
MATHEMATICS OF COMPUTATION
VOLUME 50, NUMBER 181
JANUARY 1988, PAGES 179-188

A Fast Algorithm for the Multiplication

of Generalized Hubert Matrices with Vectors*

By A. Gerasoulis

Abstract. The existence of a fast algorithm with an 0,4(n(logn)2) time complexity

for the multiplication of generalized Hubert matrices with vectors is shown. These

matrices are defined by (Bp)ij = l/(t, — Sj)p, i,j = l,...,n, p = 1,... ,q, q -C n,

where tt- and s, are distinct points in the complex plane and t,- ^ Sj, i,j = l,...,n.

The major contribution of the paper is the stable implementation of the algorithm for

two important sets of points, the Chebyshev points and the rath roots of unity. Such

points have applications in the numerical approximation of Cauchy singular integral

equations. The time complexity of the algorithm, for these special sets of points, reduces

to 0,4 (n log n).

1. Introduction. Let us define the generalized Hilbert matrices Bp, p =

l,...,g, g«n, by

(!) iBp)i,j= (¿_s.w »,i = l,...,n,

where í¿ and s¿ are distinct points in the complex plane and í¿ ^ Sj, i,j = 1,..., n.

The special case, p = 1, í¿ = i and Sj = — j + 1, is the well-known Hilbert matrix

(2) {Bi)i,}■ = t—.—r, i,j = l,...,n.
i +] - 1

For the case p = 1 and Sj = tj =: Cj, we define the matrix

Í —!— if i Í J,
(3) Tij= I Ci-Cj i,j = l,...,n.

[0 ïîi = j,
In [11], the following question was considered:

"Given a vector y. Does there exist an algorithm for computing the product Ty

in less than 0^(n2) operations?"

The time or space complexity O a (f(n)) of a straight-line model of computation

is defined in Aho et al. [1, pp. 19-22]. This problem was initially posed by Golub

in [12] and it is known as Trummer's problem. It has generated considerable in-

terest because of various applications in the computation of conformai mappings

(Trümmer [22]), the zeta function (Odlyzko and Schönhage [18]), the numerical

evaluation of singular integrals (this paper and Reichel [19]) and particle simula-

tions (Greengard and Rokhlin [13] and Rokhlin [20]).

Received March 18, 1986; revised September 5, 1986.

1980 Mathematics Subject Classification (1985 Revision). Primary 68Q25, 65F30, 65R20, 65D30.
Key words and phrases. Generalized Hilbert matrices, fast algorithms, computational complex-

ity, singular integrals.

'This material is based upon work supported by the National Science Foundation under Grant

No. DMS-8506464 and DMS-8706122.

©1988 American Mathematical Society
0025-5718/88 $1.00 + $.25 per page

179

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

180 A. GERASOULIS

In [11] we have proposed an C>A{n(logn)2) algorithm for Trummer's problem,

henceforth the GGS algorithm. The GGS algorithm uses Fast Fourier Transform

(FFT) polynomial multiplication, polynomial interpolation and polynomial eval-

uation at n distinct points. In Section 2 we show that the GGS algorithm can

be extended to include the matrices defined in (1). The time complexity of the

extended algorithm is the same as the GGS. In Section 3 we present examples of

generalized Hilbert matrices arising in the numerical approximation of singular in-

tegrals. In Sections 4 and 5 we present a stable implementation of the algorithm for

the Chebyshev points Sj = cos(jir/n), j — 1,... ,n — 1 and tk = cos((2fc - l)7r/2n),

k = l,...,n, and for the nth roots of unity ck = exp(27ri(fc - l)/n), i = >/—Ï,

k = l,...,n. Both sets of points have important applications in the numerical

approximation of Cauchy singular integrals. The time complexity of the algorithm

for these special sets of points reduces to 0,4 (n log n). In Section 5 we also discuss

two approximate algorithms, for specially distributed sets of points, recently pro-

posed by Greengard and Rokhlin [13], Rokhlin [20], Odlyzko and Schönhage [18]

and Reichel [19].

