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i Abstract.

'j'ikl¥;5t aigofitﬂ§ i; des;ribédlﬁhiéh'calc#létés tﬁé
Spaéé qharée‘iayer width and junction cépéci;aﬁﬁeff§f ah
Tﬂ:arﬁiita;y impurity pfofile;épdvfor plane, cjlindfical gnd‘. 

',ééhérieal.junctions. 7
The algorithmvis béseﬁ on the aErupt épace charée

 e&ge (ASC#) approximation, | |

.* A method to use tﬁe aigbrithm for the determiﬁation
‘of igpurity profiles for two-sided Jjunctions is presented,
'An'éxpfeésion is derivedjfor therbuilt-in voltagé to'be used
_-fdr'capééitance ca;culatiohs with the ASCE approximation;
Experimental evidence is'giveﬁ that'the algorifhm pe?mits very
accuratekéapaciténce.calculatipns and also predicts the exact

temperature dependence of the junction capacitance,
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mesa-diode area (cm

Junction cépacitancé (F)

2).

profile paraheter satisfying: NA4= N érfc(d) .

o

kt calculated capacitance value (F)

th .
kX measured capacitance value (F)

diffusion coefficient of a dopant (cmz/sec)‘

permittivity of the semiconductor (F/cm)
» .. . .

electric field in the depletion léyerv(V/cm)
Boltzmann constant

L = 2yDt : characteristic diffusion length:(cm)
3

net impurity profile (em™

intrinsic density of the semiconductor (cﬁ-si

3

substrate doping (cm”

3y

surface concentration of diffusion dopant (cm
parameter vector in the profile function N(x,p)
o -19
electronic charge (1.8 10 C)
diffusion time (sec) .

electrostetic potential in the semiconductor

voltage applied to the diode (reverse bias is positive)
(Volt)

built-in voltage used to calculate the depletion layer

" width, (Volt) :
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= (kT/q) ln([N(x‘(v )51} N(x (v )ﬂ‘/nz : theoreticaitT .

built-in voltage at voltage V,_

..gradient voltage defined as the intercept of the

‘tangent to a C-3(V€)-curvé for V = 0

intercept with the Va—axis.of the C‘s(Va) curve (Volt)
coordinate axis in thé semicohductor

%junctidn depthvfrom the surfage pf'the §émic§nduct6rv
left-hénd edge of.the spéée.chafge layér : |

aright:hand edge of fhe space charge layer

performance index-fb calculate the profile parameters
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"I, Introduction.

- Several authors haveléalculated the junctibn'capaci—
tance vefsus bias for some épecific types of impuritj prd—
1,2,3,4 T | o

.files, . The results are usually represented by a
" pormalized graph. These graphs are useful if only a few cal-
‘culations are required and if the impurity profile corresponds
to the one used to construct the graph. ‘In many cases the pro- -
file is different and the junction capacitance or depletion
> . : - o

layer width has to be used as part‘of a combuter program for
”_calcﬁlations of device behavior, In these'caseé it is conve-

nient*to‘have an efficient algorithm that'calculétes the deple-

tion layer characteristics for any voltage; impurity profile
and semiconductor material, Examples are: detailéd.modeling

. N .8
- of JFET's, design of varactors = , avalanche breakdown calcula-

6.

tions , transistor modeling.,

Such an algorithm based on the abrupt space charge edge
(ASCE) approximation and an application of it to the deter~
mination of impurity profiles for two-sided junctions isbdes-_
cribed here,

. ' - 8,9

It is recognized that more elakorate programs exist
that calculate the exact capacitance taking thé mobile charge
' 9,10

. earriers into account, EHowever, it has been shown that,

ivfor capécitance calculatidns, a simple‘correction to the
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 i;Fﬁé;£éfi¢é?.ﬁﬁ%lt;i#:volfégé;ét:;éfo-g#é;;.(&bi(bj), §;nH
";ééouht for tﬁe_mobile car;iéis..,A.more genéfa1 ex§ression
'v fqr thiﬁ'cofrection‘is:defiQed heée.‘ it'is vai;d‘at aﬁy_
tenperature and for any semigﬁnductor, As a fesult thé ASCE
.gpér;#im;tion can be ﬁged'for’?;éacitancé §§lculati§né, thus
éé;;né a-conSiﬁerable amount 6f qamputer time, Moreover,

éQen in‘thg exact programs computatioq timé.is ;aved ifrthe
"éuﬁmel's Itération gefhbd S is started from a first gpess
‘-,calcﬁlaféd from the ASCE appréximation;..ihig:ig.another appli-

cation for the algorithm presented here,

~J¥X., The algorithm. S :‘ -

The algorithm consists of two parts: the starting algo-

fithm and the"Newton's iteration,

The latter is described first.

ag'Newton's iteration,

Let X(x) represent an impurity profile function such

that:

N(x)>0 for x<0 o ' U Q1a)
N(x)< 0 for x=>0 - o (1b)
The function N(x) need not to be cortinuous at x =:0 which is

the location of the metallurgical junction (fig., 4). The con-
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Ithitions:(i;,b) aré ﬁ§ 1i§1£étiép§>$ihcé:an§-p;ofile éagAs;fis-
“fy (1é,b) by a éﬁange iﬁ biaglpoia%ify‘and.thg sign:qf N(xif

*j_a#d‘*r ére the ;brupt gp?ce charge edgé;. let ug éésuﬁe,
:ifﬁr the time being, that the built-in voltage 'VgAisAknown.
Ji; 1;‘ea§y to éhow tﬁgt thé dé#glé iﬁtegfatgon okaoisson;s

. ‘equation:

av qN(x)

- ey
ax> € L

" with boundary Gtonditions:

a¥ = 0 S 3
dx N S T
X=X
av = 0 . » - - (4)
ax X=X
o r g
. yields: L
: . . x .
r
F(xr,xl) = X | N(x)dx = 0 (5)
‘ 1 _
x . .
_ r . E- o . :
G(x ,x ) = ‘f xN(x)dx + =<V +V ) = 0 -~ (6)
o o2 x ‘ q a b ‘ ' N
1. )

- Note that V 1is considered to bebpositive for reverse bias
a .

and that (3) and (4) are approximations stating that the elec-

tric field varishes at the space charge edges, It has been
10 : : . i - :

shown that this approximation can also be corrected by

using the»appropriatevvb. - Equations (5) and (6) are the

basic set of equations for"xl and x . Equations (5) and (6)
_ S S * r R, L R



" T§Q¢én behéolﬁed numerically wifh‘Newton's‘itéfation method.

'1 ?fif?bﬁcevx " and xl'are knéwhvfhebcapaéitance'isfgiién by:
S e S
-G = Co (7)
r 1
I C S T € % ~ th
Let (xr_ ,‘x1 ) be the result of the i iteration
and let o
) (1) Y
X = .x + Ax(i) (8)
r . T g r S .
it 1y, o R s
B 4 .= X + Z&x(i) i T (9)
o | Ty v 1 o . } .
o _ | R (1) (1)
bhe a better approximation, Let further F = F(x s X )
| | - o T 1
(i) (i) 1) -
and G | = G(x , X ). Accordingly,
_ r 1 ! .
. : _ o | | i
2t 2 ) Axtt BN ¢S]
X 9x1 : r F .
r . : . = - : (10)
(1) 56 | '
= i x G
X X TAN 1 o )
r 1

" Carrying out the differertiations on (5) and (6) we have:

i)

(1) (1) | SIRee]
Nex ) =NGxy ) A=V pt)
o ' . ..r = = (11)
- (1) 1 | ; o«
x(i)N(xcl)) -X * N(x( )) A xcl) G(i)
r o 1 1 1l

Equation (11) shows the'advantagé of applying Newton's method

since the calculation of the partial derivati?es 'QF/Bxil end



HlugG/ax requiréé oniy two profile‘funcfion éalculations;f
B r,1. .

8 Apparently the calculation of the r1ght hand 51de of (;1)

 requires two accurate numerical integrat1ons.for each itera-

';tioﬁ.. However with ( (1), xii?) representing the starting

i)

.Qiﬁalues for the iteration, F( - can be.written as:
W 1) LCk+0)
1
I S T N(x)dx =>S gy Nemax + jg: S NCx)dx + fg S' NCx)dx
= x(i) . x( (k) §k+ ‘

AR x

: (12)
’ 1) - | S
'If (x . x1 ) is close enough to the solution, then at each
F - . )
(k) (k+1) (k+4) (k)
y X ) and (x y X ) are
r I R | _
. small encugh to use a three point Simpson iteration such that

th . . _
at the i iteration we only calculate for example:

*x(1+1) - . . '
r L, (1) e CRY 0 (i44) e (141)
S ( )N(x)dx 2 ___{;(x Y+ %N((xr_ + xr )/2))+§(xr ﬂ

(13)

' 1teration the intervals (x

: (1) - i : : -
-8ince N(xr ) is known from the previous step it is easy to

show that for each Newton iteration, except for the first,

6nly four new functicn evaluations need to be done to update

(1) (1) . o

F ~and G and to calculate the next iteration point,

_Usually three iterations are sufficient for a relafive accuracy
-5 N ' .

ef 10 for (xr, xl), such that about twelve function evalua-

tions are needed in this part of the algorithm, The problenm

1) x(i)).

