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A FAST ALGORITHM FOR THE TWO DIMENSIONAL HJB EQUATION
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Abstract. This paper analyses the implementation of the generalized finite differences method for
the HJB equation of stochastic control, introduced by two of the authors in [Bonnans and Zidani, SIAM
J. Numer. Anal. 41 (2003) 1008–1021]. The computation of coefficients needs to solve at each point of
the grid (and for each control) a linear programming problem. We show here that, for two dimensional
problems, this linear programming problem can be solved in O(pmax) operations, where pmax is the
size of the stencil. The method is based on a walk on the Stern-Brocot tree, and on the related filling
of the set of positive semidefinite matrices of size two.
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1. Introduction

In this paper we discuss numerical schemes for the HJB equation of stochastic control. The model problem
we are considering is

(Pτ,x) Min IE

∫ T

τ

�(t, y(t), u(t))dt + �F (y(T ));

{
dy(t) = f(t, y(t), u(t))dt + σ(t, y(t), u(t))dw(t),

y(τ) = x; u(t) ∈ U, t ∈ [τ, T ], τ ∈ [0, T ].

Here T > 0 is the (given) final time, y(t) ∈ R
n and u(t) ∈ R

m are the state and control variable, the latter
subject to the constraint u(t) ∈ U a.e., where U is a compact subset of R

m, � : R × R
n × R

m → R and
�F : R

n → R are the running and final cost, f : R×R
n×R

m → R
n is the drift (deterministic part of dynamics),

σ is a mapping from R×R
n ×R

m into the space of n× r matrices, and w is a standard r dimensional Brownian
motion. The control variable u has to be a function of past events, i.e., is progressively measurable w.r.t.
the filtration Ft associated with the Brownian motion. Let U be the set of feasible policies, i.e., progressively
measurable controls with values in U . We assume for the sake of simplicity that f , σ, � and �F , are Lipschitz
and bounded. Then (e.g. Fleming and Soner [7]) the stochastic differential equation is, for each policy u ∈ U ,
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well posed and the corresponding expectation W (τ, x, u) is well-defined. Denote the transposition operator by
�. Let a(t, x, u) := 1

2σ(t, x, u)σ(t, x, u)�, for all (t, x, u) ∈ [0, T ] × R
n × U , be the diffusion matrix. The value

function V of problem (Pτ,x), defined by V (τ, x) := infu W (τ, x, u), is (Lions [13]) the unique bounded viscosity
solution of the Hamilton-Jacobi-Bellman (HJB) equation

−vt(t, x) = inf
u∈U

{�(t, x, u) + f(t, x, u) · vx(t, x) + a(t, x, u) ◦ vxx(t, x)} ,

for all t, x ∈ [0, T ]× R
n.

v(T, x) = �F (x), for all x ∈ R
n, (HJB)

where vxx denotes the n × n matrix of second derivatives of v with respect to x, and given two symmetric
matrices A, B, of size n, A◦B :=

∑n
i,j=1 AijBij is the scalar product associated with the Frobenius norm ‖A‖ :=

(
∑n

i,j=1 A2
ij)

1/2 (since we do not use other norms on matrices the notation is non ambiguous). Various numerical
methods have been proposed for solving this problem. Classical finite difference methods were discussed in
Lions and Mercier [14], see also Menaldi [15]. Markov chain approximation were introduced in Kushner [11], see
Kushner and Dupuis [12]. Camilli and Falcone [6] discuss methods based on a priori time discretization (and
the related dynamic programming principle for discrete time problems). Krylov [10] gives an error estimate of
a large class of discretization schemes. Recent improvements of the error estimates were obtained in Barles and
Jakobsen [1, 2].

2. Generalized finite differences

Let us recall the generalized finite differences (GFD) method of [4] in the setting of finite horizon problems.
The space discretization steps are positive real numbers h1, . . . , hn. With a point k ∈ Z

n is associated xk :=∑n
i=1 kiei of the state space, where ei is the ith standard basis vector. Let Q ∈ N, Q > 1 be the number of time

steps; set h0 := T/Q and tq := qh0, for q = 0, . . . , Q. Denote by vq
k the approximation of the value function V

at (t, x) = (tq, xk).
Let ϕ = {ϕk} be a real valued function over Z

n. The upwind finite difference operator Du
q,k associated

with f(tq, xk, u) at point (tq, xk) is

(
Du

q,kϕk

)
i
=

ϕk+ei − ϕk

hi
if f(tq, xk, u)i ≥ 0,

ϕk − ϕk−ei

hi
if not. (1)

