flexibility to learn different kinds of preference
relations by changing the graph. We are given train-
ing data A, a directed preference graph G = (V, E)
encoding the preference relations, and a function class
F from which to choose the ranking function f .

The training data A =
⋃S

j=1(Aj = {xj
i ∈ Rd}mj

i=1)
contains S classes (sets); each class Aj contains mj

samples, with a total of m =
∑S

j=1 mj samples in A.

Each vertex of G = (V, E) corresponds to a class Aj .
The existence of a directed edge Eij from Ai → Aj

means that all training examples in Aj should be pre-
ferred or ranked higher than any training example in
Ai, i.e. , ∀(xi

k ∈ Ai, xj
l ∈ Aj), xj

l º xi
k.

The preference relation x º y means ‘x is at least
as good as y’. One way of describing preference re-
lations is by means of a ranking function. A function
f : Rd → R is a ranking function representing the pref-
erence relation º if ∀x, y ∈ Rd, x º y ⇔ f(x) ≥ f(y).
The ranking function f provides a numerical score to
the instances based on which they can be ordered.

Our goal is to learn a ranking function f : Rd → R
such that f(xj

l) ≥ f(xi
k) for as many pairs as possible

in the training data A and also to perform well on
unseen examples. The output f(xk) can be sorted to
obtain a ranking for a set of test samples {xk ∈ Rd}.
While a ranking function can be obtained by learning
classifiers or ordinal regressors, it is more advantageous
to learn the ranking function directly due to two rea-
sons. First, in many scenarios it is more natural to
obtain training data for pair-wise preference relations
rather than the actual labels for individual samples.
Second, the loss function used for measuring the accu-
racy of classification or ordinal regression—e.g. the 0-1
loss function—is computed for every sample individu-
ally, and then averaged over the training or the test
set. In contrast, to asses the quality of the ranking
for arbitrary preference graphs, we will use a general-
ized version of the Wilcoxon-Mann-Whitney (WMW)
statistic [6, 12] that is averaged over pairs of samples:

WMW(f,A,G) =

∑
Eij

∑mi

k=1

∑mj

l=1 1f(xj
l)≥f(xi

k)∑
Eij

∑mi

k=1

∑mj

l=1 1
,

(1)
where 1a≥b = 1 if a ≥ b, and 0 otherwise. The WMW
is an estimate of the probability of correct pairwise
ordering Pr[f(xi) ≥ f(xj)], for a randomly drawn pair
(xi, xj) such that xi º xj . This is a generalization of
the area under the ROC curve (for evaluating bipartite

ranking), to arbitrary preference graphs between many
classes of samples. For a perfect ranking WMW=1,
and WMW=0.5 for a completely random choice.

Maximizing the WMW is a discrete optimization prob-
lem. Most ranking algorithms optimize a continuous
relaxation instead. Although the WMW itself can be
computed in O(md + m log m) time, previous algo-
rithms took O(m2) time in order to evaluate the re-
laxed version or its gradient, seriously restricting the
use of ranking formulations to large datasets; typically
they could only learn from a few thousand samples.

Proposed approach: In this paper we directly maxi-
mize the relaxed version of the WMW statistic using a
conjugate gradient optimization procedure. The gra-
dient computation scales as O(dm2) which is computa-
tionally intractable for large datasets. Inspired by the
fast multipole methods in computational physics [8],
we develop a new algorithm that computes the gradi-
ent approximately to ε precision in O(dm) time. Thus,
much larger training datasets can be analyzed.

2 Previous work

Learning rankings was first treated as a classification
problem on pairs of objects by Herbrich et al [9] and
subsequently used on a web page ranking task by
Joachims [11]. Algorithms similar to SVMs were
used to learn the ranking function. Burges et al. [2],
use a neural network (RankNet) to model the underly-
ing ranking function. Similar to our approach it used
a gradient descent technique to optimize a probabilis-
tic cost function–the cross entropy. The neural net is
trained on pairs of training examples using a modi-
fied backpropagation. With collaborative filtering as
an application Freund et al. [5] proposed the Rank-
Boost algorithm for combining preferences. Dekel et
al. [4] present a general framework for label ranking
by means of preference graphs and graph decomposi-
tion procedure. A log-linear model is learnt using a
boosting algorithm.

The naive optimization strategy proposed in all the
above algorithms suffer from O(m2) growth in the
number of comparisons. Approximation methods have
recently been investigated. An efficient implementa-
tion of the RankBoost algorithm for two class problems
was presented in [5]. A convex-hull based relaxation
scheme was proposed in [6]. Yan and Hauptmann [17]
proposed an approximate margin-based rank learning
framework by bounding the pairwise risk function.

Novel Contributions: Our algorithm differs from
the previous approaches in the following ways–

(1) The approaches [2,4,9,11] are computationally ex-
pensive to train due to the quadratic scaling in the

number of pairwise comparisons. While our algorithm
also uses pairwise comparisons the runtime is still lin-
ear. This is made possible by fast approximate sum-
mation of erfc functions.