is now to find appropriate starting values (x N
5 ROW ‘ _ _ _ - . T ‘



,1§;f

>b;,The starting algorithm,

.. A method for the calculation of.(xii), x(i)) that i

1.
" permits the calculation of F(A and G at almost no extra
“;iéost will be described,
-LefixA éhd x be definéd frohi
— . rm i1m :
- S A Xrm - : £ ' ) . : *
G(x ,0) 2 S xN(x)dx + S(V_+ V.) =0 (14)
' ] A . i ¢ . _ . .
G(0,x ) = xN(x)dx + —(V + V. ) = 0 (15)
. 1E xyn q a b :

Then from (1a,b) and (5) and (6) it follows that:

x = sup (x.) and X = inf (xl)

Further G(xr,xl) defines a curve x, =_g(xr) in the (xr,xl)'plane

m) and B(xrm,o) andAhaving a

(fig. 2) going through A(O,xl

derivative:

_ : ) : NG 3 . x N(x )
g'(x ) = 1, 280 _ T
, Caxg G/3%, x N Cxp)

>0 . ()

"éé can be found from conditions (la,b). Further from (16):
g'(0) = o0 L B o - 7).
and  g'(x_) = +ag S as)
rm Lo ’ . .
FProm (16), (17) and (18) it follows that xl=g(x ) is a curve
: r
of the form indicated in fig. 2 by curve (.
The function F(xr,xl) defines a curve x =f(x ) in the

. r
(xr,xl) plane, going through the origin 0 (fig. 2) and having



a deri&éfiVe:- T
oo s QER/9x T N(x)
ot x ) = - z s

T e, Ty

<o ae)

| byrcondition‘(la,b).; It is a decreasing function‘represehted
by eurve @on figs 2. . T 0 o

The intersection C(xr,xl) is the solution to the

1) @)

Xy ) is considéred as the starting
b . ' , .

problem., The point D(x
value for Newton's method, This point is obfained as follows:

" a., For a given N(x), .V and V ; find x and x
IR : ‘a b rm im

(points A and B in fig., 2)

b. Find the intersection I of the line AB and X = f(xr)‘

c..Calculate the intersection, D, with the curve
x. = g{x_) of the taﬁgent line t to x = £{(x )
2 o 1 r
in point 1I.

Note that the equation for t is simply given by:
N<xri)

.(x1 -.xli) = - N(xli)_(*r - xri) : _ : (29)

in éll praétical cases, point D'ié withip 10% of the required
solution, Note also that since D is onlf'a‘starting point;
it does not neéd to be calculated with high‘precision.

- Details of the étarting algorithm are given in Appendix A,
Basically the method consists of é;stepping along the x

1

and x axis to find approximations for x arnd k . Durinb'
r o rm ~ 1m o

‘this operation a maximum of 50 but typically 40 function



”valués'aré'calculatedﬁénlyAqﬁce'aﬁd stored in the mémory; 
These values are then used,in-arifhmetic operations only to
' find.1~and D. At the same time fhése stored values are

(1) §nd 6(1);

used in Simpson's rule to calculate F  The

- t6tai nﬁmﬁér'of‘funcfi§n §v€}uafiohs t; find ixrf.x15.¥s
ffybicallj 60-~65 forrfhreerNéwton_itérations.

It should be noted that: |

é} The above>Aéscribed élgorifhm can eaéiiybbe adapfed
to.céiculéte bﬁfh cylind;ical and Spherical junctiogs ég.
,ind}cafed in aﬁpendikAﬁ. | |

bf 1f (#r,gl) has folbé ca}culated fof'mégf successive
voltages Vé, the startipg algorithm i;.used oﬁly oncg. The
preceding valueébof'(xr,xl)'are.then uséd as starting vélues
" for the next voltage.

I1I. The built-in voltage V.

Depending on.the use of the algorithm we consider three

possibilities for Vb.

a. A known vb%
= ThisAis the case, for example, if the algorithm is
used to calculate impurity profiles fron C(Va) measurements

as described'in section 1Va, This case is triviallsince the



.basic algorithm can be used without modification.

b, The algbrifhm'is used to calculate approximate field and .

- potential diStributioﬁs.

- In this case Vb is‘given by: -

Tk U NCGxa (VL)) NCxq (VL)) R
ST Y, = VO (V) Ez.ln #r a (% ¢ a))l= v (x_,x.) (21)
b - bt a q n2 b r’71

"

Strictly speaking, the method of section II becomes invalid
i'sinpe Vb is itself a function of the solution (xr,x ). Due
to the'logarifﬂmic dependerce, Vb(xi,xl) is a slowly varying

function and tbus the following procédure‘can.be used., The

algorithm is started with V(O) ='0.7 Volt as a first guess.,

(4) (1)) are found and

From the starting algorithm (x l

Sy
v =V (xii) xii)) can be calculated and used "in Newton's

1térétion. This gives a first approximation (x ',xli) for the

rl ‘
. (2) ‘ ’
solution (x_,x_ ), V = V (x » Xy ) is then a better
AR A 1 b r1’ o _