With ξ ∈ Z
n, associate the second order finite difference operator

∆ξϕk := ϕk+ξ + ϕk−ξ − 2ϕk = ϕk+ξ − ϕk − (ϕk − ϕk−ξ). (2)

The (second-order) stencil is a finite set of Z
n \ {0} containing at least the closest points, i.e. the canonical

basis of R
n : {e1, · · · , en}. For each k ∈ Z

n, we perform an approximation of the second-order term in the
HJB equation by a linear combination of second order finite difference operators associated with elements of the
stencil, i.e., the expression

∑
ξ∈S αu

q,k,ξ∆ξv
q
k where αu

q,k,ξ are to be set. Let ah := {aij/hihj} denote the scaled
diffusion matrix. Following [4] we say that the operator

∑
ξ∈S αu

q,k,ξ∆ξ is a strongly consistent approximation
of a(t, x,u) ◦ D2

xx if ∑
ξ∈S

αu
q,k,ξξξ

� = ah(tq, xk, u), for all k ∈ Z
n. (3)
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From the above, we deduce the following explicit (backwards) scheme

vq−1
k − vq

k

h0
= inf

u∈U

�(tq, xk, u) + f(tq, xk, u) · Du
q,kvq

k +
∑
ξ∈S

αu
q,k,ξ∆ξv

q
k


vQ

k = �F , (4)

for all q = 1, . . . , Q and k ∈ Z
n. The scheme is monotone (i.e., vq−1

k is a non decreasing function of vq) if all
coefficients of vq

k′ in (4) appear with nonnegative coefficients. This holds if the coefficients αu
q,k,ξ are nonnegative

and, in addition,

n∑
i=1

|fi(tq, xk, u)|
hi

+ 2
∑
ξ∈S

αu
q,k,ξ ≤ 1

h0
, ∀(q, k, u) ∈ {1, . . . , Q} × Z

n × U. (5)

This last condition ensures the non decrease w.r.t. vq
k. Since strong consistency implies

∑
ξ∈S αu

q,k,ξ ≤
trace ah(tq, xk, u) by ([4], Lemma 2.1), condition (5) is satisfied whenever

n∑
i=1

‖fi‖∞
hi

+ 2‖ trace ah‖∞ ≤ 1
h0

· (6)

Consequently, when mini hi ↓ 0 we may take h0 = C mini

(
h2

i

)
, for C > 0 small enough (depending on f and a),

as expected.
If the strong consistency and monotonicity properties holds, then GFD are a particular case of consistent

chain Markov approximations, and therefore are convergent in view of Kushner and Dupuis ([12], Chap. 10).
Since these schemes are monotone, stable and consistent, convergence of these schemes is also a consequence of
Barles and Souganidis ([3], Th. 2.1). It is not difficult to see that this scheme satisfies the hypotheses of Krylov
[10], Barles and Jacobsen [1, 2], and hence, the error estimates of these authors apply (for the corresponding
adaptation to infinite horizon problems of GDF if necessary).

The interest of GFD is that it makes easier the analyzis of consistency properties. For instance, [4] provides
characterizations of the class of diffusion matrices for which the scheme is consistent with the most common
stencils, for dimensions n = 2 to 4. Since coefficients αu

q,k,ξ have to be nonnegative and solution of (3), they
are solution of a linear program (with zero cost); their computation may be expensive if the stencil is large.
Remember that this has to be done at each point of the spatial grid, for each time step (and each control if
diffusions depend on the control). Define the size of a stencil S as

size(S) := max{‖ξ‖∞; ξ ∈ S}.

The main result of this paper is, for two dimensional problems, an algorithm for computing the coefficients
in O(size(S)) operations. More generally, for nonconsistent problems the algorithm computes the closest con-
sistent matrix (in the Frobenius norm) in O(size(S)) operations. In addition, it has a recursive property: the
closest consistent matrix for stencil of size pmax is computed in O(1) operations after having obtained the closest
consistent matrix for stencil of size pmax − 1.

The main result is strongly related to some geometric properties of the set of PSD (symmetric, positive
semidefinite) matrices on R

2, that are the subject of the next section.
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Figure 1. Cone of positive semidefinite matrices.