(2) Unlike [17], which avoids the quadratic growth us-
ing a bound on the risk functional, and [6], which sum-
marizes the slack variables for an entire class by a sin-
gle, common scalar value, our ranking algorithm opti-
mizes the WMW without such coarse approximations.
We use approximations only while computing the gra-
dient inside the optimization procedure. As a result
the optimization will still converge to the optimal so-
lution, although it will take a few more iterations.

(3) The cost function which we maximize is a lower
bound on the WMW. Previous approaches which try
to maximize the WMW [10,16] consider only a classi-
fication problem but still incur the quadratic growth
in the number of comparisons.

(4) This paper improves the computational complexity
of batch optimization algorithms for analyzing large
training datasets. A parallel body of literature has
considered online, sequential update algorithms [3].

3 The MAP estimator

For ease of exposition we will consider the family of
linear ranking functions: F = {fw}, where for any
x,w ∈ Rd, fw(x) = wT x; w are the weights to be
learnt. A nonlinear version of the algorithm can be de-
rived using the kernel trick (An SVM analog is in [9]).

Although we want to choose w to maximize the gen-
eralized WMW, for computational efficiency, we shall
instead maximize a continuous surrogate via the log-
likelihood L(fw,A,G) = log Pr [correct ranking|w]:

L(fw,A,G) = log
∏

Eij

mi∏

k=1

mj∏

l=1

Pr
[
fw(xj

l) > fw(xi
k)|w

]
.

In common with most papers [2, 9], we have as-
sumed that every pair (xj

l , x
i
k) is drawn independently,

whereas only the original samples are drawn indepen-
dently. We use the sigmoid function to model the pair-
wise probability, i.e.

Pr
[
fw(xj

l) > fw(xi
k)|w

]
= σ

[
wT (xj

l − xi
k)

]
, (2)

where σ(z) = (1+exp(−z))−1 is the sigmoid function.
It has been previously used in [2] to model pairwise
posterior probabilities. However they optimized the
cross-entropy as the objective function. Assuming a
prior p(w) = N (w|0, λ−1) on the weights w, the opti-
mal maximum a-posteriori (MAP) estimator is of the

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

z

Indicator function
Log−sigmoid lower bound

(a)

−5 0 5
0

0.2

0.4

0.6

0.8

1

z

σ(z)
Approximation

(b)

−5 0 5
−0.5

0

0.5

1

1.5

2

2.5

z

e
rf

c(
z)

(c)

2 4 6 8 10 12 14
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

p

M
a

x
im

u
m

 a
b

s
o

lu
te

 e
rr

o
r

Actual
Bound

(d)

Figure 1: (a) Log-sigmoid lower bound for the 0-1 function. (b) Approximation of the sigmoid function. (c) The
erfc function. (d) The maximum absolute error between the erfc and the truncated series representation as a
function of the truncation number p for any z ∈ [−4, 4]. The error bound (Eq. 6) is also shown as a dotted line.

form ŵMAP = arg maxw L(w), where L(w) is the pe-
nalized log-likelihood:

L(w) = −λ

2
‖w‖2 +

∑

Eij

mi∑

k=1

mj∑

l=1

log σ
[
wT (xj

l − xi
k)

]
.

Log-Sigmoid lower bound: Since a 0-1 indicator
function is lower bounded by a scaled and shifted
log-sigmoid function (see Fig. 1(a))—i.e. 1z>0 ≥ 1 +
(log σ(z)/log 2)—comparing the formulae for the log-
likelihood L(w) to that of the WMW we see that a suit-
ably scaled version of L(w) lower bounds the WMW.
Thus, maximizing the log-likelihood is equivalent to
maximizing a lower bound on the WMW. The prior
p(w) acts as a regularizer. The log-sigmoid bound was
also used in [4] in a boosting algorithm.

4 Gradient based learning

We use the Polak-Ribière variant of the nonlinear con-
jugate gradients (CG) algorithm [13] to find the w that
maximizes L(w). The CG method only needs the gra-
dient g(w) and does not require evaluation of either
L(w) or the second derivative (Hessian) matrix. The
gradient vector w.r.t. w is:

g(w) = −λw −
∑

Eij

mi∑

k=1

mj∑

l=1

(xi
k − xj

l)σ
[
wT (xi

k − xj
l)

]
.

Note that the evaluation of the penalized log-likelihood
or its gradient requiresM2 =

∑
Eij

mimj operations—
this quadratic scaling is prohibitive for large datasets.
The main contribution of this paper is an extremely
fast method to compute the gradient approximately.