' )

( . R
app?oximétion for Vb and with Vb and (xri'xld) as newfstar-
ting values Newton's iteration is used again. This is repeatéd
until: S

(1+1) (i)
-V .
‘vb sVl g0 av

which occurs after 2 ,., 3 Newton iteration cycles,

If necessary the field - and potential distributions



EUP

' carn be found fron: _‘

V(x) -I V(x ) = - -——[ Z(X) + S %N( %)dé'] - (23)

Equations (22) and (23) follow from the integration

of (2), using (3), The numerical-ihtégration of (22) and (23) v

'céﬁ be done using the function.values_sfcred during the star-

ting algorithm: such that,g(x) and V(x) are found without -

too many extra calculations, - This is useiul for breakdown

~and avalanche multiplication calculations;

N - Capacitance'caléulations.

Almost all diffused junctions (and ever epitaxial

Junctions) behave aimost.as linear junctions at low reverse

4 , 6

-and forward bias . = i.e. C-3(V ) is indistinguishible

from a linear function intersecting the Va'axiS'at the inter-

S . 9,40 -
cept voltage Vi' Nuyts ard Van Overstraeten ’ have shown

numerically that almost correct junction capacitances can be

“ecalculated with the ASCE approximétion if the built-in voltage

Vb.is taken equal to the intercept voitége Vi given by:

. ' = "-Vv ) ' - : |
,vi' th(o? ‘be o - : o ’(24)



AiifThey-féundJVb ~ 0.13 Volt for silicdﬁ,'at room températufe.'
S c e ST S A

.. Using. the concept of‘"gradient"_voltage, introducéd’by
o C s g o o o ; o N
- Chawla and Gummel = it 1s possible to find a more general

" expression for Vb .Q The gradient voltage Vg is the intercept
S . [o] . - -, ) . . .

' voltage of a tangert to the C-3(Vé) curve for Va = 0 volt and
is shown © to be: N o |
v = .Z.E in a &kt o - o (25)
e "3 a semy .

40 ' : T . ‘ '
Nuyts  has sgown_that the gradient voltage is 2kT/3 higher

_than the intercept voltage V1 used.in (24)., As a result:
2 2%y S
2Ty 73 - {] (26)

V. =V (0) -V
i bt be

We also héve:

v = 0 - v : e ‘
pe (00 = = 1n 2 | | e (27)
: 12¢v,,.(0) 1/3_ R
and wC) = (——PBt 5, ST (28
) ' : qa B ' '

After elimination of w(0) and a from (26), (27) and (28) ard

solving for V ,:
be

2 kT 'l2qut(0) ' .
v 0 m e e—— 1IN ) 4+ 04 . €29)
be 3 q kT . S
Such that: o _
v = V. (0) - =232 |1in¢ bt Ty 4+ 4 (30)
b bt 39 kKT . N

" For silicon at room temperature énd assuming V t(O) = 0.8079
T 22 -4 4 . ] L o ’
"Volt for a = 10 cm -, (29) gives Vbc = 0,120 Volt which is



T oot mpreenant with 5 .43 Toit tound by ayes snd

*if;lv;ﬁﬁéferétfaéteﬁ. The‘érogééﬁrg_fof;éaiéﬁlatiﬁg C(Va)'cﬁrveé

*ffjisjﬁowi | o

‘a. Set,Va;O.énd Qa%éuiaté ng(di aééoraing_to-tﬁé.
" method described in II b,

Ab; Calculéte Vb from (30).'

.c. Siﬁce Vﬁ'is-kndwn now; c$i§u1afe C(Va) f;f ail

given Va usiﬂg the bééic algorithm,

»

1V, Applications,

- e - -

a, Impurity profile determination for two-sided junctions.

Thg determination of a prof;ie on a‘t%o;sided jg#ction-
'is‘ohly possible if(the prbfile is exactly kﬁowntbn one side 11 .
. Tﬁis ié,not the case for most diffuséd a&§ices.__Véryboften
héwever it is possible to formulate an anglytiéal exp;ession
descriﬁing the.profile afound the metallufgicai jﬁnctipn; ;This
éxpression:depends on a‘parameter-vectorfﬁ_aﬂd can thus be
.ﬁritte#'as:
ﬁ-:ncx._?)" R " (31
The vector P has to be found>such that (31) gives the measured
C(Va) dependénce. In order to keep mathematics simple we
describe fhe czse for measurements on mééa-diodés aithoﬁgh

the method'can easily be adapted'to_planar'junctions using



13,

' ¥he é%bréssio#’for>cyiindricél:anélséﬁéii;él‘junctioﬁs‘as
g;vén_iﬁ Appendix B; Thé'diséd;gniége.ié that for piénar_ 
junct‘i'o'ns the 'éor.np.u'te.r. time is al?nost doubled 5y the addi=~
) fioﬁa; é;lculatiéns.. o |
Le# ka = ka(Vak)'bé fhe measurgé gépééitahce va-

lués at the voltages Vék where k = 1, 2 ;.. m and m is the
' total number of capacitance meésuremenfs from,slight forward