2. An Extended GGS Algorithm. In this section we briefly describe an

extension to the GGS algorithm for the multiplication of Bp with a vector. We

notice that the problem of multiplying Bpy is equivalent to evaluating the function

fp{x) at the points í¿, t = 1,..., n, where

(4) M*) = tj^> p = 1'-'9-
]=i K 3J

We consider /i(x) first. Following Gastinel [7], we express /i(x) as the ratio of two

polynomials h(x) and g{x), where g(x) is an nth degree polynomial defined by

n

(5) g(x) = Y[(x-S])

and h(x) is a polynomial, of degree at most n — 1, determined from

h(x) _ .A y.
(6) /i(*) =

g{x) j-^ x

Setting x = st, t = 1,..., n, in (6), we derive

(7) h{sl) = yig'(si), z = l,...,n,

which implies that h(x) is the interpolation polynomial for the points (st,y,t7'(st)),

i — l,...,n.

Observe that fp(x) — /¿_i(x)/(l -p), p = 2,3,... ,q. Therefore, expressions for

the computation of Bpy can be derived by using (6). For example, for p = 1,2, we

have that

tn r(t\-hM f(t\- r>(t\- ft'C«) , KU)g'{U)

Similarly, Trummer's problem x = Ty is equivalent to evaluating (Gerasoulis et al.

[H])

(y, Xj , j i,...,n.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

A FAST ALGORITHM FOR GENERALIZED HILBERT MATRICES 181

We now present an efficient algorithm for the evaluation of /i(i,) and f2{ti),

i = 1,..., n. The algorithm can be easily extended to include p > 3.

Procedure FAST(n,t,s,y); return fijfjj

1. Compute the coefficients of g(x) in its power form, by using FFT polyno-

mial multiplication, in 0>i(n(logn)2) time (e.g. Horowitz [15], Aho et al.

[1, Theorem 8.14, p. 299], Henrici [14, pp, 36-38]);

2. Compute the coefficients of g'(x) in 0,4 (n) time;

3. Evaluate g{ti), g'(U), i = 1,... ,n, and g'(sj), j = 1,... ,n, inO,4(n(logn)2)

time (Aho et al. [1, Corollary 2, p. 294]);

4. Compute hj = yjg'(tj), j = 1,... ,n, in 0,i(n) time;

5. Find the interpolation polynomial h(x) for the points (sj,hj), j = 1,... ,n,

in 0A(n(logn)2) time (Aho et al. [1, Theorem 8.14, p. 299]);

6. Compute the coefficients of h'(x) in 0,4 (n) time, and evaluate /i(£¿) and

h'(t,), i = 1,... ,n, in 0¿(n(logn)2) time, following the same technique as

in steps 2 and 3;

7. Compute h(U) = h(tt)/g(U) and /a(«¿) =-A'(í<)/ff(í<)+M*»)ff'(íi)/ffa(*¿).
t = 1,..., n, in 0,4 (n) time;

end FAST;

The space and time complexity of FAST are Oyi(nlogn) and 0,t(n(logn)2),

respectively. In Sections 4 and 5, we consider two important special cases for which

the time complexity reduces to 0,4 (n log n).

3. Generalized Hilbert Matrices. In this section we present generalized

Hilbert matrices which arise in the quadrature approximation of Cauchy singular

integrals. We consider the Cauchy principal value integral

(10) I(y;s) = - I w(t)p$-dt, \8\<l,w(t) = (l-t)a(l + t)P,
it y_i t - s

where a and ß are constants and — 1 < o, ß < 1. Hadamard's finite part integral

is defined by

<») «"•l-^-ljÇ-MA* M<i,
where it is assumed that w(t) and y(t) are such that the derivative of I(y; s) exists.

The singular integrals (10) and (11) arise in fields such as aerodynamics, wave-

guide theory, scattering, fracture mechanics and others. A particular example is

the equation

(i2) ii'fi-^â^/w, i*i < i,
7T J_i t - S

which arises in fracture mechanics. The solution y(t) represents the derivative of

the crack opening under a given pressure distribution f(s) along (—1,1) (Erdogan

and Gupta [6], Kaya [17]).