Gradient approximation: We use the approxi-
mation σ(z) ≈ 1 − 1

2erfc(
√

3z√
2π

), where the com-
plementary error function is defined by erfc(z) =
2√
π

∫∞
z

e−t2dt [See Figs. 1(b),1(c)]. As a result, the

approximate gradient (still O(dM2)) becomes:

g(w) = ∇wL(w) ≈ −λw −
∑

Eij

mi∑

k=1

mj∑

l=1

(xi
k − xj

l)

[
1− 1

2
erfc

(√
3wT (xi

k − xj
l)√

2π

)]
. (3)

For any x, let z =
√

3wT x/(π
√

2). Note that z is
a scalar and—for a given w—can be computed in
O(dm) time for the entire training set. After rear-
ranging the terms in the gradient it can be shown that
(see tech report [14] for more details) the computa-
tional primitive contributing to the quadratic complex-
ity are the two sums– Ej

−(y) =
∑mj

l=1 erfc(y − zj
l) and

Ei
+(y) =

∑mi

k=1 erfc(y + zi
k). Note that Ej

−(y) is the
sum of mj erfc functions–requires O(mj) operations
and to evaluate it at mi points requires O(mimj) op-
erations. Below we show how it can be computed in
linear O(mi + mj) time. Hence, the gradient can be
computed in linear O(dSm + (S − 1)m) time.

5 Fast summation of erfc functions

We can write Ej
−(y) and Ei

+(y) as the sum of N erfc
functions centered at zi ∈ R, with weights qi ∈ R:

E(y) =
N∑

i=1

qi erfc(y − zi). (4)

Direct computation of (4) at M points {yj ∈ R}M
j=1 is

O(MN). We derive an ε-exact approximation al-
gorithm to compute this in O(M + N) time. For any
ε > 0, Ê is an ε − exact approximation to E if the
maximum absolute error relative to the total weight
Qabs =

∑N
i=1 |qi| is upper bounded by a specified ε,

i.e. , maxyj

[
|Ê(yj)− E(yj)|/Qabs

]
≤ ε. The constant

in O(M + N) for our algorithm depends on the de-
sired accuracy ε, which however can be arbitrary. At

machine precision there is no difference between the
direct and the fast methods. This approach relies on
retaining only the first few terms of an infinite series
expansion for the erfc function (to desired accuracy).

Beauliu series expansion: We use the truncated
Fourier series representation derived by Beauliu [1,15]:

erfc(z) = 1− 4
π

2p−1∑

n=1
n odd

e−n2h2

n
sin (2nhz)+error(z). (5)

where |error(z)| <

∣∣∣∣ 4
π

∑∞
n=2p+1

n odd

e−n2h2

n sin (2nhz)
∣∣∣∣ +

erfc
(

π
2h − |z|

)
. Here, p is the truncation number and h

is a real number related to the sampling interval. This
series converges rapidly, especially as z → 0. Fig. 1(d)
shows the maximum absolute error between the actual
value of erfc and the truncated series representation as
a function of p. For example for any z ∈ [−4, 4] with
p = 12 the error is less than 10−6. We will choose p
and h such that the error is less than the desired ε.
For this purpose we further bound the first term in
the error as follows (see [14] for a derivation)—

|error(z)| < 2√
πh

erfc ((2p + 1)h) + erfc
(π

2h
− |z|

)

(6)

Fast summation algorithm: A fast algorithm to
compute E(y) based on (5) can be written as

E(y) =
N∑

i=1

qierfc(y − zi)

=
N∑

i=1

qi[1− 4
π

2p−1∑

n=1
n odd

e−n2h2

n
sin {2nh(y − zi)}+error].

Ignoring the error term for the time being, the sum
E(y) can be approximated as:

Ê(y) = Q− 4
π

N∑

i=1

qi

2p−1∑

n=1
n odd

e−n2h2

n
sin {2nh(y − zi)},

(7)
where Q =

∑N
i=1 qi. The terms y and zi are entan-

gled in the argument of the sin function, leading to a
quadratic complexity. The crux of the algorithm is to
separate them using the trigonometric identity :

sin {2nh(y − zi)} =
sin {2nh(y − z∗)} cos {2nh(zi − z∗)}
− cos {2nh(y − z∗)} sin {2nh(zi − z∗)}. (8)

Note we have shifted all the points by z∗. Substituting
the separated representation (8), exchanging the order

of summation, and regrouping terms in (7),

Ê(y) = Q− 4
π

2p−1∑

n=1
n odd

An sin {2nh(y − z∗)}

+
4
π

2p−1∑

n=1
n odd

Bn cos {2nh(y − z∗)}. (9)

An =
e−n2h2

n

N∑

i=1

qi cos {2nh(zi − z∗)}, and

Bn =
e−n2h2

n

N∑

i=1

qi sin {2nh(zi − z∗)}. (10)

Complexity analysis: The coefficients {An, Bn} do
not depend on y. Hence each An, Bn can be pre-
computed in O(N) time. Since there are p such coeffi-
cients the total complexity to compute them is O(pN).
The term Q can also be pre-computed in O(N) time.
Once A, B, and Q are known, evaluation of Ê(y)
at M points requires O(pM) operations. Therefore,
the computational complexity has reduced from the
quadratic O(NM) to the linear O(p(N + M)). We
need space to store the points and the coefficients A
and B. Hence, the storage complexity is O(N+M+p).

