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Abstract—Discrete Fourier transform (DFT) is widely used in al-

most all fields of science and engineering. Fast Fourier transform

(FFT) is an efficient tool for computing DFT. In this paper, we

present a fast Fourier transform (FFT) algorithm for computing

length- DFTs. The algorithm transforms all -points sub-

DFTs into three parts. In the second part, the operations of sub-

transformation contain only multiplications by real constant fac-

tors. By transformation, length- -scaled DFTs (SDFT) are ob-

tained. An extension of scaled radix-2/8 FFT (SR28FFT) is pre-

sented for computing these SDFTs, in which, the real constant fac-

tors of SDFTs are attached to the coefficients of sub-DFTs to sim-

plify multiplication operations. The proposed algorithm achieves

reduction of arithmetic complexity over the related algorithms. It

can achieve a further reduction of arithmetic complexity for com-

puting a length- IDFT by real multipli-

cations. In addition, the proposed algorithm is applied to real-data

FFT, and is extended to DFTs.

Index Terms—Fast Fourier transform (FFT), inverse DFT

(IDFT), quantization error, radix-2/8 FFT, scaled DFT (SDFT).

I. INTRODUCTION

T HE discrete Fourier transform (DFT) is an important tool

for many applications in scientific and engineering fields

[1]–[3]. DFT is generally implemented with an efficient tech-

nique called fast Fourier transform (FFT). Since the introduc-

tion of Cooley and Tukey’s algorithm in 1965 [4], considerable

research has been conducted resulting in a large number of al-

gorithms for length- DFTs [5]–[8]. One of these algorithms,

split-radix FFT (SRFFT), achieved a reduction of order of mag-

nitude of computational complexity over Cooley and Tukey’s

algorithm. The algorithm was presented by Yavne in 1968 [9]
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and subsequently rediscovered simultaneously by various au-

thors [5], [10], [11] in 1984. Grigoryan and Agaian [12] pre-

sented another algorithm, that reduces the number of arithmetic

operations for DFTs of lengths greater than 256 at the expense

of more complicated structure compared with SRFFT; how-

ever, it is computationally less efficient for smaller lengths. The

record of computational complexity, set by the radix-2/4 FFT

for computing powers-of-twoDFTs, was broken by Johnson and

Frigo in 2007 [13]. Subsequently, the lowest operation count for

powers-of-two FFTs was obtained by Zheng et al. in 2014 [14].

Another contribution of [14] is that a method of high compre-

hensive properties was proposed and the method can efficiently

compute a power-of-two DFT with less arithmetic operations,

higher computation accuracy, and less accesses to the lookup

table of twiddle factors over SRFFT.

The radix-2/4 FFT, the radix-2/8 FFT, the MSRFFT, and

the scaled radix-2/8 FFT were mainly proposed for length-

DFTs. In order to explore the performance of these approaches

in the other DFTs, many works have been made towards

extending them to other length DFT. Grigoryan and Agaian

[15] gave an algorithm which extends Cooley-Tukey algorithm

to composite length DFTs. The idea of the radix-2/4 FFT

proposed in [5] has been extended to the length- [16] and

length- DFTs [17]. The algorithm in [17] decomposes a

length- DFT into one length- DFT and two length-

DFTs and repeats successively the process until the size is

reduced to a -point or a -point DFT. It has been shown that

this algorithm optimizes the number of arithmetic operations

compared with other reported algorithms [16], [18]–[20].

The idea of radix-2/8 FFT has also been extended to the

length- DFTs [21]. It has been shown that the algorithm

in [21] optimizes the number of data transfers, address genera-

tions, and twiddle factor evaluations or accesses to the lookup

table. The MSRFFT and Cooley-Tukey transform have also

been extended to length- [22], and achieved a reduction

of arithmetic complexity over the algorithms in [17], [21].

However, until now, no attempt has been made in developing

an FFT algorithm that explores the performance of the scaled

radix-2/8 FFT (SR28FFT) algorithm in length- DFTs.

