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A Fast Algorithm for
Linear Complex Chebyshev Approximations*

By Ping Tak Peter Tang

Abstract. We propose a new algorithm for finding best minimax polynomial approx-
imations in the complex plane. The algorithm is the first satisfactory generalization
of the well-known Remez algorithm for real approximations. Among all available algo-
rithms, ours is the only quadratically convergent one. Numerical examples are presented
to illustrate rapid convergence.

1. Introduction. Given a complex function F analytic on a specified domain
in the complex plane, how can one construct the polynomial, of prescribed degree,
that best approximates F in the Chebyshev (minimax) sense? Applications for
Chebyshev polynomial approximations include

1. approximate numerical conformai mapping [11], [20], [22],
2. discrete antenna problems [24],
3. matrix iterative processes [6], and
4. system and control theory and digital filter design [12], [7].
In the past, complex Chebyshev polynomial approximation has been far less

well understood than its real analogue. In particular, the quadratically convergent
Remez algorithm ([3], [21]) for real approximation has not been satisfactorily gen-
eralized to complex approximation. Although a few generalized Remez algorithms
have been proposed, some do not always converge and none converges quadratically.
One difficulty in the generalization is that a major step in the iterative Remez al-
gorithm is solving a best approximation problem on a small, finite set of points.
While in real approximation the correct small number of points is known, and the
solution to that subproblem is readily obtainable, neither of these happens in the
complex case.

We have developed a way to choose a finite set of points together with another
set of parameters (angles associated with the points) for which a best complex
approximation subproblem is easily solvable. This generalizes the corresponding
subproblem in the Remez algorithm for real approximations. The two sections
following this introduction explain our algorithm.

Carrying the generalization further, we have also proved that our Remez algo-
rithm for complex approximation converges quadratically under a certain condition
similar to the corresponding one for real approximation [27], namely, that the op-
timal error graph has a sufficient number of alternations of sign. Our proof turns
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722 PING TAK PETER TANG

out to be similar to the one for real approximation. Statements of our results on
convergence are given in Sections 4 and 5.

At this point, an interesting difference between real and complex approximation
emerges naturally. Whereas the condition guaranteeing quadratic convergence is
almost always satisfied for real approximation, we do not know yet how often it is
satisfied for complex approximation. Discussions on related issues are presented in
Section 6. Fortunately, computational experience shows that a weaker form of the
condition is almost always satisfied, though no theoretical proof exists. Hence, we
have extended our Remez algorithm to converge quadratically under that weaker
condition. This is the subject of Section 7.

In Section 8, we compare our algorithm with two others recently proposed for
the same problem. We conclude the paper by discussing a few applications and
summarizing our results.

2. Formulation. Since the given function F is analytic, its best polynomial
approximation on the given domain is identical to its best approximation on the
domain's boundary. We will assume that this boundary is the range of a periodic
function with domain [0,1]. For simplicity's sake, we further assume that the pe-
riodic function is smooth (cf. the discussion in Section 6). Since our algorithm
also works for linear approximations with nonpolynomial basis functions, we will
reformulate our problem in terms of a set of general basis functions.

Let f,(pi,ip2,...,<pnbe given smooth functions mapping the unit interval [0,1]
into the complex plane C.

Problem P. Find n real parameters Aj, X2,..., A* such that

n

/(t)-X>W(t)
1=1

for all A = [Ai,A2,...,A„]r in Rn.
To compress the notation, we define the function

n

E(X, •):=/(•)-?(■).      P(-) = £W-)
i=i

and use ||    || to denote the maximum norm taken over the interval [0,1]:
Problem P. Find A* G Rn such that

||£(AV)|| < ||£(A,-)||    for all À€Rn.

A simple example will be illustrative. Suppose we want to best approximate a
function F(z) over the unit disk by a linear polynomial in z with complex coef-
ficients; then we can define f(t) := F(el2nt), n := 4, <fi(t) := 1, <p2(t) := e'27rt,
tp3(t) := i, and (p¿(t) := ie'2nt. Consequently, if solving Problem P yields Al5 X2,
A3, and A4 as the optimal real parameters, the desired best polynomial approxima-
tion to F(z) will be (X\ + ¿A3) + (X2 + i\\)z.