Direct inclusion/exclusion: From Eq. 6 we see that
for fixed p and h, as |z| increases the error increases.
Therefore as |z| increases, h should decrease and con-
sequently the series converges slower leading to a large
truncation number. Note that s = (y−zi) ∈ [−∞,∞].
The p required to approximate erfc(s) can be quite
large for large |s|. Luckily erfc(s) → 2 as s → −∞
and erfc(s) → 0 as s →∞ very quickly [See Fig. 1(c)].
Since we only want a precision ε, we can approximate:

erfc(s) ≈




2 if s < −r
p-truncated series if −r ≤ s ≤ r
0 if s > r

(11)

The bound r and the truncation number p have to be
chosen such that for any s the error is always less than
ε, e.g. , for error of the order 10−15 we need to use the
series expansion for −6 ≤ s ≤ 6. However, we cannot
check the value of (y − zi) for all pairs of zi and y.
This would lead us back to the quadratic complexity.
To avoid this, we subdivide the points into clusters.

Space sub-division: We uniformly sub-divide the
domain into K intervals of length 2rx. The N source
points are assigned into K clusters, Sk for k = 1, . . . , K
with ck being the center of each cluster. The aggre-
gated coefficients are computed for each cluster and
the total contribution from all the influential clusters
is summed up. For each cluster, if |y − ck| ≤ ry, we

10
2

10
3

10
4

10
−2

10
0

10
2

10
4

10
6

N

T
im

e
 (

se
co

n
d

s)
Direct
Fast

(a)

10
2

10
3

10
4

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

N

M
a

x.
 A

b
s.

 e
rr

o
r/

 Q

Desired
Actual

(b)

10
−10

10
−5

500

1000

1500

2000

2500

3000

3500

4000

ε

S
p

e
e

d
u

p

(c)

10
−10

10
−5

10
−15

10
−10

10
−5

10
0

ε

M
a

x.
 A

b
s.

 e
rr

o
r/

 Q

Desired
Actual

(d)

Figure 2: (a) The time in secs. and (b) max. absolute error relative to Qabs for the direct and the fast
methods as a function of N(= M). For N > 3, 200 the timing results for the direct evaluation were obtained
by evaluating the sum at M = 100 points and then extrapolating (shown as dotted line). (c) The speedup
achieved and (d) maximum absolute error relative to Qabs for the direct and the fast methods as a function of ε
for N(= M) = 3, 000. Results are on a 1.6 GHz Pentium M processor with 512 MB of RAM

will use the series coefficients. If (y − ck) < −ry, we
will include a contribution of 2Qk; if (y− ck) > ry, we
ignore that cluster. The cut off radius ry is chosen to
achieve a given accuracy.

The cost to compute A,B, and Q is still O(pN) since
each zi belongs to only one cluster. Let l be the num-
ber of influential clusters, i.e., the clusters for which
|y − ck| ≤ ry. Evaluating Ê(y) at M points due to
these l clusters is O(plM). Let m be the number of
clusters for which (y − ck) < −ry. Evaluating Ê(y) at
M points due to these m clusters is O(mM). Hence
the total time is O(pN + (pl + m)M). The storage
complexity is O(N + M + pK).

Choosing parameters: Given any ε > 0, we choose
the parameters: rx (the interval length), ry (the cut
off radius), p (the truncation number) and h, so that
for any target y, |Ê(y)− E(y)| ≤ Qabsε. The following
choice guarantees that error< ε: (1) rx = 0.1erfc−1(ε),
(2) ry = erfc−1(ε)+2rx, (3) h = π/3

(
r + erfc−1 (ε/2)

)
,

and (4) p = d 1
2herfc−1

(√
πhε
4

)
e (see [14] for details).

Numerical experiments: First we analyze the fast
summation of erfc functions. Experiments with this
primitive embedded in the MAP optimization are pro-
vided below. Fig. 2(a) and 2(b) show the running
time and the maximum absolute error relative to Qabs

for both the direct and the fast methods as a function
of N(= M). The points were normally distributed
with zero mean and unit variance, and qi were set to
1. While the running time of the fast method grows
linearly, that of the direct evaluation grows quadrat-
ically. The actual error is well below the permissible
error, validating our bound. For N = M = 51, 200
points, while direct evaluation takes 17.26 hours, the
fast evaluation requires only 4.29 seconds with an error
of 10−10. Fig. 2(c) shows the tradeoff between preci-
sion and speedup. The speedup is obtained at the cost
of slightly reduced accuracy.

6 Experiments: Ranking Benchmarks

Datasets: We used two artificial datasets and ten
public benchmark datasets 1 in Table 1, previously
used to evaluate ranking [6] and ordinal regression.
RandNet and RandPoly are artificial datasets, gener-
ated as described in [2].

Evaluation Procedure: Accuracy was evaluated for
each dataset in a five-fold cross validation experiment.
In order to choose the regularization parameter λ, on
each fold we used the training split and performed
a five-fold cross validation on the training set. The
ranking-accuracy is evaluated in terms of the general-
ized WMW statistic for a full order graph.

Comparisons: We compare the WMW and the run-
time for the following methods.

A. RankNCG (proposed) The proposed nonlinear
conjugate-gradient ranking procedure. The tolerance
for the conjugate-gradient procedure was set to 10−3.
We compare the following two versions: (1) RankNCG
direct which uses the exact gradient computation. (2)
RankNCG fast which uses the fast approximate gradi-
ent computation. The accuracy ε for the fast gradient
computation was set to 10−6.