Applications in which lengths of DFTs are are arising

recently. The following are several examples.

1) In the applications of orthogonal frequency division mul-

tiplexing (OFDM) demodulation and modern microscopy,

the sequence lengths may be non-powers-of-two [21].

2) FFT is an efficient tool to compute window modified dis-

crete cosine transform (MDCT). The MPEG audio coding

standard uses dynamically window MDCT to achieve

high quality performance. In layer III of MDCT-I and
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MDCT-II, the length of data blocks is . The layer

III specifies a longer block and a shorter block

[23].

3) A 1536-points FFT processor is used in Third Generation

Partnership Project Long-Term Evolution [24].

Therefore, the purpose of this paper is to develop a new al-

gorithm for computing a length- DFT, reducing

the number of operations and the quantization errors. The al-

gorithm divides a length- DFT into DFTs of

length- in terms of radix- FFT algorithm. Themost outer de-

composition and assemblage can be partitioned into three sub-

parts. In the intermediate sub-part, every input is only multi-

plied by a real constant factor. The real constant factors and

sub-DFTs of length- can be combined as length- SDFTs.

These SDFTs of length- are computed with the algorithm

that is based on the SR28FFT algorithm, which is presented in

Section III. Hence, a further improvement in arithmetic com-

plexity and quantization error is obtained.

The contributions of this paper are listed as follows:

� The proposed algorithm has lower arithmetic complexities

and smaller quantization errors than algorithms in [17],

[21], [22] for length- DFT.

� We achieve a further reduction of arithmetic complexity

for computing a length- IDFT by

real multiplications.

� The proposed algorithm is extended to length-

DFT.

� The proposed algorithm is applied to real-data FFT.

The remainder of the paper is organized as follows. Section II

presents a complete derivation of the proposed algorithm.

Section III introduces an algorithm to compute the sub-SDFTs

of length- . Section IV analyze the performance of the

proposed algorithm by analyzing computational complexity

and quantization error and comparing them with the existing

algorithms. The algorithm extended to DFTs and its com-

putational complexity are presented in Section V. An example,

i.e., the computation of DFTs, is illustrated in Section VI

in detail. Section VII introduces the implementation of IDFT

with the proposed algorithm. Section VIII discusses real-data

FFT. Section IX gives conclusions.

II. THE PROPOSED ALGORITHM

Given a length- sequence , where is a small

odd, its DFT is also a length- sequence defined by

(1)

where , and . Eq. (1) can be expressed

in matrix form as follows,

(2)

where , are the vector expression of input sequence and the

vector expression of output sequence respectively, and is

the coefficient matrix of the DFT.

For a length- DFT, we now consider its decom-

position according to radix- FFT algorithm. All small odd

DFTs can be decomposed into three parts [25], [26], in which

the first “pre-weave” stage and the final “post-weave” stage con-

sist only of additions, negations, and multiplications by . The

middle stage contains only multiplication by real coefficients.

Wang [25] discussed three types of basic sparse matrices ,

, and which often appear in the calculations of small

prime DFTs including 9-points DFT, and presented a method

to decompose matrices of small prime DFTs into these three

types of matrices. In what follows the coefficient matrix of a

length- DFT is decomposed and is factorized ac-

cordingly. Let index in Eq. (1) be

(3)

where and . Let represent

, is a two dimensional vector expression of

the inputs of the DFT, and is defined as follows:

(4)

Let and be two decomposition factors of , such that

. The DFT in (1) provides transform decomposition

as follows:

(5)

As mentioned above, the coefficient matrix can be factorized

into a product of three matrices. Let , , and be these

three matrices, where , , and are order matrices and

is a diagonal matrix. We have , and (5) can

be expressed as follows,

(6)

where is the operator of matrix transposition, and

are SDFTs.