Our first step towards solving Problem P is to examine its dual (cf. [23]).
Problem D. Find n+l points t\, t2,... ,tn+i G [0,1], n + 1 angles ai, a2,...,

an+1 G [0, 2tt], and n+l nonnegative weights ri, r2,...,rn+i G [0,1] so as to

max
t€[0,ll /(o-X>Ví(í)

1=1
< max

t€[0,l]
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maximize the inner product

subject to the constraints

and

n+l

£ rj Re(f(t3)e-
3 = 1

n+l

E^ = 1
7 = 1

Y, rj Re{tpi{tj)e-ia') = 0   for / = 1,2,...,n.
3=1

Problem D can be restated in more compact notation:
Problem D. Find t G [0,l]n+1,aG [0,27r]"+1, andr G [0,l]n+1 so as to maximize

h = c(t,a)Tr

subject to the constraints

>l(t,a)r

where

cT(t,a):=[Re(/(í1)e-ÍQ'),Re(/(í2)e-'a2),...,Re(/(ín+i)e~ta"+1)],

and the jth column of the n + 1 by n + 1 matrix A(t, a) is

[1, Reto (tj)e~ia> ), Re(v2(t,)e-*a>),..., Re(^n(t3)e~a' )}T.

How is Problem P related to Problem D? The classical paper by Rivlin and
Shapiro [23] shows that ||£(A*,)||, the optimal (minimized) value of \\E(\, -)|| in
Problem P, equals h*, the optimal (maximized) value of h in Problem D. Moreover,
if the optimal value h* of Problem D is achieved at some t*, a*, and r* such that

1"¿-»(f.cO^j >0.

then tí, A*, t*, and a* satisfy

\h*,\*T}-A(t*,a*) = cT(t*,a*),

thus allowing us to calculate tí and A* from t* and a*.
Indeed, when the problem of real approximation is cast in this language, the

quadratically convergent real Remez algorithm is an ascent algorithm that solves
Problem D (instead of P itself) and yields A* also as a result. Therefore, we ask
the following questions: Can we devise a similar ascent algorithm to solve Problem
D in the complex case? Will such an algorithm converge? If so, will it converge
quadratically under some moderate assumptions? We answer all these questions
affirmatively in the rest of the paper.

3. A Remez Algorithm. Our ascent algorithm to solve Problem D above
goes roughly as follows:

Step 0. Pick S = (t, a) such that

r — A-^t,^ 0
>0.
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724 PING TAK PETER TANG

Step 1. Terminate the algorithm if the value h — cr(t, a)r is optimal.
Step 2. Update S = (t, a) and r (without violating any of the constraints) to

increase the value of the scalar product h. Go back to Step 1.
In the rest of this section, we will describe our algorithm and present two exam-

ples. First we will explain why each of Steps 0 through 2 is possible.
Step 0. Suppose we can find t and a such that the matrix A(t, a) is nonsingular

(which is almost always the case if we generate t and a at random); then one can
construct a', where a'j = a3 or a3■ + n, j = 1,2,..., n + 1, such that

A-'^a') >0.

Step 1. Given t, a, and r, we can define h G R and A G R" by the equations

[MT]A(t,a) = cT(t,a).

It can be shown (see [25] for details) that

h = cT(t,a)r   and    h <\\E(X*,-)\\ <\\E(X,-)\\,

where A* is the best approximation parameter we seek. Consequently, if h =
\\E(X, -)\\, we know that optimality has been reached. Moreover, if the relative
distance (||£(A, -)|| —h)/h between ||1£(A*, )|| and h is small enough, the parameter
A at hand can be taken as the best parameter for practical purposes. For example,
(||i?(A, )|| - h)/h < .01 means that the approximation is as good as the best to
within 1%.

To calculate \\E(X, -)\\, one can presumably perform a sampling of the values
\E(X, t)\ for a large number of points t in [0,1]. However, in most practical sit-
uations, the derivative of the function |£(A,i)| with respect to t is computable
explicitly. Hence, solving

jt\E(X,t)\ = 0
for critical points t in [0,1] is a better method than dense sampling, both in accuracy
and speed.

Step 2. This step is the heart of the algorithm. To avoid getting mired in
algebraic details, we will use the basic theory of the simplex algorithm in linear
programming.**

Suppose that \\E(X, )|| > h; then we could find some (x, xj) G [0,1] x [0,27r] such
that

h<\\E(X,-)\\=E(X,x)e-^.
For these fixed t, a, x, and d, consider the following linear programming problem:
Find a nonnegative vector r' G R"+1 and a nonnegative scalar s so as to maximize

cT(t,a)r' + Re(f(x)e-l»)s

subject to the constraints

[A(t,a)\v(x,x3)}

"For background information, refer to any standard text on linear programming; see [18] for
example. For a self-contained derivation of the results to follow, see [25, Chapter 3].
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A FAST ALGORITHM FOR LINEAR COMPLEX CHEBYSHEV APPROXIMATIONS   725

where
x(x, t?) := Re([l, ^(^-«pjWr",..., ^n(x)e-">]T)-

The facts
• A-1(t,a)[¿]>0,
• cT(t, a)r = h, and
• Re(E(X,x)e-*0)>h

imply that (t, a) is a nonoptimal feasible basis. Consequently, a new (t, a) can
be obtained by swapping an appropriate (tj,otj) in (t, a) with (x, d) so that the
following holds:

new r := A  1(new(t,a))

and
0 >o,

cT(new (t, a)) • new r > h.