B. RankNet [2] A neural network which is trained us-
ing pairwise samples based on cross-entropy cost func-
tion. Training was done for around 500-1000 epochs.
We used two versions of the RankNet: (a) RankNet
two layer A two layer neural network with 10 hidden
units; (b) RankNet linear A single layer neural net-
work.

C. RankSVM [9, 11] A ranking function is learnt by

1Downloaded from http://www.liacc.up.pt/

~ltorgo/Regression/DataSets.html. Since these
datasets were originally for regression, we discretized the
continuous target values into S equal sized bins (Table 1).

Table 1: Datasets used in the ranking experiments. N is the size of the data set. d is the number of attributes.
S is the number of classes. M is the average total number of pairwise relations per fold of the training set.

Dataset name N d S M Dataset name N d S M
1 Diabetes 43 3 2 272 8 Airplane Companies 950 10 5 217301
2 Pyrimidines 74 28 3 1113 9 RandNet 1000 50 6 195907
3 Triazines 186 61 4 7674 10 RandPoly 1000 50 6 225131
4 Wisconsin Breast Cancer 194 33 4 8162 11 Abalone 4177 9 3 3713729
5 Machine-CPU 209 7 4 9820 12 RandNet 5000 50 6 6269910
6 Auto-MPG 392 8 3 30057 13 RandPoly 5000 50 6 5367241
7 Boston Housing 506 14 2 33693 14 California Housing 20640 9 3 82420255

training an SVM classifier2 over pairs of examples.
We used two version of the RankSVM: RankSVM lin-
ear using a linear kernel and RankSVM quadratic using
a polynomial kernel k(x, y) = (x.y + c)2.

D. RankBoost [5] A boosting algorithm which com-
bines a set of weak ranking functions. We used weak
binary rankings as the ordering information provided
by the features, boosted for 50-100 cycles.

Results: The results are summarized in Table 3 and
4. The following observations can be made.

(1) Quality of approximation The WMW is simi-
lar for both the proposed exact method (RankNCG-
direct) and the approximate method (RankNCG fast)
but the run time of RankNCG-fast is one to two mag-
nitudes lower, especially for large data sets.

(2) Comparison with other methods All the meth-
ods show very similar WMW scores. In terms of the
training time the proposed method clearly beats all
the other methods. For small datasets RankSVM lin-
ear is comparable in time to our methods. For large
datasets RankBoost shows the next best run-time3.

(3) Ability to handle large datasets For dataset
14 only the fast method completed execution. All the
other methods (including RankBoost) either crashed
due to huge memory requirements or took an incred-
ibly large amount of time. Further, since the accu-
racy of learning (i.e. estimation) clearly depends on
the ability to leverage large datasets, in real life, the
proposed methods are also expected to be more accu-
rate on large-scale ranking problems.

Gradient approximation: Fig. 3 studies the ac-
curacy and the run-time for dataset 10 as a func-
tion of the gradient tolerance, ε. As ε increases, the
time taken per-iteration (and hence overall) decreases.
However, if it is too large the total time taken starts in-
creasing (after ε = 10−2 in Fig. 3(a)). Intuitively, this
is because the use of approximate derivatives slows the
convergence of the conjugate gradient procedure by in-

2SVM-light: http://svmlight.joachims.org/
3Many experts consider RankBoost to be the best avail-

able algorithm for learning ranking functions.

10
−10

10
−5

10
−1

10
0

10
1

10
2

10
3

ε

T
im

e
 t
a

k
e

n
 (

s
e

c
o

n
d

s
)

Proposed (direct)
Proposed (fast)

(a)

10
−10

10
−5

0.58

0.6

0.62

0.64

0.66

0.68

0.7

ε

W
ilc

o
x
o

n
−

M
a

n
n

−
W

h
it
n

e
y
 s

ta
ti
s
ti
c

Proposed (direct)
Proposed (fast)

(b)

Figure 3: (a) Time taken in seconds and (b) WMW
statistic for the proposed method and the faster ver-
sion as a function of ε. The CG tolerance was 10−3.
creasing the number of iterations required for conver-
gence. The speedup is achieved because computing the
approximate derivatives is extremely fast, thus com-
pensating for the slower convergence. However, after
a certain point the number of iterations dominates the
run-time. Also ε has no significant effect on the WMW
achieved, because the optimizer still converges to the
optimal value albeit at a slower rate.

7 Collaborative filtering:

We show results on a collaborative filtering task for
movie recommendations on the MovieLens dataset4

which contains approximately 1 million ratings for
3592 movies by 6040 users. Ratings are on a scale
of 1 to 5. The task is to predict the movie rankings
for a user based on the rankings provided by other
users. We used 70% of the movies rated by each user
for training and the remaining 30% for testing. The
features for each movie consisted of the ranking pro-
vided by d other users. For each missing rating, we
imputed a sample from a Gaussian distribution with
its mean and variance estimated from the available
ratings provided by the other users. Table 2 shows
the time taken and the WMW score for this task for
the two fastest methods. Results for the other meth-
ods are not shown due to lack of space. The WMW
were not significantly different, but they took a large

4Downloaded from http://www.grouplens.org/.

