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Existing analytical models for railway tracks consider only

one rail supported by a continuous foundation or periodic

concentrated supports (called the periodically supported

beam). This article presents an analytical model for a rail-

way track which includes two rails connected by sleepers. By

considering the sleepers as Euler-Bernoulli beams resting on

a Kelvin-Voigt foundation, we can obtain a dynamic equa-

tion for a sleeper subjected to the reaction forces of the rails.

Then, by using the relation between the rail forces and dis-

placements from the periodically supported beam model, we

can calculate the sleeper responses with the help of Green’s

function. The numerical applications show that the sleeper is

in flexion where the displacement at the middle of the sleeper

is greater than those at the rail seats. Moreover, the deformed

shape of the sleeper is non-symmetric when the loads on the

two rails are different. The model result agrees well with

measurements performed using instrumented sleeper in-situ

Nomenclature

Es Young’s modulus of sleeper

Is Cross-sectional moment inertia of sleeper

ρs Sleeper density

Ss Sleeper section area

ws Sleeper displacement in the time domain

ŵs Sleeper displacement in the frequency domain

εs Sleeper strain in the time domain

ε̂s Sleeper strain in the frequency domain

zs Distance to the neutral axis of the sleeper

T Pre-stress of sleeper

2L Sleeper length

∗Corresponding author

l Sleeper spacing

krp Stiffness coefficient of the rail pad

ζrp Damping coefficient of the rail pad

kp Dynamic stiffness of the rail pad

k f Stiffness coefficient of the ballast

ζ f Damping coefficient of the ballast

kb Dynamic stiffness of the ballast

Er Young’s modulus of rail

Ir Cross-sectional moment inertia of rail

ρr Rail density

Sr Rail section area

w j Displacement of rail number j at the sleeper position in

the time domain

ŵ j Displacement of rail number j at the sleeper position in

the frequency domain

2a Track gauge

v Train speed

R j Force applied due to rail number j on the sleeper in the

time domain

R̂ j Force applied due to rail number j on the sleeper in the

frequency domain

K Equivalent stiffness

Q Equivalent pre-force

Q Train load

t Time

ω Angular velocity

δ(x−ξ) Dirac’s function at x = ξ

G(x,ξ) Green’s function at x = ξ

∂x Partial derivative with regard to x



1 Introduction

Currently, there are many kinds of railway tracks con-

structed using different technologies. Among many choices

of sleeper types, the concrete monoblock sleeper remains

popular. Determining the dynamic response of the sleeper is

important because it affects the stability of the railway track.

Substantial research using analytical methods for rail track

have been carried out, for example: the model of a railway

track as periodically supported beam [1–10] or the model of

an infinite beam placed on a continuous foundation [11–14]),

the studies of each track component have been performed on

the rail [15–18] or on the ballast [19, 20].

The dynamics of the sleepers have been investigated

with several different methods. The main objective is to anal-

yse the sleeper behaviour and to model it in the case of dif-

ferent moving charge values. Grassie [21] shows that the

uniform beam can be used to model a non-uniform section

sleepers. The dynamic lateral resistance of the sleeper has

been studied to better understand the interaction zones be-

tween the sleeper and the ballast layer [22]. By using exper-

imental and numerical methods, Laryea et al. [23] compared

the performance of sleepers made out of different materials.

Some works focus on the pre-stressed concrete sleeper using

FEM in 2D and in 3D [24, 25].

In this paper, an analytical model for sleepers has been

developed by considering a beam resting on a visco-elastic

foundation. The dynamic equation of the beam is then writ-

ten in the frequency domain by using the Fourier transform.

When the rails are modeled by periodically supported beams

[8], we can write the forces applied by the rails on the sleeper

with the help of the Dirac delta function. Then, the dynamic

equation for the beam (sleeper) together with the foundation

is written and then solved by using the Green’s functions.