In fact, the last ">" is actually ">" except for rare situations that need not concern
us for the moment.

We can now restate the algorithm.

REMEZ ALGORITHM
Step 0 (Initialization). Pick a stopping threshold e > 0. Find t, a such that

r — A-^^a) 0
>0.

Step 1 (Check for optimality). Find an updating element (x,x9) G [0,1] X [0,27r]
such that E(X, x)e~il9 = ||£(A,-)||. li (\\E(X,-)\\-h) < he, terminate the algorithm.
Otherwise, move on.

Step 2 (Exchange). By swapping (x, x3) with an appropriate entry in (t, a), obtain
a new (t, a), and go back to Step 1.

We present two simple examples to give the flavor of the proposed algorithm.
The calculations were performed on a DEC VAX in double precision (D-format)
with 56 significant bits, roughly 16 significant decimals.

We will count the number of iterations in terms of sweeps, where

1 sweep —n + l iterations.

Measurement in sweeps thus gives us an idea of the algorithm's performance inde-
pendent of the problem's size. Because each iteration involves inverting a rank-one
perturbation of a matrix whose inverse we have already computed, the work per
sweep is approximately the same as inverting one full n + 1 by n + 1 matrix.

Example 1 [19]. Approximate z3 on the circular sector (the little circles indicate
the extrema of the optimal error curve E(X*, ■))
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by quadratics
ai + a2z + a3z .

By symmetry, the problem is equivalent to approximating z3 on the upper half of
the sector by quadratics with real coefficients. Thus the number of real coefficients
n equals 3, and 1 sweep equals 4 iterations. The convergence behavior of the
algorithm is shown in the following table:

No. of Sweeps (\\E(X,-)\\-h)/h

9.2 x 10"2
3.3 x 10~4
1.3 x io~6
5.1 x 10-9
3.0 x 10"11

The optimal parameters (8 significant digits) are

A*

1.8375669 x 10"2,
1.8479253 x 10_1

-1.1847921
1.8152371

Finally, we note that
• the number of extrema of E(X*, ■) is 3, which is less than n + l; and
• the rate of convergence seems to be fast but linear.
Example 2 [19].   Approximate z4 on the sector (the little circles indicate the

extrema of the optimal error curve E(X*, ■))

by cubic polynomials
ai + a2z a3z2 + a\z3.

By symmetry, the problem is equivalent to approximating z4 on the upper half of
the sector by cubic polynomials with real coefficients. Thus the number of real
coefficients n equals 4, and 1 sweep equals 5 iterations. The convergence behavior
of the algorithm is shown in the following table:

No. of Sweeps | (\\E(X,-)\\ - h)/h

1
2

2.6

1.1
3.0 x 10"7
1.6 x 10~14
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A* =

The optimal parameters (8 significant digits) are

h* = 2.1196498,
'-2.1196498 x 10~2'

4.8103001 x 10"1
-1.8208555
2.3398254

These two examples suggest that
1. the algorithm proposed seems satisfactory (more examples confirming this

observation will be exhibited); and
2. when the number of extrema equals n + l, the convergence rate may be

quadratic.
The next two sections substantiate these observations.

4. Convergence of the Remez Algorithm. The fcth iteration of the Remez
algorithm generates, among other quantities, the parameter A(fc) in Rn and the
value tík'. Does the sequence

{\\E(\lk\-)\\-hW)/hW
converge to 0? Without further assumptions on the best approximation of /,
the answer is no. However, a weak assumption ensures that a subsequence of
(\\E(XW, -)|| - /i(fc')//i(fc) does converge to 0.

THEOREM 1.   Suppose that r^ >0 for all k = 1,2,3,-  Then

■'->-'("E(*"J~ """)="■
A complete, self-contained proof can be found in [25]. Theorem 1 suffices for

practical purposes, because it means the iterations will terminate in a finite number
of steps for any positive stopping threshold. Moreover, a stronger assumption
implies not only that the whole sequence

(||£(A(fc\-)l|-fc(fc))A(fc)
converges to 0, but that it does so quadratically, as will be explained momentarily.
Laurent and Carasso [16] proposed a convex programming algorithm whose con-
vergence proof is almost identical to ours for Theorem 1. However, their algorithm
is too general to admit any estimate of its rate of convergence.