We will derive quadratures for the singular integral (10). These quadratures give

rise to matrices Hi and T. Quadratures for /#(?/; s) and the matrix B2 can be

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

182 A. GERASOULIS

obtained from the quadratures for I(y;s) via (11). By rewriting (10) as

(13) ¡{ms) = lf'w{t)yñzMdt + yMfpa.dt
it J-i t - s it J_i t - s

we see that classical quadratures may be used to approximate I{y;s). The second

integral in (13) can be computed once to within any given tolerance by using power

series expansions and contour integration (Gautschi and Wimp [8]) and the first

integral via a quadrature for different functions y(t). FAST could be used to speed

up the quadrature computations.

We consider only two cases of the weight w(t). The analysis can easily be ex-

tended to the general weight function w(t) in (10).

The case a — ß = 0. Here, the weight function is w(t) = 1. Applying the

trapezoidal rule in (13), we derive

(H) In{y.8)JfWiyM^iû + MJ^A w<li
■'--' t¿ — 8 It 1 T S
t=0

where i, = — 1 + »ft, i = 0,1,... ,n -I-1, ft = 2/(n + 1), Wo — wn+i = h/(2ir) and

Wi = h/it, i = l,...,n. Trummer's matrix T can be derived by setting s = tj,

j = l,...,n, in (14):

Lniy;w = J21^-y(t])J27J£rr+nt3), y = i,...,n,
,=1 h l3 ¿=1 l% ll

(15) „u > _ My(to) - y{tj)) , wn+1{y(tn+l) - y(tj)) .Iu ,
r \lj) — : : r . . ' wjy \Lj)

CO — lj ín+l — tj

, i/(*j)mli-*il
it \i + tj\

where we have assumed that y'(tj) exists. The computation of y'{tj) can be per-

formed via a finite difference formula with the same or better accuracy than (14).

The case a = ß = —1/2. For this special case the weight function becomes

w(t) = (1 — £2)-1/2. Using the Gauss-Chebyshev quadrature and the identities

(Erdogan and Gupta [6])

1=1

we see that J(y; s) can be approximated by

(17) In(y; s)=n-*± l&LzM =n-lflM+ %#y(.),

where í¿ = cos((2í — l)7r/2n), i = 1,..., n, are the zeros of the Chebyshev polyno-

mial Tn(t).

Setting s = Sj =: cos(jir/n), j = 1,... ,n — 1, in (17), where Sj are the zeros

of the Chebyshev polynomial of the second kind <7n_i(s), we derive summations

similar to Biy:

(18) i»(y;»i) = n-1¿^-1 j = l,...,n-l,

while setting s = í<, » = 1,... ,n, we derive Ty.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

A FAST ALGORITHM FOR GENERALIZED HILBERT MATRICES 183

4. An Application of FAST. In this section we present an O a (n log n) stable

implementation of FAST for the Chebyshev points. We consider the numerical

solution of (12). Using (18) to approximate (12), we obtain the (n-1) x n algebraic

system

(19) Ay = f, Ajii = —r-r, j = l,...,n-l, » = l,...,n,
nyti - Sj)

where y = [y(ti),y(t2),... ,y{tn)]T and f = [/(si),/(s2), • • • J{sn-i)]T. By using

identity (2.4) of [9], we can easily derive the following right inverse A1 of A, and

consequently obtain the solution of (19) from

1-s2
(20) y = A/f + 6„un, {AI)ij = -T.-L_ » = l,...,n, j = l,...,n-l,

n(ti Sj)

where bn is an arbitrary constant and u„ is a vector with all elements equal to one.

In the following example, we apply FAST to the computation of

(21) (A^ = n-in¿(1;Sl)/(Sj), í = lf...,«.

3=1
T/% Sj

Example 1. The algorithm presented below is a modification of FAST for the

INPUT: ti = cos((2z - l)7r/2n), i = l,...,n, Sj = cos(.?7r/n)and y3 = f(sj),

; = l,...,n-l.