- bias. (~0,8V) up to breakdown»voltage.' First the built-in

vbltageuvb is calculated. This is done by fitting a straight

. line through the points Cm

x (Vay?) for =0.5¢V, , ¢o.1 Volt,

The intercept Vi of this 1iné with thé Va-axis is the built-

in voltage Vb' Once Vb known we can calculate, for a given

N(x, )

Ck' = Ck(Va v p) = : —— ‘ - - (32)

xrk(ﬁ) and .xlk(ﬁ) are calculated from theibasic~algorithm'

for tﬁe givgn N(x, D), Vak agd Vb.

We now define a performance index:-

e 2

(33)

If P is found such that:
L.

B ;@%X; Min f@;- R B ‘:,_(‘3_4-)
YR R



Tlw

_Thén the'impurify'profile cdrreépdndihg to the C(Va)'meésﬁf

.. rements is given by:
©ON(x) = N(x, ?m> | L (ss)
'iEfficient algorithms to minimize §K§) such as

12 | o |
method require the evaluation of the

Fletcher—Poweii's
A.gradi‘ent; g =D§/ 35’. Perturbétion méfhods to calculate E
are very inefficient in time:éﬁd ar; foo inaccuréte. 'A more
éfficient way;sfarts from the definition <33) of gfﬁﬁ:

_ Dg(P) _ n (Ck-,cmk) }’()Ck(ﬁl)

'gj == = 2 — (36)
P k=1 o
‘“From“(36)‘and (32): | ' e 5, -
- - ) CZ . ,éx o
2 k- ; ‘ -
g = m——>  ——(C -C_ ) {=F - % (37)
» j £A k=' . Cik k mk (ng Dpj) | .

- The préblem'is reduced now to the célculation of

o »  ,er/?pj ‘and gxi-/?pj" Thei-efqre cqnéider eq.(5) and (6)

where N(x) is substituted by N(x, p) such that F(x ,x ) and
, » » . e ®
G(xr,xl) become F(x ,x_,p) and G(x ,x ,E); Tékigg the total
- r 1 r 1

differential of F and G with respect to x , X'l and p
. ' r J
yields:



- 'A"»:.:],'s'.A

R e | 7 W B
: er(x: ) .. ‘ .-f,.clN(xl »P) ? xr : S X"—g‘;‘;— dx
: S i B -' x o Y
N(x_,B) -NCx ,B) ;f_l. | S j de
' ' ' Ji X, :?pj

(38)

VA comparison of (33) witilll (11)vvindica-‘tes i;i}at ,;tlxé
_lef#—handside;matrig i§'a1£eaay calcilated during the last
ﬁéwtonviﬁeratipﬁ in the’basié‘algorithm; Cal?ulatihg a gradient
'éomponént thus reqﬁifes for each voltage on1y the calculation
'ﬁf the twa integrals in the right-handside of (38). i: suc-
cesiv§ increasing Qoltage steps are'uéed, forger ca;culated
values caﬁ be uéed and a simplé integration rule can be applied
in the same way as described in‘IIa for the calculation df"

(1) ' '
F and G(;) (eq. (12) and (13)).

'  As_én example a phosphorus diffusion from a POC1

source at 1075°C for 30 min.'in_a uniformly doped p substrate

13, 14

of 0.2 {lcn is considered, It is known that the ioni-

zed impurity profile can be described as almost constart and
20 -3
equal to about No = 2.5 10 co from the surface to sone

depth.xl (fig. 2)., From there up to the junction'depth xJ

-the profile behaves almost as a complementary errorfunction,




2 16. o o

© In order to be consistent with the definition (4a,b)
. of N(x) we take the ofigin'ét the junction, It_is;easy toA_

“'show that the profile around thé'juﬁctipn'cén be written as:

aN = .2

N(x) = - — J‘ e df = NCx,L,d) (39)

&

. RV .20 -3
where No = 2,5 10 em , L = 2yDt and  is such that

- the substrate doping NA is given by:.

"N = N_erfc () ' . i;' .. €40)
Y - A o ] R

Since No'is assuned to be known, the parameter vector P is

‘given by:

v = (L, B
. ' ' -3 _-3 .
A mesa diode of an area A = 10 “cm was made from the

diffused wafer and tlhe C(Va) curve was measured with a Boonton
" 75A bridge., The measured points are given in column I and'iI
of table 1., Curve 4 on fig. 4 gives C '(Va) for forward bias.