5. Quadratic Convergence. We now state the theorem of quadratic conver-
gence and present an example. The necessary assumptions are first presented. The
significance of these assumptions will be discussed in detail in the next section. The
assumptions are as follows:

Uniqueness. The function / has a unique best approximation.
Smoothness.   The functions /, ipi, tp2,...,ipn are twice continuously differen-

tiable in [0,1]. Furthermore, we assume that whenever

E(X,x)e-*» = \\E(X,-)\\,
then

for all A G

-Re(E(X,t)e- = —Re(E(X,t)e~ = 0
(x,H)
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Nondegeneracy. We assume that the optimal error function E(X*, ■) has exactly
n + l extreme points t\, t2,..., tn+1. Moreover,

A'Ht*,"*) >o,

where a* := argument of E(X*,t*).
Concavity. We assume that at each of the n + l extreme points, although the first

derivative of the function \E(X*, t)\ with respect to t vanishes, the second derivative
remains strictly negative.

THEOREM 2. Under the assumptions above, the sequences {\\X* — A'fc'||} and
{(\\E(X^k\ ^W-h^^/h^} converge to zero quadratically in sweeps. Precisely, there
exist a sequence {ak} and two constants K and M such that, for all k > K,

\\X*-X^\\<Mak,

(\\E(X^,-)\\-h^)/h^<Mak,
and

o-k+n+i < Mai -* 0-

Example. Approximate z8 on the ellipse {(x,y)\x2 + Ay2 < 1} by lower-degree
polynomials

ax + a2z + a3z2 H-\- a8z7.

By symmetry, the problem is equivalent to approximating z8 on the upper half of
the ellipse by even-degree polynomials

ai + a2z2 + a3z4 + Ü4Z6

with real coefficients ay's. The convergence behavior of the algorithm is shown in
the following table:

No. of Sweeps I (\\E(X,-)\\ - h)/h

1
1.8

1.6 x 10-5
2.6 x 10"16

The optimal parameters (8 significant digits) are

h* = 1.0012817 x 10"\
-2.4719238 x 10~3

A* = -1.0546875 x 10"1
-7.0312500 x 10-1

-1.5000000

6. Discussion of the Assumptions. How often are the assumptions leading to
Theorem 2 satisfied? The uniqueness assumption is always satisfied for polynomial
approximation on a continuum. The smoothness condition is satisfied whenever the
boundary of the domain of approximation is smooth. Moreover, in most situations
we have come across, the curve in which the approximation takes place is either
smooth or piecewise smooth. Our result can be extended to the latter case by
techniques similar to those employed in Veidinger's work [27] to handle endpoints.
The other two assumptions, nondegeneracy and concavity, need more discussion.
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6.1. The Concavity Assumption and Circular Error Graph. The concavity as-
sumption is a standard one for convergence proofs of the Remez algorithm for real
approximations (cf. [21], [27]). Moreover, even if the concavity assumption is vi-
olated, at each extreme point there must be a first nonzero higher-order (even)
derivative. The reason is that the optimal error graph must change sign. In such
cases, the Remez algorithm for real approximations can be proved to converge
superlinearly [15]. The situation, however, can be very different in complex ap-
proximation.

Perfectly Circular Error Graph. Suppose we are to find the best approximation
to f(z) = z on the unit circle among the complex scalars. It is easy to see that zero
is the best approximation. In this case, the optimal error E(X*,t) satisfies

|£(A*,i)| = l    and §-t\E(X*,t)\ = 0
for all t G [0,1]. The concavity is clearly violated totally. In general, we can consider
those examples with a circular optimal error graph. In those cases,

\E(X*, t) | = constant    and |w»*,o 0

for all t G [0,1]. Will the complex Remez algorithm converge at all? If it does, what
will the rate be, and what do the optimal parameters t* and a* mean? Athough
we have not been able to establish rigorous mathematical results in this situation,
in what follows we will present a typical example and offer partial explanations
of why neither the convergence rate nor the update procedure of our algorithm is
affected by circular error graphs.