1. Instead of computing g(x) in its power form, we will use an analytic expression.

We have
n-l

aix) = Y\(x - sj) = dnUn-i{x) = dnsin(n0)/sin(o),

3=1

where dn = 2_("-1' and cos(ö) = x.

2. Similarly, g'(x) = -dn[nTn(x) - xf/n_1(x)]/(l - x2).

3. Since g'(sj) = dn(—l)3+1n/(l — s2), the complexity for this step reduces to

0>i(n) time.

4. Equation (7) and step 3 above imply that

h{sj) = dn(-iy+1yj, j = l,...,n-l.

5. We find ft(x) by using orthogonal polynomial interpolation. We first set

ri-1

(22) ft(x) = 5>fct/fc_!(x)
fc=i

and use the fact that Gaussian quadratures for n—1 points are exact for polynomials

of degree < 2n — 3 to derive the following orthogonality relation,

|_ (l-x2)1/2f7/(x)C/m(x)dx

(23) -1 fï if l = m
= 7rn-1J2(1-4)Ui(sk)Um(sk) = \ 2

k=i { 0 îîl^m,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

184 A. GERASOULIS

where l + m < 2n — 3. From the last two equations we see that for k = 1,..., n — 1,

71— 1 71—1 , . N.

(24) ak = 2n~l £(1 - ^(^t/fc-ifo) = £ 2x}-sin (fc^ J ,
i=i V n /

Xj = n_1ft(sj)sin I —

3 = 1

Therefore, ak can be computed via FFT in 0,i(nlogn) time (Aho et al. [1]).

6. From step 1 and (22), we see that for i = 1,..., n,

d„(-l)!+1
g(ti) =

(25)
sin((2i'-l)7r/2n)'

h(t,) = > ak sin I A;- 1 / sin
k=i ^ n '

(2» - 1)tt

2n

7. Finally, A/f is computed from (26) by using FFT in O^(nlogn) time,

<26> AW-^f-¿g(-ir*-.(*2f¿!í:), -i.-"-

The total cost of the above implementation of FAST is 0,4 (n log n), since it only

requires the application of FFT twice. In Table 4.1 we present our computational

experience with FAST, and with the conventional algorithm for the multiplication

of a matrix with a vector directly, which requires Oa{u2) operations. We have

chosen the function f(s) = 1. In this case, the summations can be obtained exactly

from the identity (e.g. Erdogan and Gupta [6])

(27)
,=i h *>

1 V- 1 - 57
n ¿7-— = U, i = l, ...,n.

TABLE 4.1

The performance of FAST versus direct multiplication for f(s) = 1.

0,4 (nlogra) Algorithm O a (n) Algorithm

Time in

k ra = 2* sec.

2

3

4

5
6

7
8

9
10

11

12

Max. Error Time in

sec.

Max. Error

4

8

16

32
64

128
256
512

1024

2048
4096

0.0013
0.0031

0.0054
0.0122

0.0248
0.0524
0.1082

0.2335
0.4831

0.9975
2.0592

0.372 x

0.447 x

0.447 x
0.671 x

0.596 x

0.104 x

0.372 x

0.738 x
0.114 x

0.627 x
0.743 x

io-7

io-7
IO"7

IO"7

IO"7

10"6

10~6

IO"6

IO-5

IO-5

IO"5

0.0004

0.0014

0.0055
0.0222

0.0889
0.3563

1.4264

5.7057
22.8265

91.3278
365.2306

0.223 x

0.968 x
0.194 x

0.484 x

0.789 x
0.200 x

0.400 x
0.814 x

0.167 x

0.336 x

0.713 x

io-7

io-7
IO"6

10"6

10-6

IO-5

IO"5

IO-5

io-4

io-4
10"4

The maximum error shown in Table 4.1 is obtained from max, |r, - /i(it)| in the

fourth column, and from max¿ |í¿ - (Biy)¿| in the last column. The computa-

tions have been performed on a DEC-20 by using the single-precision subroutines

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

A FAST ALGORITHM FOR GENERALIZED HILBERT MATRICES 185

SINT and SINQF from FFTPACK of NETLIB (Swarztrauber [21]), which are most
efficient when n is a power of 2. The table shows that FAST outperforms the con-