3. Structure of 2D diffusion matrices

We may view 2 × 2 symmetric matrices as elements of R
3. The mapping(

a11 a12

a12 a22

)
→ (a11,

√
2a12, a22)� (7)

is norm preserving from the space of 2 × 2 symmetric matrices, endowed with the Frobenius norm, onto the
three dimensional Euclidean space. The image of the PSD cone by the mapping (7) is the set

{
z ∈ R

3; z1 ≥ 0; z3 ≥ 0; 1
2 (z2)2 ≤ z1z3

}
. (8)

Since the set of PSD matrices is a cone, it is natural to represent directions of this cone by drawing their
intersection with the hyperplane z1 + z3 = 1 (image of the set of matrices with unit trace), see Figure 1. In
order to compute this intersection, consider the norm preserving mapping

w1 = (z1 − z3)/
√

2; w2 = z2; w3 = (z1 + z3)/
√

2.

Taking (w1, w2)/w3 as projective coordinates, which for matrix a means (a11 − a22, 2a12)/(a11 + a22), and
calling the latter the view of matrix a, we see that the set of views of PSD matrices is the unit ball of R

2 for the
Euclidean norm. For example, the view of the identity, denoted as Ω, is the zero vector, and the view of ηη�,
where η := (1 0)�, is (1 0). The lemma below eases the computation of the view of any rank one symmetric
nonnegative matrix, and is illustrated in Figures 2 and 3.

Lemma 3.1. Let η = (cos θ, sin θ). Then the view of ηη� makes an angle of 2θ with the view of (1, 0)(1, 0)�.

Proof. With η is associated w = (cos2 θ − sin2 θ, 2 cos θ sin θ) = (cos 2θ, sin 2θ). The result follows. �
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Figure 3. Correspondence of angles.

Since a matrix is diagonal dominant iff |a11 − a22|+ 2|a12| ≤ a11 + a22, the view of such matrices is the unit
ball in the norm �1 of R

2. Diagonal dominant matrix have the well-known decomposition

a = (a11−|a12|)
(

1
0

)(
1 0

)
+(a22−|a12|)

(
0
1

)(
0 1

)
+max(a12, 0)

(
1
1

)(
1 1

)
+max(−a12, 0)

(−1
1

)(−1 1
)
.

(9)
Let us call “inner region” of the PSD cone, the set of diagonal dominant matrices. There are four outer regions
corresponding to the violation of one of the four constraints ±a12 ≤ aii, for i = 1, 2. They are numbered from I
to IV according to Figure 2. The outer region I is the set of PSD and non diagonal dominant matrices such
that a22 < a12 < a11. It is easy to reduce any diffusion matrix to this case by permutation of variables and
change of sign of one state variable. Therefore in the sequel we will discuss essentially the fast decomposition
of such matrices. Note that for PSD and diagonal dominant matrices in region I an alternative decomposition,
involving the identity matrix, and referred to in Section 5, is

a = (a11 − a22)
(

1 0
0 0

)
+ (a22 − a12)

(
1 0
0 1

)
+ a12

(
1 1
1 1

)
. (10)
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Figure 4. Family relations in regular grid.

4. The Stern-Brocot tree

If the function ϕ of Section 2, defined over Z
n, is the value at grid points of a smooth function Φ : R

n → R,
i.e., ϕk = Φ(xk), where xk :=

∑
i kihi, then the operator ∆ξ defined in (2) allows, as it can be seen by a Taylor

expansion of Φ around xk, to obtain a consistent approximation of Φ′′(xk)(xξ , xξ), the curvature of Φ at xk

along direction xξ. The consistency condition (3) expresses the fact that a nonnegative combination of such
curvatures equals the second order term of the HJB equation. Two elements of the stencil generate the same
direction if they are not linearly independent. Since the algorithm should use points in the stencil as close to xk

as possible, it suffices to take such ξ with relatively prime components.
For two dimensional problems on which we focus now, such points have a specific structure. Assume for

simplicity that k = 0. For reason of symmetries, we have displayed in Figure 4 one eighth of the neighbour-
ing points, namely the points ξ in Z

2
+, such that ξ2 ≤ ξ1. Those with an irreducible associated (symbolic)

fraction ξ2/ξ1, that we will call irreducible points, are in red (boldface in black and white). These points are
connected by segments that represent the arcs of a tree that we introduce now.