Consider the following problem. Approximate l/[z — (2 + i)] by a quadratic on
the unit circle. We parametrize the circle by el2lTt, 0 < t < 1. The convergence
property we observed is as follows:

No. of Sweeps

1.3
2
3

3.7

(\\E(X,-)\\-h)/h

1.4
2.0 x 10"2
1.5 x HT6
1.3 x 10"14

The optimal parameters (5 significant digits) are

h* = 5.0000 x 10"2,
-4.0000 x 10"1 + ¿2.0000 x 10"J
-1.2000 x 10"1 + ¿1.6000 x 10_1
-2.0000 x 10~2 + ¿1.1000 x 10_1

and

(t*,a') =

0.0000,
9.1370 x 10"2
1.8740 x 10"1
3.1621 x 10"1
4.7860 x 10"1
6.7178 x 10"1
8.5035 x 10"1

6.4350 x 10"l
-3.0969
-6.3090

1.8206
-1.8943

1.0094
-2.4231
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We first note that h* and A* are correct (cf. [1]) and that the rate of conver-
gence seems to be quadratic. What do the parameters (t*,a*) mean? Certainly,
t* represents seven of the continuum of extrema of the optimal error graph and
a* represents the arguments of the error function at those seven places. That r*
(not shown) is strictly positive also implies strong uniqueness of the best approxi-
mation [10]. But since we have a continuum of extrema, it seems that (t*, a*) are
nonunique. (One can prove that is the case.) Indeed, we are able to execute the
algorithm for the example here with different starting values and obtain the same
h* and A* at the same convergence rate; but the (t*,a*) is different from before.
The algorithm seems to be able to zoom in on one possible pair of (t*,a*) auto-
matically. Thus, nonunique optimal (t*,a*) do not seem to affect the convergence
rate. In fact, if there are only a finite number of optimal (t*, a*), we are able to
prove that observation. Technical difficulties prevented us from doing the same
when there is a continuum of extrema.

How does circularity affect the update procedure? After all, the optimality check
of the Remez algorithm searches for the extrema by solving

§¡\E(X,t)\=0

for t. To get a feeling for the iteration, we plotted the graph

|l»M
for t G [0,1] during the last two iterations (not sweeps) of the example in question.

x I0"12 GRAPH  OF   >« DERIVATIVE OF  |E|  v.r.t. t
10 f-1-1-1     JL      I-1-1-1-1-

06  _ /       \last-i iteration —

S 7 \ /     LAST \ 7 \
« -0.1   -/ \       / ITERATION \ / \-

_l0 L_i_i_i_i_i_\_i_i_i_
0        0.1     0.2     0.3     0.4     0.S      0.6     0.T     0.8     0.9     1.0

(AXIS

The behavior shown here is typical. The graphs of the error functions prior to
the optimal one (relative to machine precision) are so noncircular that extrema
are typically well distinguishable. For strongly unique approximations, as in this
example, one can offer a mathematical explanation. Suppose A matches A* to half
the machine precision; then ||A* - A|| is usually small enough that

min|£(A,i)| = min |£(A*,i) - p(A - A*,i)| < \\E(X*,-)\\.
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On the other hand, strong uniqueness means that there is a c > 0 such that

||£(A,0||>||£(AV)||+c||A*-A||.
Thus, |i?(A, t)\ would deviate from circularity significantly with respect to the ma-
chine precision. In the presence of quadratic convergence, A would usually match
A* to only roughly 80% of the machine precision before the last iteration, the case
here.

Nearly Circular Error Graph. Next we present two approximation problems with
optimal error graphs circular to within machine precision. They are the approxi-
mations on the unit circle of

cos(z) by ai + a2z2 + • • • + a4z6,        a3 G R,

and
sin(z) by a\z + a2z3 + • ■ • + a^z9,        aj G R.

(The optimal error graphs cannot be perfectly circular because sin and cos are not
rational functions. For a succinct proof, see Trefethen [26].) Note that the effective
machine precisions for the two problems are 11 and 9 digits, respectively, because
the optimal errors have magnitudes of the order 10-5 and 10-7, respectively. The
graph of Tfi\E(X,t)\ during the last two iterations of the cos example is given below.
The graph for the sin example is similar.

|I0~9 GRAPH  OF   |'DERIVATIVE  OF  lEl  ».r.t. t

t AXIS

Like the perfectly circular examples, near circularity affects neither the algorithm
nor its speed.

6.2. Degeneracy. Unlike the assumption about concavity, which in our experience
fails only in special and rare situations, the assumption on nondegeneracy is violated
frequently. Experimentally, somewhere between 60%-70% of the examples we tried
were degenerate. Moreover, whenever degeneracy occurs, the convergence rate the
algorithm exhibits is always linear only.