ventional algorithm for all n > 16 and that it also attains a better accuracy. Similar

results have been obtained for several other choices of f(s). D

The algorithm described in the above example could be used in the solution of

the singular integral equation

(28) - I w(t)^-dt + X f w{t)K{t,s)y{t)dt = f(s), \s\ < 1,
T 7-1 t-S J_l

provided that the kernel K(t, s) is of the form

Using quadratures similar to (17), we can reduce (28) to the following algebraic

system,

It) '
(A + AC)y = f, (A)j:i = ——, (C)j,i = irWiK(ti,Sj),

(30) f« _ si

j = l,...,m, i' = l,...,n,

where W{ are the quadrature weights, e.g. if w(t) = (1 — i2)-1/2 then w¿ = 1/n.

The last algebraic system can be solved via iterative methods such as generalized

conjugate gradient (Conçus and Golub [3], Trümmer [22]), Nyström's iterative vari-

ants (Gerasoulis [10]), and successive approximation (Tsamasphyros and Theocaris

[23], Ioakimidis [16]). These iterative methods repeatedly compute products of the

form Biy, and the use of FAST will greatly improve the computational speed.

Examples of equations with kernels similar to (29) can be found in Comninou [2],

Tsamasphyros and Theocaris [23], Kaya [17], Elliott [5].

5. Approximate Algorithms. In this section we discuss two approximate

algorithms which could be very useful for certain point distributions. One of these

algorithms uses FAST while the other uses a power series approximation.

The procedure described in Section 2 only proves the existence of an algorithm

whose computational complexity is smaller than that of the conventional algorithm.

It does not show if FAST is practical, except in the case of the Chebyshev points

for which FAST reduces to computing FFTs. How practical FAST is in general

depends on how the points are distributed in the complex plane. For example, for

the equidistant points <¿ = —1 + ih, i = 0,... ,n + 1, ft = 2/(n + 1), interpolation

is ill-conditioned for certain functional values (Dahlquist and Bjorck [4]). This

implies that FAST could be unstable even for n = 10, since in step 5 of the algorithm

interpolation is used. Moreover, even if the algorithm is stable, the constants for the

time complexity could be larger than 10. Therefore, FAST could become faster than

direct multiplication only if n > 1000. In such cases, an alternative implementation,

or even an approximate algorithm, might be a better choice. In the case of the

equidistant points one does not have to use FAST at all, since £¿ — tj — (i — j)h

and therefore the sums in (15) can be computed via FFT convolutions directly in

0,4(n log n) time. However, as we will see below, the usefulness of FAST is not

limited to the Chebyshev points. As a matter of fact, it could be used with an

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

186 A. GERASOULIS

approximate algorithm to compute the products Ty or Bpy to within an accuracy

e in O a (n log n) time.

Let us consider the matrix T and assume that the points c¿ lie on a sufficiently

smooth closed curve in the complex plane. Points that lie on smooth curves arise

in the approximation of Cauchy singular integral equations in the complex plane.

Under this assumption, Reichel [19] has shown that T can be approximated by

(31) Ts^B^-BW-COD-1,

where Dn and ß(°) are diagonal matrices, B'2) is a low-rank matrix and Cn is a

matrix of the same form as T having elements ck equal to the nth roots of unity.

The product B'2'y can be computed directly in 0,4(Â;2) time, where k depends

on the tolerance e and on the smoothness of the closed curve and is usually much

smaller than n. Reichel uses properties of circulant matrices to compute Cny in

0,4 (n log n) time. We show in the example below that FAST also computes Cny in

O a (n log n) time and more importantly that its implementation is stable for large

n.

Example 2. Consider the nth roots of unity

/27Tl(fc-l)\ . ,— ,
cfc=exp - , 1 = V-l, k = l,...,n.