Table 2: Results for the EACHMOVIE dataset. The
training time in seconds and WMW as a function of
the number of features d (averaged over 100 users).

d RankNCG fast RankBoost

50 0.48 [± 0.19] 6.68 [± 1.65]
0.693 [± 0.054] 0.672 [± 0.056]

100 0.44[± 0.17] 12.67 [± 2.83]
0.707 [± 0.049] 0.679 [± 0.050]

200 0.42 [± 0.17] 27.53 [± 5.99]
0.722 [± 0.053] 0.685 [± 0.057]

400 0.41 [± 0.17] 68.08[± 13.95]
0.720 [± 0.054] 0.685 [± 0.051]

800 0.45 [± 0.13] 193.18 [±39.75]
0.721 [± 0.050] 0.673 [± 0.058]

1600 0.51 [± 0.15] 613.54 [± 124.93]
0.719 [± 0.053] 0.682 [± 0.058]

amount of time to train. The proposed method shows
the best WMW and takes the least amount of time for
training.

8 Conclusions

This paper proposed an approximate ranking algo-
rithm which directly maximizes the generalized WMW
statistic. The algorithm relies on a novel, fast method
for calculating a weighted sum of erfc functions for its
computational efficiency. Experimental results demon-
strate that despite the order(s) of magnitude speedup,
the accuracy was almost identical to the exact method
and other algorithms proposed in literature.

8.1 Future work

Other applications for the fast summation: The fast
erfc summation method proposed could be potentially
useful in neural networks, probit regression, and in
Bayesian models involving sigmoids.

Nonlinear, kernelized variations: In order to retain
focus, we did not discuss the non-linear version of
our algorithm in detail. However, we may easily ker-
nelize it by replacing the linear function wT x with∑m

i=1 αik(x, xi), where k is the kernel used. The com-
putation of the gradient will involve calculating: (a)
the weighted sum of kernel functions, and (b) the
weighted sum of sigmoid (or erfc) functions. Dual-
tree methods [7] and the improved fast Gauss trans-
form [18] may be used to speedup (a). For (b) we can
use the fast approximation proposed in this paper.

Independence of pairs of samples: Like most papers
following [9], we have assumed that every pair (xj

l , x
i
k)

is drawn independently, even though they are really
correlated . We plan to correct for this lack of inde-
pendence using a statistical random-effects-model.

References

[1] N. C. Beauliu. A simple series for personal computer
computation of the error function Q(.). IEEE Trans.
Comm., 37(9):989–991, September 1989.

[2] C. J. C. Burges, T. Shaked, E. Renshaw, A. Lazier,
M. Deeds, N. Hamilton, and G. Hullender. Learning
to rank using gradient descent. In ICML, 2005.

[3] K. Crammer and Y. Singer. Pranking with ranking.
In NIPS 14, 2002.

[4] O. Dekel, C. Manning, and Y. Singer. Log-linear mod-
els for label ranking. In NIPS 16, 2004.

[5] Y. Freund, R. Iyer, and R. Schapire. An efficient
boosting algorithm for combining preferences. JMLR,
4:933–969, 2003.

[6] G. Fung, R. Rosales, and B. Krishnapuram. Learning
rankings via convex hull separation. In NIPS 18, 2006.

[7] A. G. Gray and A. W. Moore. Nonparametric den-
sity estimation: Toward computational tractability. In
SIAM Intl. Conf. Data Mining, 2003.

[8] L. Greengard. Fast algorithms for classical physics.
Science, 265(5174):909–914, 1994.

[9] R. Herbrich, T. Graepel, P. Bollmann-Sdorra, and
K. Obermayer. Learning preference relations for in-
formation retrieval. ICML-98 Workshop: Text Cate-
gorization and Machine Learning, pp. 80–84, 1998.

[10] A. Herschtal and B. Raskutti. Optimising area un-
der the ROC curve using gradient descent. In ICML,
2004.

[11] T. Joachims. Optimizing search engines using click-
through data. Proc. ACM SIGKDD, pp. 133–142,
2002.

[12] H. B. Mann and D. R. Whitney. On a Test of whether
one of two random variables is stochastically larger
than the other. Ann. Math. Stat., 18(1):50–60, 1947.

[13] J. Nocedal and S. J. Wright. Numerical Optimization.
Springer-Verlag, 1999.

[14] V. C. Raykar, R. Duraiswami, and B. Krishnapuram.
Fast weighted summation of erfc functions. CS-TR-
4848, Dept. of Comp. Science, Univ. of Maryland Col-
legePark, 2007.

[15] C. Tellambura and A. Annamalai. Efficient compu-
tation of erfc(x) for large arguments. IEEE Trans
Comm., 48(4):529–532, April 2000.

[16] L. Yan, R. Dodier, M. Mozer, and R. Wolniewicz. Op-
timizing classifier performance via an approximation
to the Wilcoxon-Mann-Whitney statistic. In ICML
2003.

[17] R. Yan and A. Hauptmann. Efficient margin-based
rank learning algorithms for information retrieval. In
CIVR, 2006.