A very effective way for generating direction with irreducible components is to use the Stern-Brocot tree, see
e.g. [8], (which, by the way, is not a tree in the classical sense), displayed in Figure 5. In the sequel, when we
write q/p this should be understood as the pair (p, q), so that p = 0 makes no problem.

The tree starts with two roots 0/1 and 1/0. At any stage of the construction, between two adjacent nodes q/p
and q′/p′, called the parents, insert the child node (q + q′)/(p + p′). The two roots are adjacent, and hence, the
first child is 1/1. Then each child is made adjacent with each of his two parents, and we can repeat the process
of generating children (in any order).

Figure 4 shows the links between parents and child for the first nodes of the Stern-Brocot tree. One finds
the two parents of a child-node following the two segments starting from this point and going to the left.

For convenience we give a short proof of classical properties of the Stern-Brocot tree (see also [8], Sect. 4.5).

Lemma 4.1. Let q/p and q′/p′ be adjacent nodes such that q/p < q′/p′, with child q′′/p′′, where p′′ = p + p′,
q′′ = q + q′. Then

(i) q/p < q′′/p′′ < q′/p′;
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Figure 5. Stern-Brocot tree.

(ii) every node of the Brocot tree is irreducible;
(iii) every irreducible fraction b/a belongs to the Brocot tree.

Furthermore, if q/p and q′/p′ are adjacent nodes of the tree such that q/p < b/a < q′/p′, then

a ≥ p + p′; b ≥ q + q′. (11)

Proof.
(i) It is easily checked that q/p < (q + q′)/(p + p′) < q′/p′. (This property explains why generation of sons

may be made in any order.)
(ii) We prove by induction that, if q/p and q′/p′ are adjacent nodes of the tree, then

q′p − qp′ = 1. (12)

The relation is obviously true for the root nodes 0/1 and 1/0. Assume that it is satisfied for adjacent
nodes q/p and q′/p′. It follows from (12) that q′(p + p′) − p′(q + q′) = 1 and p(q + q′) − q(p + p′) = 1,
proving the induction. Combining (12) and Bézout’s theorem, we obtain (ii).

(iii) Let b/a be an irreducible fraction, with 0 < b/a < 1, and q/p, q′/p′ be adjacent nodes of the tree such
that q/p < b/a < q′/p′. Then bp − aq ≥ 1 and aq′ − bp′ ≥ 1. Multiply the first (second) inequality
by p′ (by p) and add them; multiply the first (second) inequality by q′ (by q) and add them; using (12),
relation (11) follows. Since p′′ ≥ max(p, p′) + 1, this relation implies that there is a finite number of
couple of adjacent nodes (q/p, q′/p′) in the tree such that q/p < b/a < q′/p′ holds. This is the case for
the two root nodes. Assume now that b/a does not belong to the Stern-Brocot tree. If q/p < b/a < q′/p′,
setting q′′ = q + q′ and p′′ = p + p′, we see that either q/p < b/a < q′′/p′′, or q′′/p′′ < b/a < q′/p′. In
this way we generate an infinite sequence of adjacent nodes such that q/p < b/a < q′/p′. The desired
contradiction follows. �

5. Decomposition of the scaled diffusion matrix

In the sequel of this paper we will present a fast algorithm for computing the decomposition of diffusion
matrices, when the stencil is the set of directions with integer irreducible components, with bound pmax on the
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Figure 6. Correspondence of directions.

absolute value of components:

Spmax := {(ξ1, ξ2) ∈ Z × N; max(|ξ1|, ξ2) ≤ pmax; (|ξ1|, ξ2) irreducible} .

(The point (0, 0) is considered as not irreducible here.) The polyhedral cone generated by these directions
is C(Spmax) = {∑ξ∈Spmax

αξξξ
�; αξ ≥ 0}.

As discussed at the end of Section 3, it suffices to discuss the case when the matrix ah is in outer region I; i.e.,
when it is PSD and non diagonal dominant, and a22 < a12 < a11. In Figure 6, this means that the view of ah

belongs to the quarter of ball in the upper right side, and is not in the triangle with vertices of coordinates (0, 0),
(1, 0) and (0, 1). The latter correspond to the identity matrix, and to degenerate diffusions with horizontal and
angle of π/4 diffusions. (The cone generated by these three points is a set of diagonal dominant matrices.)