For these points we have that

i-</(*)=nîU(z-<*)=*"-1-
2. g'(x) - nx"-1 and g"(x) = n(n - l)xn~2.

3. g'{ck) = n/ck and g"(ck) = n(n - l)/ck, k = 1,... ,n, in 0,4 (n) time.

4. ft(cfc) = ykg'(ck), k = l,...,n, in 0A{n) time.

5. Set ft(x) = £m=Oamim SO that h(ck+1) = Em=Oa7nCfc+l' fc = 0,...,n-l,

implying

,„_. _, \—» , , . f —2nikm\
(32) am=n ¿_^ ft(cfc+i)exp I - 1, m = 0, ...,n-l,

fc=o \ n J

which can be computed via FFT in 0>i(nlogn) time (Aho et al. [1]).

6. From the last step we have that ft'(x) = Ylm~=o ̂ amxm_1 so that

/™n ,// n (-2itik\ t-~* (2itikm\
(33) ft (Ck+i) = exp I-J 2^mamexp[-I, fc = 0,...,n-l,

\ ' m=0 ^ '

which again can be computed via FFT in Oyi(nlogn) time.

7. Equation (9) computes xk = (h'(ck) - \yk9"{ck))lg'(ck), k - l,...,n, in

0>i(n) time.

We can easily see that the above implementation of FAST requires O a (n log n)

time. The computational performance is similar to that of the Chebyshev points

shown in Table 4.1. D

Finally, we describe a technique based on a power series expansion. This tech-

nique is similar to the one used by Greengard and Rokhlin [13] in particle simulation

and Odlyzko and Schönhage [18] in the fast computation of the zeta function. We

present the method in the case of p = 1 in (4) and under the assumption that

the points are well separated. Two sets of points are well separated if there exist

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

A FAST ALGORITHM FOR GENERALIZED HILBERT MATRICES 187

points ¿o, Sq and a positive number r > 0 such that |tj — tr¡\ < r, \sj — sç,\ < r and

|*o - «oí > 3r (Greengard and Rokhlin [13]). Under these assumptions we see that

\sj — sr>\/\x — s0| < \ for x = i,. Therefore, using the geometric series expansion,

we obtain
71 OO

M*) = £ i—U1 ,V3—T77—ñ = ¿2 m* - sorfc-1'
f?{x-80){l-{8j-8o)/{x-80)} ¿~<

(34)

hk = Y^Vj{Sj -So)*.

3 = 1

We can easily see that

h{x) « /n*) =

(35)

i/i(x)-/r(x)i<¿m , ¿ = y>,-i, x = it./r(x)i<A(^-j , a = x>i,

Let us assume that f\ (x) is to be approximated to within a precision e. Then m

must be chosen so that m ss -log2(e/A). The total cost of arithmetic operations

required to compute f™(U), i'■ — 1,... ,n, is O^(mn). If m <C n, then the complex-

ity reduces to 0>i(n). Therefore, for the well-separated points this algorithm will

be asymptotically faster than FAST, provided that e is not very small.

If the points are not well separated, then this technique can still be applied.

The sum in (34) can be split into subsums of well-separated and not well-separated

(nearby) points. The computations for the nearby points can be performed directly,

while we can use (35) for the well-separated points (see Greengard and Rokhlin [13]

for details). The complexity of the algorithm depends on the homogeneity of the

distribution of the points. For nonhomogeneous distributions, n might have to be

extremely large before the algorithm becomes faster than direct multiplication. The

applications reported in Greengard and Rokhlin [13], and Odlyzko and Schönhage

[18], however, show that this algorithm could also be very useful for certain point

distributions.

Acknowledgments. I would like to thank Gene Golub for introducing us to

Trummer's problem and providing us with reference [7] and the referee for several

valuable comments.

Department of Computer Science

Rutgers University

New Brunswick, New Jersey 08903

1. A. AHO, J. E. HOPCROFT & J. D. ULLMAN, The Design and Analysis of Computer Algorithms,

Addison-Wesley, Reading, Mass., 1974.