[18] C. Yang, R. Duraiswami, and L. Davis. Efficient kernel
machines using the improved fast Gauss transform. In
NIPS 17, 2005.

T
ab

le
3:

T
he

m
ea

n
tr

ai
ni

ng
ti

m
e

an
d

st
an

da
rd

de
vi

at
io

n
in

se
co

nd
s

(f
or

fiv
e

fo
ld

cr
os

s-
va

lid
at

io
n

ex
pe

ri
m

en
t)

fo
r

th
e

da
ta

se
ts

in
T
ab

le
1.

T
he

sy
m

bo
l
?

in
di

ca
te

s
th

at
th

e
pa

rt
ic

ul
ar

m
et

ho
d

ei
th

er
cr

as
he

d
du

e
to

lim
it

ed
m

em
or

y
re

qu
ir

em
en

ts
or

to
ok

an
in

or
di

na
te

ly
la

rg
e

am
ou

nt
of

ti
m

e.
A

ll
ex

pe
ri

m
en

ts
w

er
e

ru
n

on
a

1.
83

G
H

z
m

ac
hi

ne
w

it
h

1.
00

G
B

of
R

A
M

.
E

xc
ep

t
fo

r
R

an
kS

V
M

w
hi

ch
us

ed
SV

M
-l
ig

ht
,
al

l
th

e
co

de
w

as
w

ri
tt

en
in

M
A

T
L
A

B
.

R
an

kN
C

G
di

re
ct

R
an

k
N

C
G

fa
st

R
an

kN
et

lin
ea

r
R

an
kN

et
tw

o
la

ye
r

R
an

kS
V

M
lin

ea
r

R
an

kS
V

M
qu

ad
ra

ti
c

R
an

kB
oo

st
1

0.
11

[±
0.

02
]

0.
06

[±
0.

01
]

1.
79

[±
0.

03
]

3.
32

[±
0.

11
]

0.
09

[±
0.

04
]

0.
10

[±
0.

01
]

1.
70

[±
0.

09
]

2
0.

63
[±

0.
13

]
0.

12
[±

0.
03

]
7.

11
[±

0.
27

]
13

.5
5

[±
0.

30
]

0.
10

[±
0.

02
]

0.
62

[±
0.

13
]

1.
72

[±
0.

02
]

3
17

.6
3

[±
7.

27
]

0.
70

[±
0.

39
]

58
.1

4
[±

0.
78

]
13

1.
41

[±
2.

19
]

0.
55

[±
0.

28
]

13
.9

6
[±

0.
48

]
6.

70
[±

0.
06

]
4

13
.4

1
[±

9.
35

]
0.

33
[±

0.
43

]
48

.1
3

[±
0.

85
]

97
.2

4
[±

1.
05

]
0.

64
[±

0.
03

]
23

.1
7

[±
3.

37
]

1.
88

[±
0.

04
]

5
20

.3
8

[±
4.

87
]

0.
97

[±
0.

15
]

57
.9

9
[±

0.
58

]
11

1.
14

[±
1.

14
]

1.
14

[±
0.

27
]

24
.4

6
[±

0.
68

]
1.

24
[±

0.
02

]
6

28
.0

5
[±

10
.9

4]
0.

40
[±

0.
23

]
17

5.
63

[±
1.

55
]

33
3.

49
[±

3.
96

]
0.

43
[±

0.
02

]
37

.2
7

[±
3.

10
]

1.
54

[±
0.

04
]

7
18

.9
2

[±
0.

63
]

0.
16

[±
0.

01
]

19
5.

14
[±

4.
75

]
38

1.
28

[±
7.

93
]

0.
36

[±
0.

03
]

13
.9

3
[±

2.
15

]
2.

32
[±

0.
04

]
8

33
2.

88
[±

26
.6

6]
3.

29
[±

0.
88

]
12

64
.5

8
[±

3.
21

]
24

64
.8

4
[±

10
.9

4]
34

.3
2

[±
4.

05
]

13
32

.7
9

[±
69

.4
7]

5.
56

[±
0.

37
]

9
25

0.
37

[±
21

.0
3]

5.
08

[±
0.

47
]

11
66

.2
3

[±
17

.4
7]

23
80

.6
2

[±
34

.5
3]

83
.6

2
[±

6.
30

]
13

62
8.

23
[±

21
0.

10
]

13
.5

5
[±

0.
07

]
10

10
2.

48
[±

0.
59

]
0.

78
[±

0.
04

]
13

41
.2

0
[±

6.
91

]
27

33
.2

5
[±

23
.1

1]
16

56
.5

2
[±

99
.8

9]
14

11
0.

48
[±

12
1.

98
]

13
.9

9
[±

0.
05

]
11

17
36

.4
7

[±
19

1.
03

]
1.

47
[±

0.
38

]
?

[±
?]

?
[±

?]
?

[±
?]

?
[±

?]
62

.9
1

[±
0.

59
]

12
67

31
.0

9
[±

31
2.

41
]

19
.1

0
[±

1.
76

]
?

[±
?]

?
[±

?]
?

[±
?]