The method of using Green’s functions to obtain the response

of a beam structure to a moving mass has been successfully

applied previously [26, 27].

The numerical applications show that the sleeper is in

flexion and the dynamic effect when the two rails are charged

with different loads. Moreover, the model results have been

compared to measurement results in situ, with good agree-

ment. This method is a simple and fast way to approach the

dynamic response of sleepers.

2 Formulations

Consider a railway track as shown in Fig.1. In this track,

a sleeper together with the ballast and foundation are mod-

eled by an Euler-Bernoulli beam resting on a Kelvin-Voigt

foundation. The sleeper is subjected to two forces R1(t) and

R2(t) from the two rails via the rail pads which are consid-

ered as dampers and springs. The total force applied due to

the rails on the sleeper can be written with the help of Dirac’s

functions as follows:

F(x, t) =−R1(t)δ(x−a)−R2(t)δ(x+a) (1)

where 2a is the distance between the two rails.

z
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ζrp krp

Sleeper

a a
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Fig. 1: Railway track (a) and the analytical model represen-

tation (b)

When the rails are modeled by periodically supported

beams [8], the forces R1 and R2 in the frequency domain can

be calculated as follows (see Appendix A)

R̂1(ω) = K ŵ1(ω)+Q1(ω)

R̂2(ω) = K ŵ2(ω)+Q2(ω)
(2)

where K is the equivalent stiffness, Q1 and Q2 are the equiv-

alent pre-forces for the two rails calculated by equation (13)

in Appendix A; w1 and w2 are the rail 1 and 2 displacements

at the sleeper position.

Let ws(x, t) be the sleeper displacement at the coordinate

x with −L ≤ x ≤ L where x is the coordinate a long of the

sleeper and t denotes time. In Fig.1, we see that x = ±a

corresponds to the positions of the rail seats. The forces R̂1,

R̂2 can be expressed by the constitutive law of the rail pads

in the frequency domain as follows:

R̂1(ω) =−kp (ŵ1(ω)− ŵs(a,ω))

R̂2(ω) =−kp (ŵ2(ω)− ŵs(−a,ω))
(3)



where kp = krp + iωζrp is the dynamic stiffness of the rail

pad and krp, ζrp are the stiffness and damping coefficient of

the rail pads. By substituting equation (2) into equation (3),

we obtain:

R̂1(ω) =
kpK

kp +K
ŵs(a,ω)+

kp

kp +K
Q1(ω)

R̂2(ω) =
kpK

kp +K
ŵs(−a,ω)+

kp

kp +K
Q2(ω)

(4)

The sleeper displacement ws(x, t) under a force F(x, t) is

driven by the dynamic equation of the Euler-Bernoulli beam

as follows:

EsIs

∂4ws(x, t)

∂x4
+ρsSs

∂2ws(x, t)

∂t2
−T

∂2ws(x, t)

∂x2
+ k f ws(x, t)

+ζ f

∂ws(x, t)

∂t
= F(x, t)

(5)

where ρs,Es,Ss and Is are the density, the Young’s modu-

lus, the section and the cross-sectional moment inertia of the

sleeper respectively; k f and ζ f are the stiffness and damping

coefficient of the foundation and T is the sleeper pre-stress.

By combining equations (1) and (5) then by performing

a Fourier transform, we obtain:

∂4
xŵs(x,ω)−

T

EsIs

∂2
xŵs(x,ω)−

ρsSsω
2 − kb

EsIs

ŵs(x,ω) =

−
R̂1

EsIs

δ(x−a)−
R̂2

EsIs

δ(x+a)

(6)

where ∂x stands for the partial derivative with regard to x,

kb = k f + iωζ f is the dynamic stiffness of the foundation.