"From this figure the intercept voltage V, is read to be:

i

V = V. = 0.680 V
i b

Using this value for Vb and takirg & = 1,04 10 2 F/em for
silicon the above described curve fitting techhique, with a
Fletcher-Powell minimization routine, was performed for the:

47 C(V#) points,' Startigg'vélues-for P are:



e

and   lL

‘The.

= 2,3 h

-5

= 4.10 7cnm,

C(Va) values calculated from these starting values

‘are given in"column'III of table 14, Thé mean error is about

40%., After 6 iterationms, requifing 10 sec, CPU time on the

éDC 6400 computer,'convergence was'obtained:for the following

parameters

by

.
.

SR

,xz

N

A

~ -—The

= 2,438

o . -5 -
- 5,742 10 cm

 1'.40 /m ‘

7 -
= 1,413 10l em .

mean error. for these’finalvvalues is 0,3% which

is within the experimental error of the C(Va) measurements in-

dicating that the erfc, is a good approximation to the profile.

The capacitance calculated from the final profile parameter

are given
ment with
'réd to be
‘ted as is

from this

in column III of table 4, Note the very close agree-—

the measured values, The diffusion depth was measu-

X

J

= 2.27/nm such that the_profile‘can be construc-

done in fig, 3. The-sheet-reéistivity.calculated

15

profile using Irvin's . method gives fg: Z.QZQ/Q_,

which is in good agreement with the measured value of 2.,8%/4.

17

Note also that tne computed result NA = 1.413 10 cm_-3 is close

o ' 17
:to N = 1.5 000_2.0 10 cn

A -

which is derived from the. resis-



18,
‘Vﬁﬁtivity of the substrate, This example illustrates how the
" algorithm can be used to fit impurity profiles to C(Va) mea-,

surements.,

‘b; Calculétion of CfVa) curves,

i'ﬁsing the above-determined pioiile'pérameters, we can’
.éalculate C(Va)lcurves ét diffefent temperatﬁres using‘the'
-proceduré described in section IIc.,and_#ompare the fesults
.with measuremefts; Fig. 4‘ié_a-set of'measuréd &;S(V;) curves
;t éix differeptitémperétﬁres, _Tﬁe intgrcépts with the Va-axis
of tﬁé straight lines through the experimental'points repre- )

sent the measured built-in vqltage—étjthe different temperatu-

res, The crosses are calculated points and the crosses on

-~ -

the Va axis represent the'Vb'valueg calculated fr;m (30).

Fig. 5 shéws calculated C(T) éurves at different bias
~ points uéiné Vb g;ven by eq., (30;;v The dots are again measured
values, Nﬁfe the large témperafure $ensitivity for forward
,bias due to the important fole of V#(T). if is obvious from
fig. 4 and.5. that the use éf eq. (30) for Vb makes_accu£ate
capaqifance caiculatioﬁs ﬁqssible with the ASCﬁ approximation,
»even for modérate forward bias levelé. Moreover eq..(SO) aiso
deﬁéribes'the temperatu:e dependenée of Vb éccurafeiy. This

is illustrated in fig. 6 where the built-in voltage calculated



:rom (30) is ‘z;ié»t"cea ard compared with me%éi;reé ;val.ﬁe-s‘indi—“
~-i.‘c_;ted by ‘the. dots. 'rhé'agz?ee‘xﬁént' is qv;llit'é well o"v.ga:r't.hle
'ftgﬁpe;éture‘ranéeAcoﬂéidere&'here;  Nd£e.thét 2lVb/4lT:;;2ﬁV/°C
for thé (455,.125°C)‘femperatﬁré réngé; .Thisvﬁaige i$ fai?1y
t&biéé; foerosf jﬁncéioﬁs in I,C;ftransiéforé.‘.

V. Conclusibn.

A fast algorithh has,béen desc;ibed wh;ch'calcu;ates
the jﬁnééion cZﬁacitapée fof‘gn afbitrarf.impuritf pfofile».'
and a#plied voltage Va. It is shown that due to the form
of the basic equatiohs, Newton's method‘is esgecially effif
cient to use.  The algorithm»is based on the'ébrupﬁ space

charge edge (ASCE) apprdximétion. It is found that, by an

appropriate correction to the theoreticai built-in voltage

Vbt(o). almost exact C(Va) curves can be calculated even for

. forward bias and at different temperatures.
Cn the other hand, it is shown how the algorithm can
be used to balculate the parameters of anvanalytical‘expression