At present, we are not aware of any satisfactory explanation of the cause of
degeneracy.   The only work we know is that by Blatt [2] which discusses how
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often degeneracy occurs. Blatt shows that in the set of continuous complex-valued
functions on a compact set with a limited number of isolated points, the subset
of functions with nondegenerate best approximations is dense. However, Blatt left
open the question of whether a similar result would hold if the word "continuous"
were replaced by "analytic." Clearly, our experiments strongly suggest the negative.
Indeed, we are able to prove such is the case; the proof is the subject of another
paper.

Although degenerate problems show up frequently, they fortunately exhibit a
typical behavior that we can exploit to restore quadratic convergence. This is the
subject of the next section.

7. An Extension of the Remez Algorithm. Let / be a function that satisfies
the "uniqueness," "smoothness," and "concavity" conditions stated in the previous
section; and let E(X*,-) be the optimal error function. However, the function
|¿?(A*,í)| has only n+l — d extreme points t\, t2,...,tn+1_d. The question is:
can we still find the best approximation quickly? For argument's sake, suppose
we were given the last d entries A*_d+1, A*_d+2,..., A* of A*. Then, to find the
best approximation to /, it would suffice to find the best approximation to the new
function

/ _ {Xn-d+lfn-d+l + Xn_d+2<Pn-d+2 H-h X*n<pn)

from the approximants

3^" := {Pi<Pl + P2f2 + • • • + Pn-d'Pn-d | P] G R}.

Clearly, the Remez algorithm will converge quadratically when applied to the new
approximation problem just defined. The trouble is, however, that we do not know
those values X*n_d+l, A;_d+2,..., A; a priori.

Although the A*'s are unavailable for n — d + 1 < j < n a priori, we can obtain
some approximate values:

[xi,x2,... ,Xd]   ~ [A„_d+1, A„_d+2,.. -, An]   .

We can, for example, use the Remez algorithm with a crude stopping threshold of
0.5, say, to find the best approximation of / from the original set of approximants.
Using those Xj's, we can devise a plausible scheme to find A* as follows:

1. Use the Remez algorithm to find an approximant in the set

{pifl + p2>p2 H-+ pn-dfn-d | Pj G R}

that best approximates the function

/ - (Xlfn-d+l + X2fn-d+2 +-T Xd<pn).

2. Derive a method to improve x based upon the results obtained in (1) above.
3. Repeat (1) and (2).
As it turns out, provided the Xj's are close to the corresponding A*'s to begin

with, then
• the process in (1) converges quadratically;
• x* := [A*_d+1, A*_d+2,..., A*]r can be characterized as the root of a certain

function H from Rd to Rd. Hence, Newton's iteration can be used to correct the
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ij's; and
• the Jacobian of the function H just mentioned is nonsingular at x*. Thus, the

iterations (l)-(2) converge quadratically.
A complete proof can be found in [25].
To summarize, the method requires a few initial sweeps of Remez iterations.

Then, some nested iterations are performed. The outer iteration of the nest is a
Newton's iteration onadx d-system (d = deficiency); and the inner loop requires a
number of sweeps of Remez iterations applied to a problem with n+l—d parameters.
Let us illustrate the scheme by a problem with deficiency 2.

Example. Approximate F(z) = z3 by a real quadratic on the circular arc

After 3.3 sweeps, t'fc^ looks like

[.4793, .4918,1,1]T,

suggesting that the deficiency is 2. So we use the extended algorithm:

Outer Loop
Newton's Iter. No.

1
2
3
4

Inner Loop
No. of sweeps needed

3.7
1.3
1.0
1.0

(\\E(X,-)\\-h)/h

1.9 x 10-3
1.5 x KT4
2.4 x 10-8
2.2 x 10~12

8. Comparison with Two Other Algorithms. Two recently proposed al-
gorithms ([24] and [9]) for complex polynomial approximation are so similar to our
Remez algorithm that we would like to compare them. (For comparison with other
algorithms such as [19], [28], [17], and [5], see [25].)

These two algorithms try to solve Problem D in a way different from our Remez
algorithm. Recall Problem D:

Problem D. Find t G [0, l]n+1, a G [0,27r]n+1 and r G [0, l]n+1 so as to maximize

c(t,a)Tr

subject to the constraints

A(t,a)r =

Both [24] and [9] discretize the domain [0,1] x [0,27r] for (t, a) in Problem D and
hence change it to a standard linear programming problem.   This new problem,
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Problem D', can then be solved by a standard simplex algorithm.  But how can
Problem D be solved by solving Problem D'? This is where [24] and [9] differ.