2. M. COMNINOU, "The interface crack," J. Appl. Mech., Transactions of ASME, 1977, pp.
631^36.

3. P. CONÇUS & G. H. GOLUB, A Generalized Conjugate Gradient Method for Nonsymmetric

Systems of Linear Equations, Lecture Notes in Economics and Mathematical Systems, v. 134,

Springer-Verlag, Berlin, 1976, pp. 56-65.

4. G. DAHLQUIST & A. BJÖRCK, Numerical Methods, Prentice-Hall, Englewood Cliffs, N.J.,
1974.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

188 A. GERASOULIS

5. D. ELLIOTT, "The numerical treatment of singular integral equations-A review," Treatment

of Integral Equations by Numerical Methods (C. T. H. Baker and G. F. Miller, eds.), Academic Press,

New York, 1982, pp. 297-312.
6. F. ERDOGAN &i G. D. GUPTA, "On the numerical solution of singular integral equations,"

Quart. Appl. Math., v. 29, 1972, pp. 525-534.
7. N. GastINEL, "Inversion d'une matrice généralisant la matrice de Hubert," Chiffres, v. 3,

1960, pp. 149-152.
8. W. Gautschi & J. WlMP, "Computing the Hubert transform of a Jacobi weight function,"

BIT, v. 27, 1987, pp. 203-215.
9. A. GERASOULIS, "On the existence of approximate solutions for singular integral equations

of Cauchy type discretized by Gauss-Chebyshev quadrature formulae," BIT, v. 21, 1981, pp.

377-380.
10. A. GERASOULIS, "Singular integral equations: Direct and iterative variant methods," Nu-

merical Solution of Singular Integral Equations (Gerasoulis & Vichnevetsky, eds.), IMACS publica-

tion, 1984, pp. 133-141.

11. A. GERASOULIS, M. D. GRIGORIADIS & LIPING SUN, "A fast algorithm for Trummer's

problem," SIAM J. Sei. Statist. Comput, v. 8, 1987, pp. sl35-sl38.
12. G. H. GOLUB, "Trümmer problem," SIGACT News, v. 17, 1985, No. 2, ACM Special Interest

Group on Automata and Computability Theory, p. 17.2-12.

13. L. GREENGARD Si V. ROKHLIN, A Fast Algorithm for Particle Simulations, Research report

YALEU/DCS/RR-459, April 1986.
14. P. Henrici, Applied and Computational Complex Analysis, III, Wiley, New York, 1986.

15. E. HOROWITZ, "A unified view of the complexity of evaluation and interpolation," Acta

Inform., v. 3, 1974, pp. 123-133.
16. N. I. IOAKIMIDIS, "Three iterative methods for the numerical determination of stress inten-

sity factors," Engrg. Fracture Mech., v. 14, 1981, pp. 557-564.

17. A. KAYA, Applications of Integral Equations with Strong Singularities in Fracture Mechanics,

Ph.D. thesis, Lehigh University, 1984.

18. A. M. ODLYZKO Si A. SCHÖNHAGE, Fast Algorithms for Multiple Evaluations of the Riemann
Zeta Function, Technical Report, AT& T Bell Laboratories, Murray Hill, N.J., 1986.

19. L. REICHEL, A Matrix Problem with Applications to Rapid Solution of Integral Equations, Re-

port, Department of Mathematics, University of Kentucky, Lexington, 1986.

20. V. ROKHLIN, "Rapid solution of integral equations of classical potential theory," J. Comput.

Phys., v. 60, 1985, pp. 187-207.
21. P. SWARZTRAUBER, FFTPACK, NetlibStml-mcs, Private communication.

22. M. TRÜMMER, "An efficient implementation of a conformai mapping method using the

Szegö kernel," SIAM J. Numer. Anal., v. 23, 1986, pp. 853-872.
23. G. TSAMASPHYROS Si P. S. THEOCARIS, "A recurrence formula for the direct solution of

singular integral equations," Comput. Methods Appl. Mech. Engrg., v. 31, 1982, pp. 79-89.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