With every node q/p of the Stern-Brocot tree, q ≤ p, associate directions ξp,q := (p q)� and Xp,q := ξp,qξ
�
p,q.

With two adjacent nodes is associated the plane H(q/p, q′/p′) generated by Xp,q and Xp′,q′ , and two half spaces,
the inner one (containing the identity matrix) and the outer one. Denote by PH(q/p, q′/p′) the orthogonal
projection onto this plane (since the mapping (7) onto R

3 is norm invariant, projection w.r.t. Frobenius norm
is equivalent to the Euclidean projection in the image space R

3).
Beginning the search of a decomposition, we are in the following situation: the matrix ah belongs to the

outer half space of H(0/1, 1/1). So, let us assume more generally that ah belongs to the outer half space
of H(q/p, q′/p′), where q/p and q′/p′ are adjacent nodes. In Figure 6 we have drawn the views of the first nodes
of the Stern-Brocot tree; the segments are the views of the segment between two neighbouring nodes of this
tree.

We see, using Lemma 3.1 that we have to use another element of stencil of the form q̂/p̂, with q̂ and p̂
nonnegative, such that q/p < q̂/p̂ < q′/p′, and as small as possible. In view of (11), the optimal choice is to
take the child q′′/p′′ = (q + q′)/(p + p′). Then (see Fig. 6) there are two possibilities:

– The matrix ah belongs to both inner half spaces of H(q/p, q′′/p′′) and H(q′′/p′′, q′/p′). Then ah belongs
to the cone generated by Xp,q, Xp′,q′ and Xp′′,q′′ . Since these three matrices are linearly independent,
the corresponding coefficients are unique nonnegative solution of the invertible (three dimensional)
system

αp,q Xp,q + αp′,q′ Xp′,q′ + αp′′,q′′ Xp′′,q′′ = ah. (13)
– The matrix ah belongs to at least one outer half space. Since Xp′′,q′′ belongs to the boundary of the

cone of PSD matrices, ah cannot belong to both outer half spaces (see Fig. 6). We are therefore lead to
the situation at the beginning, setting either q/p or q′/p′ to q′′/p′′.
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If p′′ > pmax, we replace ah by its projection onto the cone generated by matrices of the form Xpi,qi , with either
qi/pi < q/p or q′/p′ < qi/pi. Note that this projection belongs to the cone generated by Xp,q and Xp′,q′ . As
above, since these two matrices are linearly independent, the corresponding coefficients are unique nonnegative
solution of the system

αp,q Xp,q + αp′,q′ Xp′,q′ = PH(q/p, q′/p′) ah. (14)
This leads to an effective algorithm, that will stop either if the exact decomposition is obtained, or if either
p′′ > pmax, or if the projection of ah onto H(q/p, q′/p′) is close enough to ah. The precise algorithm is as
follows; ε is a threshold for the distance to the projection of ah onto the class of consistent matrices, and pmax

is the size of stencil:

Algorithm DECOMP
initial phase: Data ε ≥ 0, pmax > 0. Set k := 0.

• If ah is diagonal dominant: set α using (10) and stop.
• Reduction to region I, i.e. ah

22 < ah
12 < ah

11.
Set q0/p0 := 0/1, q′0/p′0 := 1/1.

repeat

• Compute a′ := PH(q/p, q′/p′)ah.
• If ‖a′ − ah‖ ≤ ε‖ah‖ or p + p′ > pmax: compute α, decomposition of a′ using (14) and stop.
• Set q′′/p′′ := (q + q′)/(p + p′).
• If ah in inner half spaces of H(q/p, q′′/p′′) and H(q/p, q′′/p′′): compute α using (13) and stop.
• If a is in outer half space of H(q/p, q′′/p′′): q′/p′ := q′′/p′′.

Otherwise q/p := q′′/p′′.
• k := k + 1.

end repeat

From the above discussion we have the following result.

Theorem 5.1. Algorithm DECOMP provides a decomposition of ah with a relative error lower than ε, and
stops after at most pmax iterations. The cost of each iteration is O(1) operations, and hence, its total cost is
no more than O(pmax).

Obviously it is useful to compute the largest distance between ah and its projection (as a function of pmax)
and to evaluate the resulting approximation error. This is the subject of the next section.