Equations (4) and (6) describe the sleeper response. In

order to solve these equations, we will use the Green’s func-

tion of equation (6) defined by:

∂4G(x,a)

∂x4
−α2

s

∂2G(x,a)

∂x2
−λ4

s G(x,a) = δ(x−a) (7)

where αs =
√

T
EsIs

and λs =
4

√

ρsSsω2−kb

EsIs
. This is a 4th-order

linear differential equation and its Green’s function [28] can

be written as follows:

G(x,a) =

{

A1eλ1x +A2eλ2x +A3eλ3x +A4eλ4x for x ∈ [−L,a]

B1eλ1x +B2eλ2x +B3eλ3x +B4eλ4x for x ∈ [a,L]

(8)

where 2L is the beam length, Ai, Bi, and λi (with 1 ≤ i ≤

4) are parameters to be determined. By using the boundary

conditions of the free-free beam, we can obtain the analytical

expressions for Ai, Bi as shown in Appendix B.

The solution of equation (6) can be written with the help

of the Green’s function as follows:

ŵs(x,ω) =
−R̂1

EsIs

G(x,a)+
−R̂2

EsIs

G(x,−a) (9)

By substituting x = a and x = −a into the aforemen-

tioned equation, we obtain respectively:

ŵs(a,ω) =
−R̂1

EsIs

G(a,a)+
−R̂2

EsIs

G(a,−a)

ŵs(−a,ω) =
−R̂1

EsIs

G(−a,a)+
−R̂2

EsIs

G(−a,−a)

(10)

By combining equations (4) and (10), we obtain:

R̂1 =
EsIs

K

Q1 [G(−a,−a)+χ]−Q2G(a,−a)

[χ+G(a,a)] [χ+G(−a,−a)]−G(−a,a)G(a,−a)

R̂2 =
EsIs

K

Q2 [G(a,a)+χ]−Q1G(−a,a)

[χ+G(a,a)] [χ+G(−a,−a)]−G(−a,a)G(a,−a)

(11)

where χ = EsIs
kp+K

kpK
.

Equation (11) defines the reaction force of the sleeper on

the two rails. Then, the sleeper displacement in the frequency

domain can be obtained by replacing R̂1 and R̂2 in equation

(9). By using the inverse Fourier transform, we can get the

sleeper response in the time domain.

3 Applications

3.1 The sleeper response under a static load

Consider a railway track with parameters given in Tab.1.

The sleeper response is calculated for two cases: the same

loads on the two rails (Q1 =Q2 = 125kN) and different loads

(Q1 = 125kN, Q2 = 180kN) on each rail.

Fig.2 shows the sleeper deformed shapes in the two

cases. When the loads are the same, the deformation of the

sleeper is symmetric and the rail displacements are the same.

When the two loads on the two rails are different, the rail dis-

placements are not the same and it leads to leveling (which

has a value of 0.23 mm in this example).

The reaction forces R̂1 and R̂2 are calculated by equation

(11) and Fig.3 shows the forces in the time domain. We see

that the reaction forces at the rail seat R̂1 and R̂2 are equal

when the two rails are subjected to the same loads. When the

two loads are different, the reaction force is higher for the

rail subjected to a higher load.



Content Unit Notation Value

Young’s modulus GPa Er 210

of rail

Cross-sectional moment m4 Ir 4.32E-04

inertia of rail

Rail density kgm−3 ρr 7850

Rail section area m2 Sr 7.69E-3

Young’s modulus GPa Es 48

of sleeper

Cross-sectional moment m4 Is 2.09E-4

inertia of sleeper

Density of sleeper kgm−3 ρs 2475

Sleeper section area m2 Sr 54.9E-3

Length of sleeper m 2L 2.41

Track gauge m 2a 1.435

Stiffness of ballast MNm−1 k f 240

Damping coefficient kNms−1 ζ f 58.8

of ballast

Stiffness of rail pad MNm−1 krp 192

Damping coefficient MNms−1 ζrp 1.97

of rail pad

Train speed ms−1 v 42.5

Pre-stress of sleeper kN T 300

Sleeper spacing m l 0.6

Table 1: Parameters of the railway track [8] and [29]