?
[±

?]
14

7.
04

[±
0.

16
]

13
25

56
.9

3
[±

15
.0

3]
3.

59
[±

0.
41

]
?

[±
?]

?
[±

?]
?

[±
?]

?
[±

?]
13

3.
42

[±
1.

14
]

14
?

[±
?]

46
.8

6
[±

1.
06

]
?

[±
?]

?
[±

?]
?

[±
?]

?
[±

?]
?

[±
?
]

T
ab

le
4:

T
he

co
rr

es
po

nd
in

g
ge

ne
ra

liz
ed

W
M

W
st

at
is

ti
c

on
th

e
te

st
se

t
fo

r
th

e
re

su
lt

s
sh

ow
n

in
T
ab

le
3.

R
an

kN
C

G
di

re
ct

R
an

k
N

C
G

fa
st

R
an

kN
et

lin
ea

r
R

an
kN

et
tw

o
la

ye
r

R
an

kS
V

M
lin

ea
r

R
an

kS
V

M
qu

ad
ra

ti
c

R
an

kB
oo

st
1

0.
67

7
[±

0.
23

3]
0.

65
0

[±
0.

21
0]

0.
57

9
[±

0.
09

6]
0.

47
9

[±
0.

28
4]

0.
54

5
[±

0.
23

6]
0.

40
0

[±
0.

27
6]

0.
67

5
[±

0.
17

3]
2

0.
98

7
[±

0.
01

9]
0.

94
8

[±
0.

07
7]

0.
87

2
[±

0.
08

8]
0.

96
8

[±
0.

03
8]

0.
97

3
[±

0.
04

8]
0.

83
7

[±
0.

14
2]

0.
90

6
[±

0.
14

4]
3

0.
94

2
[±

0.
04

4]
0.

91
4

[±
0.

04
7]

0.
82

8
[±

0.
03

0]
0.

89
1

[±
0.

06
4]

0.
93

4
[±

0.
01

9]
0.

86
1

[±
0.

08
8]

0.
65

1
[±

0.
04

5]
4

0.
76

4
[±

0.
02

8]
0.

77
1

[±
0.

04
6]

0.
77

3
[±

0.
04

6]
0.

75
0

[±
0.

03
5]

0.
79

3
[±

0.
01

8]
0.

79
5

[±
0.

03
5]

0.
74

8
[±

0.
05

6]
5

0.
92

0
[±

0.
01

5]
0.

93
8

[±
0.

02
0]

0.
91

9
[±

0.
03

5]
0.

92
3

[±
0.

04
0]

0.
92

9
[±

0.
02

6]
0.

90
1

[±
0.

01
4]

0.
92

6
[±

0.
01

8]
6

0.
99

9
[±

0.
00

2]
0.

99
8

[±
0.

00
2]

0.
99

8
[±

0.
00

3]
0.

99
6

[±
0.

00
3]

0.
99

8
[±

0.
00

2]
0.

99
5

[±
0.

00
8]

0.
99

2
[±

0.
00

4]
7

1.
00

0
[±

0.
00

0]
1.

00
0

[±
0.

00
0]

1.
00

0
[±

0.
00

0]
0.

80
0

[±
0.

40
0]

1.
00

0
[±

0.
00

0]
1.

00
0

[±
0.

00
0]

1.
00

0
[±

0.
00

0]
8

0.
98

4
[±

0.
00

4]
0.

98
4

[±
0.

00
3]

0.
95

1
[±

0.
00

4]
0.

76
5

[±
0.

24
5]

0.
98

4
[±

0.
00

4]
0.

99
6

[±
0.

00
1]

0.
95

8
[±

0.
00

3]
9

0.
94

4
[±

0.
01

2]
0.

94
4

[±
0.

01
2]

0.
91

5
[±

0.
01

7]
0.

89
9

[±
0.

02
8]

0.
94

5
[±

0.
01

3]
0.

74
7

[±
0.

00
5]

0.
84

8
[±

0.
01

5]
10

0.
62

5
[±

0.
02

5]
0.

62
5

[±
0.

02
5]

0.
68

8
[±

0.
03

2]
0.

64
4

[±
0.

05
4]

0.
62

5
[±

0.
02

6]
0.

82
3

[±
0.

00
8]

0.
61

8
[±

0.
02

4]
11

0.
53

6
[±

0.
01

1]
0.

53
4

[±
0.

00
8]

?
[±

?]
?

[±
?]

?
[±

?]
?

[±
?
]

0.
53

5
[±

0.
01

4]
12

0.
91

7
[±

0.
00

5]
0.

91
7

[±
0.

00
5]

?
[±

?]
?

[±
?]

?
[±

?]
?

[±
?
]

0.
84

5
[±

0.
00

6]
13

0.
62

3
[±

0.
00

8]
0.

62
3

[±
0.

00
8]

?
[±

?]
?

[±
?]

?
[±

?]
?

[±
?
]

0.
60

7
[±

0.
01

0]
14

?
[±

?]
0.

97
9

[±
0.

00
1]

?
[±

?]
?

[±
?]

?
[±

?]
?

[±
?
]

?
[±

?
]