For a length- DFT, the sub-DFT of length-3 can

be divided as

(7)

(8)

(9)
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Fig. 1. Flow graph of length- DFT.

where , and

(10)

with , is the order identity matrix,

and is the order anti-diagonal identity matrix. Fig. 1

shows the signal flow graph of the length- DFT. The

diagonal elements in are attached to length- sub-DFTs

and combined as five length SDFTs with scaling factors 1,

5/4, , , and respectively.

For a length- DFT, the sub-transformations of

length-5 can be decomposed as

(11)

(12)

(13)

where , and

Fig. 2 shows the flow graph of the size- DFT. The diag-

onal elements in are attached to the length- sub-DFTs

and combined as SDFTs.

For a length- DFT, the sub-transformations of

length-7 can be decomposed as

(14)

(15)

(16)

Fig. 2. Flow graph of length- DFT.

where ,

(17)

(18)

(19)

(20)

Fig. 3 shows the flow graph of the size- DFT. The diag-

onal elements in are attached to the length- sub-DFTs

and combined as SDFTs.

The integer 9 is a composite number. However, a 9-points

DFT is evaluated with 9 treated as a prime other than a com-

posite number in [25]. So, for a length- DFT, its

9-points sub-DFT is decomposed as follows,

(21)

(22)
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Fig. 3. Flow graph of length- DFT.

Fig. 4. Flow graph of length- DFT.

(23)

where the input matrix is the transposition of

and

(24)

(25)

Fig. 4 shows the flow graph of the length- DFT. The

diagonal elements in are attached to length- sub-DFTs

and combined as SDFTs.

We assume that and are two odd numbers and co-prime

with each other. For a DFT of length- sub-DFT, we

can use (6) to yield a transformation of three stages, in which

, , and correspond respectively to , , and in (6).
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Fig. 5. Flow graph of length- DFT.

In this way, we can perform the following decomposition for a

length- DFT:

(26)

(27)

(28)

Fig. 5 shows the flow graph of the length- DFT.

The diagonal elements in are attached to length- sub-

DFTs and combined as SDFTs.

Suppose that is a composite number and has two divisors,

and . The two divisors are odd numbers and not co-prime with

each other, e.g., . For a length- sub-DFT

defined in (1), assume that be . The sub-DFT can be

decomposed by using (6) and Cooley-Tukey algorithm [4]. The

special case of is described in Section V in detail.

To summarize, the proposed algorithm is presented for

computing a length- DFT. This solution scheme

falls into three stages. Firstly, the DFT in (1) is divided into

length- sub-DFTs, and by changing the order of inner and

outer sub-transformations the scaled sub-DFTs of length-

are obtained. Then, the scaled sub-DFTs are evaluated with the

algorithm which is based on the SR28FFT algorithm and is

presented in the next subsection. Finally, sets of results

with the same index in different sub-DFTs are combined into

the final outputs. The first decomposition stage and the final

assemblage stage correspond to “pre-weave” and “post-weave”

of -points DFTs respectively.

III. COMPUTATION OF SDFTS

In order to efficiently compute a DFT of length- , two

algorithms was presented by Zheng et al. [14] for computing

powers-of-two sub-DFTs with rotating factors. The two algo-

rithms are based on radix-2/8 FFT, and named scaled radix-2/8

FFT-1 (SR28FFT-1) and SR28FFT-2. As an auxiliary algo-

rithm, the goal of SR28FFT-1 is to assist other algorithms with

more high comprehensive properties. The algorithms which

use SR28FFT-1 to compute their sub-DFTs, can optimize

computational complexity, computation accuracy, and coeffi-

cient evaluations. SR28FFT-2 is also an auxiliary algorithm.

However, SR28FFT-2 neglects the improvement of other per-

formances, and focuses on reducing the number of operations.

Based on SR28FFT-1 and SR28FFT-2, two algorithms in [14]

were proposed for efficiently computing a length-

DFT. While the two algorithms use SR28FFT-2 for computing

their sub-DFTs with rotating factors, and whose arithmetic

complexity are less than that of MSRFFT [13].