for apn impurity profile from a measured C(Va) curve,



3 S R ¢ SRR B & § N A 4 4
V. (Volts) { . € (pF) ~ | C (£final)(pF) | C (initial){(pF)
- ak mk ’ k : 1 k
~-0,4030 . 87,70 . 87.42 108,0
-0,2503 82,39 82,43 - . 101,¢
~-0,3020 78,45 78,70 : 97.28
-0.2500 75425 75.34 _ 93,15
- ~-0,1483 70.C7 70.10 . 86,72
-0.507¢C 66,16 - 66,20 - 81,93
0. . 64452 64,47 . 79.82
0.2058 . . 58,93 ©. 58,90 72.29
1,0000 - 47,217 47,24 58,73
3,038 ' 35.64 35,74 44.70
4,015 : 32.80 . 32,87 41.22
6,008 29,07 _ 28,21 36.41
8.067 26,27 » 26,18 33,10
10.01 24,39 : 24,29 . 30.81
12411 22,68 ' 22,69 -+ 28,88
13.15 21,27 - 22,02 28,07
14.82 ' 20.98 _ 21.C7 26,23
.Table 1,
Column I: Applied voltage Vék(positive for reverse bias)
" (Volt)

. Column II: Measured capacitance values (pf)

Colunn III: Calculafed capaéitancg Erom the final profile
pafameters

Coiumn iV: Calqulated‘capacitanqe ffom:thé initial profile

- parameters

R |
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. a, The search for x _and x. .
: rm inm

iAThe search for x will.be. described since the x

_ _ rm . - dm
.seétéh is anaioguous. A firsf rough guess for x 'is made by
T S . . ' , rm
. ealculatirg n such that:

“, n .3 . ' - _
N Gddx +2 oo +Ewvvigo @D
- : = X 3k-1 g a b o ’

(+]

&K is choosen as 10 c¢m, A three-point Gaussian intégratibn

is used for calculating the integrals; ‘The summation stops when

(A1) is satisfied. From (Al) and (14) it follows:
x a2 Ca® . - U . '(Aé)
[ X e ) - L - )
v = Tra= : ' o

_”§EJ56§M55éﬁﬁéwgwéfgbéfié_iﬁé'élbhg the ii-axis given by:
.Ar = »0.10(3 : IR ' (A3)

This is used in a trapezoidal integration to find a point n A
| ) - TR , . - r

such that:

A

at xN(x)dx-+éi(V +V. ) &£ 0 | - o (a4)

T qQ a b 7% : o

0 ' , »

Thé symbol j; indicates trapezoidal integration, Note that the

‘search for n is done by a simple stepping along the Xp~axis
. r _

 until (A4) is satisfied, . In the'same.way abstep Al is calcu-



 Aﬁ1ated oﬁ’fhe'xi;;iis and a point ?niAiyis Seaiched_such that:

. :-nlAl

~ From (A4), (A5), (14) and (15) it follows that:

x ~ n A ' A . o  (a6)
.rm . r r ‘ - o B S . )
z ~ =-n_A o : _ (A7)
im T 171 _ S . S ST
~ Note: 1. The exact values of x ahd X -areAnot important,

' so (A6) and (A7) are considered correct.,
2, During operations (A4) and (A5) all the function
- walues Y(i k) and partial integration results

-’Sx(j k) defined as:

. A kA
(i) = N(x4)) and 5 (k) = frxN(x)dx (A9)
r X OT .
o , . - o .
| f(=k) = N(-k4 )and S_(-K) = j xN(x)dx  (A10)
. ) ' X T . . .
‘are stored. From (A2) and (A3) it follows that

nr’l < 30.

b, Search for I(xliJ xri)-(fig. 2)

The equation of line AB (fig. 2) is:

. o
x. (x ) = x (1 -2X) , _ (A11)
h § . im Xrm : ] . .

r



(Q Thus x. is the solution of:
Y T T ~

X

ri R : R LT T

M(xddx = O . o (A12)

x (x ). oL LD : N
T rd

This equation is solved with the trapezoidal integration by

vstepping along the x -~axis with stepsAAr; The trapezoidal-‘
_ : r _ o

. integration makes use of the values,f(tk) already stored so
that no additional function values are calculated. A linear
interpolétiqn is used whenever the coordinates do not coincide

with the grid defined by the steps A_ and A; (this can be the

case for xl(xri)). Note that from (Al2) it follows:

x
rij ] A
S N(x)dx = 0 I (A13)
x SR L . .
1i
: 1) ). -
c. Search for (xL X ),

_ The eqpétion of the tangentAline't (fig. 2) is:

, "_chri). ‘ _
xl(xr) = Xy -»N( ;(xr-xri) o : -‘A14)
R T O
1) _
X is the solution of:-
r
1
‘Sr xN(x)dx +—(V +V.) = 0 . (A15)
- q a b , .
o '.xl(x(i))’

r



aa.