6. Projection errors for scaled diffusion matrices

Let us compute the expression of the maximal relative distance of a diffusion matrix to the polyhedral
cone C(Spmax):

εpmax := max
a

dist
(

a

‖a‖ , C(Spmax)
)

,

where the maximum is over all possible nonzero diffusion matrices, i.e., nonzero PSD matrices. By �r� we
denote the smallest integer greater than r.

Lemma 6.1. The distance from a PSD matrix a to C(Spmax) is at most εpmax‖a‖, and

εpmax =

√
p2

max + 1 − pmax√
2
√

2 p2
max + 1

≤ 1
4

p−2
max. (15)

Conversely, given ε > 0, the distance from a to C(Spmax) is at most ε when pmax ≥ pε, with

pε :=

⌈ √
1 − ε2 − ε

2
√

ε
√

1 − ε2

⌉
· (16)
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Table 1. First values of εpmax and pε.

pmax 1 2 3 4 5 15
εpmax 0.169102 0.055642 0.026325 0.015153 0.009804 0.001109

ε 10−1 10−2 10−3 10−4 10−5 10−7

pε 2 5 16 20 159 1 582

Proof. The first sentence is a consequence of the fact that the projection onto a cone with vertex at 0 is positively
homogeneous. We may assume that ‖a‖ = 1. Let a′ be the projection of a onto C(Spmax). Let us prove first
that, if a′ is the projection on the hyperplane spanned by ξξ� and ξ′(ξ′)�, then

‖a − a′‖ ≤
(
1 − cos(ξ̂, ξ′)

)
√

2 ·
√

1 + cos2(ξ̂, ξ′)
‖a‖ (17)

the bound being sharp. Indeed, we may assume that ξ = (cos θ sin θ)� and ξ′ = (cos θ′ sin θ′)�. Set θ′′ :=
1
2 (θ + θ′) and ξ′′ = (cos θ′′ sin θ′′)�. By reasons of symmetry, the maximal error is reached for a = ξ′′(ξ′′)�,
with ξ = (cos θ′′ sin θ′′), and its projection is of the form a′ = αb, where b := (ξξ� + ξ′(ξ′)�), for some α ∈ R+.
The minimum w.r.t. α of ‖a − αb‖2 is

∆ = ‖a‖2 − (a ◦ b)2/‖b‖2 = 1 − (a ◦ b)2/‖b‖2.

This amount being invariant w.r.t. translation of angles, we may assume that θ + θ′ = 2θ′′ = 0, and hence
θ′ = −θ, a = (1, 0, 0)�, b =

(
2 cos2 θ, 0, 2 sin2 θ

)�
. We obtain ‖b‖2 = 4(cos4 θ + sin4 θ) and a ◦ b = 2 cos2 θ.

It follows that ∆ = 1 − (a ◦ b)2/‖b‖2 = sin4 θ/(cos4 θ + sin4 θ). Setting δ = |θ′ − θ| = 2|θ|, and combining with

2 sin2 θ = 1 − cos2 θ + sin2 θ = 1 − cos δ

cos4 θ + sin4 θ = (cos2 θ − sin2 θ)2 + 2 cos2 θ sin2 θ = cos2 δ + 1
2 sin2 δ

we get (17).
In the stencil of size pmax, the greatest angle between two consecutive vectors is the angle between ξ0 = (1 0)�

and ξ1 = (pmax 1)�. By (17) and cos(ξ0, ξ1) = pmax/
√

p2
max + 1 we have that, in the pmax-stencil, the largest

error is (15).
Relation (16) is a simple consequence of (15), see details in the prepublication [5]. �
We display in Table 1 below the first values of εpmax and some values of pε. An algorithm involving only the

closest neighbor can make up to 17 % of relative error on diffusion matrices, and hence, will perform poorly
in general. A relative precision of 1 % needs to take p = 5. This motivates our effort to make a theory for
arbitrary large values of pmax.