The most basic method for all FFT algorithms is “divide-and-

conquer” approach [27]. The idea of “divide-and-conquer” ap-

proach is to map the original DFT into sub-DFTs to save the

cost of evaluating the original DFT. This map can also be ap-

plied to sub-DFTs, thus obtaining a reduction of order of magni-

tude of computational complexity. The fundamental difference

among algorithms lies in the ways of decomposition in which

DFT is divided into smaller sub-DFTs. Another efficient method
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for all FFT algorithms is the scaled DFT (SDFT). The arithmetic

complexity issue has been well studied [28]. Only by varying

decomposition, it is difficult to further reduce arithmetic com-

plexity. The further improvement in arithmetic complexity re-

quires efficient techniques like SDFT. However, SDFT is often

used only as a trick in many algorithms [16], [17], [21], and

its influence on the complexity does not gain enough attention.

In reality, SDFT plays an important pole in some algorithms.

For modified SRFFT (MSRFFT) presented in [13] and scaled

radix-2/8 FFT (SR28FFT) presented in [14], the realization of

the lower operation count relies on the applications of SDFT

rather than recursive modifications.

We now consider using radix-2/4 FFT to compute SDFTs,

and using SR28FFT-2 to compute the sub-DFTs generated by

using the decomposition of radix-2/4 FFT in the computation

of SDFTs. Assume that the constant factor of SDFTs is , and a

SDFT of length- is defined as

(29)

The SDFT in (29), by performing the butterflies of radix-2/4

FFT, is decomposed into a length sub-SDFT:

(30)

for the even-indexed terms, and two length- sub-DFTs:

(31)

and

(32)

for the odd-indexed terms. The factor in (31) and (32)

is defined as

(33)

where

,

,

,

(34)

and

,

otherwise.
(35)

The sequence in (30), in (31), and in (32) can

be expressed in a matrix form

(36)

and

(37)

The sub-DFT in (30) will be decomposed through Eqs.

(30)–(32). The sub-DFTs in (31) and (32) will be decomposed

by using the SR28FFT-2 algorithm.

We now summarize the proposed scheme for computing

length- SDFTs. The SDFT is decomposed into a

length- sub-SDFT and two length- sub-DFTs. The

length- sub-SDFT is decomposed recursively until the

size is reduced to a 2-points DFT or a 1-point DFT. The two

length- sub-DFTs are implemented with the SR28FFT

algorithm. In the proposed algorithm, to optimize arithmetic

complexity, the SR28FFT-2 algorithm is used for computing

the length- sub-DFTs. However, to obtain high compre-

hensive performance, the SR28FFT-1 algorithm is a choice.

IV. PERFORMANCE ANALYSIS

In this section, we consider the performance of the proposed

algorithm by analyzing its computational complexity and com-

paring it with the related algorithms reported in [17], [21], [22].

The analysis and comparison of the computation complexity are

focused on the number of floating-point operations required.We

assume that a common complexmultiplication requires four real

multiplications and two real additions, and a complex multipli-

cation by 2, 4, 1/2, 3/2, 5/4, or 15/8 requires two real multipli-

cations.

A. Computational Complexity

Let and be the number of real multiplications and

the number of additions required for computing a length- DFT

respectively, be the number of real multiplications for cal-

culating a SDFT of length- with the algorithm presented in

Section III.

The computation of the proposed algorithm for a length-

DFT consists of three stages: the first decomposition

stage, the second stage of the computation of SDFTs, and the

final assemblage stage. The arithmetic complexity of the decom-

position and assemblage stages for computing a length-

DFT can be computed from the signal flowgraph in Fig. 1,

whereas that of a length- DFT can be obtained

by analyzing the signal flowgraph in Fig. 2. The required arith-

metic complexity for computing a length- DFT can

be calculated through Fig. 3. The required operation count for

computing a length- DFT can be obtained through

Fig. 4. Finally, the operations count of a length-

DFT can be evaluated from Fig. 5. These arithmetic complexity

are given in Table I.