8.1. Repeated Discretization. If the set [0,1] x [0,27r] is replaced by a discrete set

3>N = {(¿i, «i), («a, a2),..., (tN,aN)} C [0,1] x [0, 2tt],

then Problem D' is an ordinary linear programming problem with n + l constraints
and N variables. As N —► oo, it can be proved (under moderate assumptions) that
the optimal parameter Adiscrete to the discrete problem converges to A*. Hence
Streit and Nuttall [24] suggest solving Problem D simply by solving Problem D'
with some N large enough.

If the domain [0,1] were discrete, then in order to obtain an approximant close to
the best to within a given threshold, [24] shows that a discretization on [0,27r] can be
chosen a priori. That will be the case, for example, when the original approximation
problem is defined on a discrete domain in the complex plane. When, as in our
situation, the domain of approximation is a continuum, then the discretization
cannot be chosen a priori. Consequently, the problem may have to be resolved with
a finer discretization whenever the initial one turns out to be too coarse. Some
observations are in order.

• Combining the results in [24] and [4] shows that the convergence rate of re-
peatedly refining the discretization is of second order 0(1/N2).

• Although the number of simplex iterations required to solve each discretized
problem is roughly 2 to 3 times the dimension (independent of N) of the problem,
the cost of solving each discretized problem does not remain the same as the grid
gets refined. The reason is that the number of function evaluations at each simplex
iteration is proportional to N and, when this number is much larger than the
dimension of the problem, the cost will be apparent.

• Suppose we would like to have ||£(Adiscrete, )|| to within 1% of \\E(X*, -)||; how
large should N be? This cannot be determined a priori. Hence we have to solve at
least two discretized problems.

Example [19]. Approximate z4 on the sector

by real cubic polynomials. We first tabulate the results of repeated discretization.
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Streit/Nuttall

No. of Points
in [0,1] x [0, 2tt]

17x32
33x64
65 x 128
129 x 256
257 x 512
513 x 1024
1025 x 2048

No. of
Sweeps

2.4
2.8
3.6
4.2
4.0
4.0
5.0

Cumulative No. of
Function Evaluations

204
462
1170
2709
5140
10260
25625

(\\E(X,.)\\-h)/h

1.5 x HT2
1.2 x 10-3
8.5 x 10"4
1.8 x 10~4
2.9 x 10-5
1.5 x 10~5
1.2 x 10~6

Using the Remez algorithm to solve the same problem, we get the following:

Remez

No. of Sweeps

1.6
2.2
2.6
3.2
3.6
4.4
5.0
5.4

Cumulative No. of
Function Evaluations

(\\E(X,-)\\-h)/h

5.0 x 10"2
7.9 x 10~3
4.9 x 10"4
1.0 x 10~5
4.2 x 10~6
8.8 x 10-7
2.8 x lO-8
1.7 x HT9

The example illustrates that the two methods are comparable if we need only an
approximant within 1% to the best. It is possible, though, the algorithm in [24] has
to be applied more than once. If an approximant that is much closer to the best is
desired, then the size of the discretization has to be quite large. In that case, the
Remez algorithm is much more efficient.

8.2. Discretization and Newton's Iteration. Similar to the previous scheme is
the one suggested by Glashoff and Roleff [9]. It is not hard to show that the best
approximation can be characterized locally by a system of 4 x (n + 1) nonlinear
equations (see, for example, [25]). Hence, provided a first approximation to the
solution can be found, one may apply Newton's iteration to those 4 x (n + 1)
equations. Indeed, Glashoff and Roleff suggest that the solution to a discretized
problem (Problem D') be used as an initial guess (starting vector) for the Newton's
iteration. Thus, [9] consists of two phases. Phase 1 is equivalent to the previ-
ous scheme of Streit and Nuttall, and Phase 2 involves a number of inversions of
4(n + 1) x 4(n + 1) matrices. Because Phase 2 is expensive, it is necessary only
when an approximant very close to the best is needed. We will therefore compare
the Remez algorithm with [9], assuming this to be the case. Let us consider an
example. (More examples can be found in [25].)
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Example [24]. Approximate z3 on the arc

by a real quadratic.   Using Glashoff and Roleff's algorithm, we first solve a dis-
cretized problem.

Glashoff/Roleff
Phase 1: discretized problem

No. of pts. in [0,1] x [0, 2tt] No. of Sweeps (\\E(X,-)\\-h-)/h*
33x64 3.5 1.9 x 10~3

Glashoff/Roleff
Phase 2: Newton's iteration on 9 equations

Newton's Iteration No.