Remark 6.2. If consistency does not hold, and ε = 0, then algorithm DECOMP computes the decomposition
of the projection a′(t, x, u) of a(t, x, u) onto C(Spmax). In that case, the numerical scheme can be interpreted as
a consistent approximation for the perturbed HJB equation

−vt(t, x) = inf
u∈U

{�(t, x, u) + f(t, x, u) · vx(t, x) + a′(t, x, u) ◦ vxx(t, x)} ,

for all t, x ∈ [0, T ]× R
n.

v(T, x) = �F (x), for all x ∈ R
n. (HJBp)
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Denote by v′ the (well-defined) corresponding solution. When the step sizes vanishes, the limit of error between
the solution of HJB and the one of the scheme is ‖v − v′‖∞. By ([9], Th. 4.1), and then combining with
Lemma 6.1, we obtain estimates of the type

‖v − v′‖∞ ≤ C‖a − a′‖1/2
∞ ≤ C′ε1/2

pmax
≤ C′′/pmax, (18)

where C and C′ do not depend on pmax. If diffusions are uniformly invertible we have that ‖v − v′‖∞ ≤
C1‖a− a′‖∞, and hence, ‖v − v′‖∞ ≤ C′

1/p2
max, where C1 and C′

1 do not depend on pmax. For infinite horizon
problems we can obtain similar results applying ([1], Lem. 2.6), (with the same exponents if the discounting
coefficient is “large enough”, and otherwise with smaller exponents).

7. Numerical results

We have implemented algorithm DECOMP in the C programming language and tested it on two academic
examples in which the value function is known. Also we integrate on a finite rectangular domain with exact
values on the boundary. This allows to compute the error made by the scheme and to see if its behavior is in
agreement with the theory. For points of the grid close to the boundary, the size of the stencil may be smaller
than pmax since points out of the domain are not used. Therefore, in the vicinity of the boundary the errors
of approximation of diffusion matrices are larger than far from the boundary. We use the reverse-time function
W (s, x) = V (T − s, x) in order to integrate t from 0 to T .

7.1. An uncontrolled problem

Our first test function is {
W (t, x1, x2) = (1 + t) sin x1 sin x2

0 � x1 � π; 0 � x2 � π; 0 � t � 1.
(19)

We choose ∆x := h1 = h2, N1h1 = N2h2 = π, and the measure of error is e := ‖Wapprox − Wexact‖1/(N1N2),
where ‖ W‖1 :=

∑
i,j |Wi,j |. The following expressions for �, f and σ are compatible with the HJB equation:

�(t, x1, x2) = sin x1 sin x2[1 + (1 + 2β)(1 + t)]
−2(1 + t) cosx1 cosx2 sin(x1 + x2) cos(x1 + x2)

f(t, x1, x2) = 0

a(t, x1, x2) =

(
sin2(x1 + x2) + β2 sin(x1 + x2) cos(x1 + x2)

sin(x1 + x2) cos(x1 + x2) cos2(x1 + x2) + β2

)

here σ(t, x1, x2) =
√

2
(

sin(x1 + x2) β 0
cos(x1 + x2) 0 β

)
.

We display in Figure 7 the error as a function of discretization step, for β2 = 0.1 and 0, and pmax = 5. The
scheme is consistent only in the first case. Accordingly, the error decreases when the space step is reduced in
the first case, but not in the other.

7.2. Numerical example, optimal control

We consider here an optimal control problem where σ(·) and a(·) do not depend on the control. Also, the
drift is f(t, x, u) = u, with restriction u2

1 + u2
2 ≤ 1. The test function is{

W (t, x1, x2) = (1 + t) sin x1 sinx2

−1 � x1 � 1; −1 � x2 � 1; 0 � t � 0.5.
(20)
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Figure 7. Error vs. discretization step, pmax = 5.
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Figure 8. Error vs. discretization step, optimal control, pmax = 1, 2, 4, 10.

We have here a degenerate diffusion a(t, x1, x2) = 1
2σ(t, x1, x2)σ(t, x1, x2)� with

σ1(t, x1, x2) =
√

2 sin(x1 + x2), σ2(t, x1, x2) =
√

2 cos(x1 + x2).

The resulting running cost �(t, x1, x2) is here

sin(x1) sin(x2) + (1 + t)
[(

cos2(x1) sin2(x2) + sin2(x1) cos2(x2)
)1/2

+ sin(x1) sin(x2) − 2 sin(x1 + x2) cos(x1 + x2) cos(x1) cos(x2)
]
.

We display in Figure 8 the error, as defined in Section 7.1, vs. the discretization step for several values of pmax.
Although the scheme is not consistent, it appears that the discretization errors are quite small.
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