The length- SDFT are evaluated with the algorithm

presented in Section III. From the analysis of [14], we know that

the algorithm presented in Section III requires the same real ad-

ditions as that of radix-2/4 FFT. In other words, for computing a

SDFT of length- , the algorithm presented in Section III

requires

(38)
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TABLE I

ARITHMETIC COMPLEXITY IN THE DECOMPOSITION STAGE AND THE

ASSEMBLAGE STAGE

real additions. As compared with the NR24FFT algorithm

presented in [14] (while the algorithm uses SR28FFT-2 for

its sub-DFTs with rotating factors), the algorithm presented in

Section III requires extra real multiplications for computing

a length- SDFT, where and the scaling factor is

not equal to 1. It is clear that the number of real multiplications

required by the algorithm in Section III can be expressed as

follows:

(39)

where , ,

, and . (Note: the integer value of the

boolean value “true” is 1; the integer value of the boolean value

“false” is 0).

Overall, a DFT of length- is implemented with

the proposed algorithm, requiring

(40)

real multiplications, and

(41)

real additions, where the values of and can be

obtained from Table I.

In order to carry out a complete comparison of the arithmetic

complexity of the proposed algorithm with that of the existing

algorithms, Figs. 6–9 give four comparisons in terms of the ratio

of computational complexity to . The algorithms com-

pared contain SRFFT,MSRFFT, the algorithms reported in [17],

[21], and our previous work [22]. It can be seen that, for =3,

5, 9, and 15, the savings of arithmetic operations over the al-

gorithms in [17], [21], [22] are achieved by the proposed algo-

rithm, andmore computationally efficiency is also obtained over

SRFFT and MSRFFT. The reduction of arithmetic operations

Fig. 6. Ratio of computational complexity for computing length-

to .

Fig. 7. Ratio of computational complexity for computing length-

to .

over our previouswork [22] derives from the use of SR28FFT-2.

As compared with our another work in [29], for computing a

DFT of length- or - , when its length

is smaller, the proposed algorithm requires the same number of

arithmetic operations as that in [29]. However, when its length

is longer, the proposed algorithm requires less arithmetic oper-

ations than that in [29].

B. An Alternative With High Comprehensive Performance

Of course, in order to obtain high comprehensive properties,

and optimize arithmetic operations, coefficient evaluations,

computation accuracy, we can use the extracting factor

to replace the factor in (31) and (32), and

then use SR28FFT-1 to compute the length- sub-DFTs in

(31) and (32). The new extracting factor is defined as

;

.
(42)
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Fig. 8. Ratio of computational complexity for computing length-

to .

Fig. 9. Ratio of computational complexity for computing length-

to .

V. EXTENSION TO DFTS

Ref. [25] provided approaches for 3- and 9-points DFTs, but

did not provide a scheme for DFTs, where is an integer

greater than 2. In this section, the proposed algorithm will be

extended to DFTs. Assume that a length- DFT is

defined in (1). The DFT in (1) is divided as

(43)

TABLE II

COMPUTATIONAL COMPLEXITY FOR LENGTH- DFTS

by Suzuki’s radix-3 FFT algorithm. The sub-DFTs of

length- will be decomposed recursively through (43)

until the sizes are reached to length- DFTs. The resulting

length- sub-DFTs will be evaluated with the proposed

algorithm in Section II.

The decomposition in (43) is derived from the Suzuki’s

radix-3 FFT algorithm [20]. However, two little modifications

are made in this section. First, the decomposition is applied to

powers-of-six DFTs. Second, by comparing their computational

complexity, one know that Wang’s algorithm [25] implements

a 9-points DFT with more efficiency than Suzuki’s radix-3 FFT

algorithm [20]. Thus, the sub-DFTs of length- , which

should have been recursively decomposed until the sizes are

reached to , are evaluated with the proposed algorithm

presented in Section II.