1
2
3
4

(\\E(X,-)\\-h*)/h*

1.3 x 10-3
5.3 x 10~6
1.5 x 10~9
1.6 x 10~12

No. of Sweeps-equivalents

45
45
45
45

We can also use the extended version of the Remez algorithm to solve this problem.
After 3.3 sweeps, (||£(A, )|| - h)/h is 8.5 x 10-3, and t^ is

[.48,.49,1,1]T,
suggesting that the degeneracy is 2. Hence, only 2 (compared to 9) equations need
to be solved by Newton's iteration.

Remez: Newton's iterations for 2 equations

Newton's Iteration No. (\\E(X,-)\\-h)/h

1.9 x 10-3
1.5 x 10-4
2.5 x 10-8
1.6 x 10-12

This and the previous examples, among others, sustain the following observa-
tions:

• When the problem is nondegenerate, the Remez algorithm is much more eco-
nomical than the two-stage method of Glashoff and Roleff. On the average, Remez
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takes 4 to 5 sweeps to reduce the number (\\E(X, -)|| - h)/h to the rounding er-
ror level. On the other hand, one Newton's iteration during Glashoff and Roleff's
second stage involves inverting a matrix roughly four times the dimension of the
problem. Hence, each of these iterations can cost as much as 43 sweeps.

• The competition between the two algorithms becomes more interesting when
the problem is degenerate, in which case an extension of the Remez algorithm
is needed to ensure quadratic convergence. Despite this extension, the Remez
algorithm is still much more economical because the work of each correction step is
roughly 1 to 1.5 sweeps, as opposed to 43 sweeps in Glashoff and Roleff's algorithm.

• Practically, it seems that an approximation whose \\E(X, )|| lies within a tenth
of a percent of the best approximation is sufficient most of the time. Thus, the
Remez algorithm without any extension seems to be the most straightforward and
economical algorithm to use.

9. Some Applications.
9.1. Approximate Conformai Maps. Suppose we want to map the ellipse x2 +

(Ay/Z)2 = 1 conformally to a disk. It is known that the conformai map is the
analytic function g(z) in the set

{g | g(0) = 0 and g'(0) = 1}

with the smallest maximum magnitude taken on the whole ellipse. Motivated by
this observation, we can find an approximate conformai map by calculating the
polynomial function in the set

{z + axz2 + a2z3 + ■■■ + anzn+1 \ a3 G C}

with the smallest norm on the ellipse (cf. [11], [20]). This is equivalent to finding
the best approximation to the function F(z) = —z from the set

{oiZ2 + a2z3 + ■■ ■ +anzn+1)

over the ellipse.
We use our Remez algorithm to solve the problem with n = 8. (Because of

symmetry, the best coefficients are real.) After 2 sweeps, the approximation is close
to within 1% of the best. The ellipse's image under this approximate conformai
map, as shown in the figure below, is a circle to within 0.01%.

I-1-1-1-1Ö_I_I_I_
-l-x- I    -l-y- I
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9.2. Voigt Profile. The function

F(z)=e-z2 (l + ^= [' ê" dt
\       V71" Jo

is of interest in spectroscopy and astrophysics because of its relationship to the Voigt
function ([14], [13], [8]). We approximated this function over the square [0,1] x [0,1]
by a complex polynomial of degree 12 (13 complex coefficients). After 3 sweeps, the
approximation is well within 1% of the best, and its error \\E(X, -)|| = 4.8 x 10-8.

9.3. Gamma Function. Suppose we want to calculate the value of the gamma
function for z close to the real axis, say |Im(z)| < 1/8. It suffices to be able to
calculate T(z) for z where |Re(^)| < 1/2 and |Im(2)| < 1/8 because T(z + 1)
= zT(z). Moreover, because 1/T(z) is an entire function, it is reasonable to ap-
proximate T(z) by the inverse of a polynomial. Furthermore, for the sake of relative
accuracy, we will approximate

——-     by 1 +aiz + a222 H-\-anzn.
zT(z)

We have done this for n = 7, 8, and 9, and 3 to 4 sweeps are all we need to
obtain an approximation to well within 1% of the best. We also compare the best
approximation to the one obtained by simply truncating the Taylor series expansion
of l/(zT(z)).

No. of Coefficients I ||£(ATaylor, -)|| 1 ]|£(Abest, )||

7 6.2 x 10~6        3.4 x 10"7
8 7.3 x 10"7        2.5 x 10"8
9 1.8 x 10~7        4.7 x 10~9

10. Conclusion. We have shown that the Remez algorithm for real linear
Chebyshev approximations can be generalized satisfactorily to work for complex
approximation. Our algorithm seems to be the fastest available today for such
problems and has given us hope that a fast algorithm for rational approximation
may also be close at hand.
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