,This eqﬁation.zs sol;ed 1n'th§.same way aé iﬁlstep b ﬁ;fiﬁgé
is gade_of the-stgfed fes;ita S, (+k) and 1ineér.interpolations:?
.,AHéfé)foo.no né@ fgnétiop ?alcuiat;ons afe requifed.. NoteAthat' !
‘finow,.accbrding to (Al5): |

R TS N CPR ¢

N ¢ o ‘ SO

so that G is obtained at no extra cost. We only need to
“ecalculate: - , ,
| (1) 1)

" F = F(x x :
e i’ Tr )

:which, according to A(13), is done by:

x (1)
1i _ ir
) ' - EER '
F = T( N(x)dx + Jt N(x)dx - - (A17)
- %D X,.; ’ S
1 ‘ Tl

making use of f(ik) vaiues and'iinear intérpolation.' Note
that function values are calcﬁlated only dﬁring the first

'step and then always used back again;»
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“Appendix'B:.The cylindrical and'éphéiicél“jungtion;
_iﬁufThe'¢y1ihdrical:and“spherical coordinates are defined
in fig., 7. We assume that the profile function is given as:

NCx ) = N(r - r.) o *w?“'“ﬂ ?%;* ”(Bl)'
' Cys S o :

where the subscript ¢ or s stands for cylindrical or spherical
) : L Q- .o : i

Junctions respectively.

‘Polsson's equation can now be written as:

PS , : ’ :
av I(r-r. L
SRS el S SR Ll ik T4 (B2)

~with n=1 for cylindrical and n=2 for spherical junctions, 1t
is easy to show that a double integration of (B2) and a change

of coordinates to x_ of'xs leads to:

1. for cylindrical junctions:

A Xre
N Xc , : .

F (x ,x )= ‘f (1 + —=)N(x Jdx = O

¢ rc lc -4 ry ¢ ¢ b

| e | (B3)
X,o ‘

G (x__,x_ ) =r_ (1 + —)1In(l + —)N(x )dx + =(V +V_ ) = 0.

c rc’llc J rj_ rj c‘_ c q a b" T

S P



-

’“2;7f6r spherical junctiohs:»rgi'u B
B o rs:A , o ,
P x ,x )= S"(x + r ) N(x Jdx_= 0 B
s rs 1s 8 o s s
e e e e e (B4)
' ST o -
. + r ON(x )d sEvivo =0
G (x ,x )= (xs + rj)}\ x Jdx . VatVp? =

N

X
< 1s

ihé gguét_ions~ {Bs)Jor‘fﬁQS can.bé solved withr
* ' o S :
Neﬁtoﬁ'é ﬁethod in exactiy the same way as givén in I1la,
fhe éa?tial derivatives in eq (10) afe also‘e$sily caldulateq
from.only two function yalues and each iterat;qn again requifes
only four function calculations, _TheAstartiné valﬁes for
(B3) are the solution (xr,xl) for the plane juncfion and
for»(B4) the solution (xrc,xlc).fdr the cylindrical Jjunction.
These are usually close enough t; the solution if % »is-ﬁot
\toé small;"Moreovgf this is usually thefseﬁuenge in which
.tﬁe‘results ére needed'(e.g; calcﬁlatién for a regtangularv
plénar diffusion such as collector-base or gate-drain. junc-
tions). The capacitance for one fourth of a cyiindrical
wall with length‘is then given as:
c = K’él ,_ B - (BS5)
.'éA'f  21n(rJ'X1c) _ S : _

r
F3t¥re

G e bh A se el



P TIE

. -,."1"'_‘Thé capacitance for 1/8 sphefe is give.n" by:

R .*_Jf,g'r (r -x )(r:,+x"-) oL
e = - i3 T1s” 73 Trs o ee
R B A




. Fig, 3

Fi

Fig, 5

Fig., 7

h

.l-:CépfioﬁS

fo'thé figufes;

Impurity profiie_definitions.

Representation of eg.(5) and (6) in the (xr,xi) pléng.

" Curve @ represents eq.(6) and curve @represants eq.(58).

Tﬁe intersection D of the tangent in point I to curve
2 is the starting point for the Newton itération.

The impurify_profiie model for a phosphorus diffusion

'.gt TJ&JOOOocfin a uniformly doped subétrate with con-

o

Y

centration N,. The figure is drawn for the profile

;p the egample i.e. x1=o.33um; x2=1.4gﬂm; xj:g.z;um,

17 - o -3
NA§1.4i&Ecm 3 and-N°=2.5 102 cm

Measured (8) and calculated (+) C-s(Va) curves for

forward bias and for six different temperatureé. The
intercepts Vi of the experimental curves at the diffe-
rent temperatures are given in the“insert.

Calculated C(T) curVe$ at different applied voltages

Va using VL given by eq., (30), .The dots represent

measured points,.

A comparisdn of Vb(T) given by eq., (30) and experi-
mental values (@) for Vb'

Coordinéfe definitions for c¢ylindrical and spherical

jurnctions,
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