Through a similar modification, other algorithms, that are de-

veloped for powers-of-three DFTs, can also be used to imple-

ment a length- DFT. For example, the radix-3/9 FFT in [16]

can be modified to recursively decompose a DFT of length-

until the sizes of the resulting sub-DFTs are all reached to

and . The sub-DFTs of length- and - are

evaluated with the proposed algorithm in Section II.

We now consider the computational complexity of the al-

gorithm extended to DFTs. The algorithm extended to the

length- DFT is a mixture of the radix-3 FFT and the

radix-9 FFT. The extended mixed-radix FFT recursively de-

composes the DFT into three length- sub-DFTs by per-

forming one special radix-3 FFT butterfly of and

general radix-3 butterflies till the size of the sub-DFTs reaches

. The special butterfly requires 4 real multiplications

and 12 real additions. Each general radix-3 butterfly requires 8

real multiplications and 16 real additions. Hence, the proposed

mixed-radix FFT requires

(44)

for computing the length- DFT. Table II shows

the computational complexity of the extended algorithm for

length- DFTs, where , , ,

and . The computational complexity can be used in

(40) and (41) to compute the computational complexity of the

extended algorithm for the length- DFTs.

Replacing and by and ,

we can obtain the computational complexity of the length-

DFTs under general condition in Table III. From the table, we

can see that extended mixed-radix FFT reduces slightly the



LI et al.: A FAST ALGORITHM WITH LESS OPERATIONS FOR LENGTH- DFTs 681

TABLE III

COMPUTATIONAL COMPLEXITY FOR LENGTH- DFTS

TABLE IV

COMPUTATIONAL COMPLEXITY FOR DFTS

number of operations as compared to the radix-3 FFT [20] and

radix-3/9 FFT [16].

Table IV shows the computational complexity of the pro-

posed algorithm and our previous work in [29]. In order to com-

pare them under the same conditions, we assume that a complex

multiplication by 2, 1/2, or 3/2 does not require any real oper-

ations. From this table, one can see that, although two slight

modifications of the proposed algorithm have been made for

DFTs, the proposed algorithm requires more real opera-

tions than the algorithm in [29] for computing DFTs (except

for length-36 and length-216). The situation when the modified

Sukuzi’s radix-3 FFT is replaced by the radix-3/9 FFT algorithm

in [16] is similar to that of the modified Sukuzi’s radix-3 FFT.

VI. AN EXAMPLE

We now take the length- DFT as an example. The

length- DFT is defined in (1). Its matrix definition

is given in (2). At the beginning of computation, the input se-

quence in (2) should be transformed into the two-dimension

matrix representation. Let index in (2) be

(45)

where and . Let represent

. The two-dimension vector is the inputs of the

DFT, and is defined as

(46)

Let 5 and be two decomposition factors of , such that

. Now, one can provide the expression of the

DFT in (1) in the two-dimension form,

(47)

for (1). The coefficient matrix can be factorized

into a product of three matrices, , , and , i.e.,

. So, (47) can be expressed as

(48)

where , , are defined in (11)–(15) in Section II. Ac-

cording to (48), one can compute easily length- DFT.

Specifically, is first multiplied by the input sequence .

The sequence of length- is decomposed into 5 length-

sub-sequences. are then computed with

scaled MSRFFT algorithm. Finally, multiply the results of

the SDFTs, and the final outputs are obtained.

VII. THE COMPUTATION OF IDFT

The inverse DFT (IDFT) has nearly the same definition as

DFT, except for the normalizing factor and conjugate co-

efficients. An IDFT can be implemented with a forward FFT

algorithm followed by a permutation, and can also be imple-

mented with a simple forward three steps algorithm [30]. The

advantage of the forward algorithms is that there is no require-

ment to rewrite a program for IDFT. The calculations involved

in normalizing factor are often ignored in the operation count of

IDFT. In fact, the calculations of normalization of IDFT require

extra multiplications for computing a size- IDFT, which

needs to cost quite a lot processing time.

Generally speaking, the computation of IDFT requires

more real multiplications than that of DFT. In the proposed al-
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gorithm, IDFT requires only extra real multiplications.

The IDFT of (1) can be defined by

(49)

Except for the factor and coefficient , the above def-

inition is the same as that of DFT. An IDFT can be viewed as a

SDFT with normalizing factor . Because we are often inter-

ested only the input/output sequence, the factor of IDFT is

ignored. Sometimes is distributed between DFT and IDFT

to increase the symmetry, i.e.,

(50a)

(50b)

Like most of applications, we adopt (49) as the definition of

IDFT in the following discussions (for the definition in (50b),

the only difference is the normalizing factors). For forward com-

putation, (49) can be expressed in matrix form as follows [30],

(51)

Eq. (51) can be evaluated by three steps. (1) Exchange the real

and imaginary parts of . 2) Perform a forward DFT compu-

tation. 3) Exchange the real and imaginary parts of the results

of the second step.

In the first and third steps, the exchanges do not require any

arithmetic operations. In the second step, the proposed algo-

rithm is implemented for computing a length-

IDFT. The forward computation of IDFT is the same as that of

DFT, except for the scaling factors which is equal to the value

of the original scaling factors of DFT divided by . Hence, the

number of operations of scaled MSRFFT for computing IDFT

are identical to that for computing DFT if the scaling factor of

the original DFT is not equal to 1. The algorithm presented in

Section III for computing an IDFT requires extra real multi-

plications when the scaling factor of the original DFT is equal to

1. Compared with the arithmetic complexity given in (40) and

(41), the arithmetic complexity of the proposed algorithm for

computing a length- IDFT only requires extra

real multiplications.

VIII. THE REAL-DATA DFT

The transformation on real-data DFT obeys the symmetry

rule: , where and are real numbers.

These rules will be obeyed by subsequent sub-transforms.

As far as the proposed algorithm are concerned, the decom-

posing stage contains additions and subtracts but not complex

multiplications. Hence, the results are all real data. For the sub-

sequent transform of SDFTs, the results obey the symmetry rule

mentioned above as well. Thus, the decomposing stage requires

half the number of operations required on complex data. For a

length- real data scaled/unscaled DFT, by eliminating

redundant operations, the algorithm presented in Section III re-

quires half of real operations required for complex data signals

minus .

Except for the two special cases of and ,

the assembling stage requires half the number of operations re-

quired on complex data by eliminating the redundant calcula-

tions. However, for each of the two special cases of and

, the signals are all the outputs of the computation

stage of SDFTs. There are signals which are real data.

There are signals which are all imaginary data. The

numbers of the required additions are half of those for complex

signals minus , since the addition of a real and an imagi-

nary does not require any real operation.

Overall, when the proposed algorithm computes a DFT of

length- on real-data, the number of real additions

is half of that required for complex signals minus , and

the number of real multiplications required is half of that of

complex signals.

IX. CONCLUSIONS

This paper presented a new algorithm for computing the DFT

of length- . The algorithm is an extension of the

SR28FFT algorithm. The substantial reduction of arithmetic

complexity can be obtained over the algorithms in [17], [21],

[22]. Higher computational efficiency is also achieved over

SRFFT and MSRFFT algorithms. Especially for computing a

length- IDFT, only extra real multiplications

are required, i.e., the reduction of operations reaches 10%.

In addition, the algorithm is extended to DFTS, and is

applied to real-data FFT algorithm. Particularly, the length-

sub-DFTs can be evaluated with other algorithms, such as

radix- FFT and radix- FFT [31] etc., for more regu-

larity and less accesses to lookup table. Considering the actual

hardware design, the structure of the proposed algorithm, that

length- sub-DFTs are placed in the intermediate parts of size

DFTs combining length- SDFTs, has smaller quantization

error than the related algorithms.
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