3.2 Comparison with measurements

We compare the sleeper responses from the model and

the measurements in situ. The measurement has been per-

formed by Sateba at Creil, France, with a sleeper in which

are integrated 6 Fibre Bragg Grating sensors (FBG) in the

longitudinal direction as shown in Fig.4. These sensors are

positioned to correspond to the rail seats and at the middle

of the sleeper sections. The sensors measure the strain and

temperature of the sleeper during normal traffic. The pre-

sented results are recorded on the 11th of January 2017 by

the passing of a Corail train which contains a locomotive

and 20 wagons with parameters given in Tab.2. The track

parameters remain the same as in Tab.1.

By using the Euler-Bernoulli beam theory, the sleeper

strain at the sensor position can be calculated from the

sleeper displacement as shown in Appendix C. Here, the

train load is modeled by a series of identical moving loads

(Q j = Q) which are characterized by the distances to the first
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Fig. 2: Sleeper displacement for the same loads (a) and for

different loads (b) on the two rails
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Fig. 3: Sleeper reaction force for the same loads (a) and for

different loads (b) on the two rails

wheel as shown in Fig.5.

Fig.6 shows the sleeper responses predicted by the

model and the measured by the sensors. Fig.7 is a zoom of

the sleeper responses in a time interval which corresponds to

the time for the passing of a wagon bogie. We see that the an-

alytical results agree well with the data. It is remarkable that



Upper right sensor

Upper center sensor

Fig. 4: Instrumented sleeper: upper right sensor (red), and

uper center sensor (black)

Content Unit Notation Value

Locomotive length m Hl 19

Distance of locomotive m Dl 3.2

bogies wheels

Distance of locomotive m dl 10

inner wheels

Wagon length m Hw 15.5

Distance of wagon bogie wheels m Dw 2.2

Distance of wagon inner wheels m dw 9.7

Load per wheel kN Q 125

Number of wagons nw 20

Table 2: Parameters of the periodic charge

n2 n1 locomotive

dw Dw dl Dl

Hw Hl

Fig. 5: Diagram of a train showing wheel layout

the sleeper is in compression at the center (positive strain)

and in traction at the rail seats (negative strain) which is char-

acteristic of a beam in flexion. Moreover, Fig.8 presents the

responses in the frequency domain. We see that most of the

peaks have the same frequency, corresponding to that of the

wheels passing.

4 Conclusions

In this study, an analytical model for the dynamics of

railway sleepers has been developed by considering a model

of abeam on Kelvin Voigt foundation. By using the relation

between the reaction force and displacement of the rail form

the periodically supported beam, the sleeper response cal-
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Fig. 6: Sleeper response under the passing of a train

culated using the Green’s function. This model permits us

to calculate fast the sleeper response and it is validated by

comparison with in-situ measurements. In future work, this

model can be used for inverse problem to determine the track

parameters from the sleeper response.
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Appendix A: Model of a periodically supported beam

When each rail is modeled by an infinite beam and the

sleeper reaction as concentrated forces, we have a system

as shown in Fig.9. Each rail is subjected to moving loads

Q j which are characterized by their initial positions D j and

speed v. This analytical model has been developed in the

1970s [1] and is called a periodically supported beam sub-

Q j Q1

l
Rn

v
D j

−∞ +∞

Fig. 9: Periodically supported beam subjected to moving

loads

jected to moving forces. Recently, Hoang et al. [8] have

proven a relation in the frequency domain between the beam

displacement ŵr(ω) at the sleeper position and the sleeper

reaction force R̂r(ω) which holds for any type of sleepers

and foundation:

R̂(ω) = K (ω)ŵr(ω)+Q (ω) (12)

where K (ω) and Q (ω) are the so-called equivalent stiffness

and pre-force of the periodically supported beam. By taking

the case of an Euler-Bernoulli beam for the rail, the expres-

sion for K (ω) and Q (ω) is given by:

K (ω) = 4λ3
r ErIr

[

sin lλr

cos lλr − cos ωl
v

−
sinh lλr

cosh lλr − cos ωl
v

]−1

Q (ω) =
K (ω)

vErIr

[

(

ω
v

)4
−λ4

r

]

K

∑
j=1

Q je
−iω

D j
v

(13)

where λr =
4

√

ρrSrω2

ErIr
. The parameters ρr, Er, Sr and Ir are

the density, Young’s modulus, section and the cross-sectional

inertia of the rail respectively.

Appendix B: Calculation of the Green’s function

The characteristic function of equation (7) is given by

[28]:

P (λ) = λ4
−α2

s λ2
−λ4

s (14)

This function has 4 complex roots λi (i = 1,2,3,4)

which are defined as λ2
1,2 =

α2
s +

√

α4
s +4λ4

s

2
and λ2

3,4 =

α2
s −

√

α4
s +4λ4

s

2
. The general form of the Green’s function

is given by:

G(x,a) =

{

A1eλ1x +A2eλ2x +A3eλ3x +A4eλ4x for x ∈ [−L,a]

B1eλ1x +B2eλ2x +B3eλ3x +B4eλ4x for x ∈ [a,L]

(15)



In addition, the Green’s function has to satisfy the

boundary condition of the free-free beam and the continu-

ity at x = a. Thus, the eight constants Ai(ω) and Bi(ω) with

1≤ i≤ 4, are evaluated such that the Green’s function G(x,a)
satisfies the following conditions [30] [31]:

1. Two boudary conditions at each end of the beam de-

pending on the type of the end support, for a free-free

beam:

∂2
xG(−L,a) = ∂2

xG(L,a) = 0

∂3
xG(−L,a) = ∂3

xG(L,a) = 0
(16)

2. Continuity conditions of displacement, slope and mo-

ment at x = a:

G(a+,a)−G(a−,a) = 0

∂xG(a+,a)−∂xG(a−,a) = 0

∂2
xG(a+,a)−∂2

xG(a−,a) = 0

(17)

3. Shear force discontinuity of magnitude one at x = a:

∂3
xG(a+,a)−∂3

xG(a−,a) = 1 (18)

By substituting the equations (16), (17) and (18) into

equation (15), we obtain:

λ2
1A1e−λ1L +λ2

2A2e−λ2L +λ2
3A3e−λ3L +λ2

4A4e−λ4L = 0

λ3
1A1e−λ1L +λ3

2A2e−λ2L +λ3
3A3e−λ3L +λ3

4A4e−λ4L = 0

λ2
1B1eλ1L +λ2

2B2eλ2L +λ2
3B3eλ3L +λ2

4B4eλ4L = 0

λ3
1B1eλ1L +λ3

2B2eλ2L +λ3
3B3eλ3L +λ3

4B4eλ4L = 0

(B1 −A1)e
λ1a +(B2 −A2)e

λ2a

+(B3 −A3)e
λ3a +(B4 −A4)e

λ4a = 0

λ1(B1 −A1)e
λ1a +λ2(B2 −A2)e

λ2a

+λ3(B3 −A3)e
λ3a +λ4(B4 −A4)e

λ4a = 0

λ2
1(B1 −A1)e

λ1a +λ2
2(B2 −A2)e

λ2a

+λ2
3(B3 −A3)e

λ3a +λ2
4(B4 −A4)e

λ4a = 0

λ3
1(B1 −A1)e

λ1a +λ3
2(B2 −A2)e

λ2a

+λ3
3(B3 −A3)e

λ3a +λ3
4(B4 −A4)e

λ4a = 1

(19)

The aforementioned equation is linear with 8 unknowns and

we can solve it by an analytic or numerical method to obtain

Ai(ω) and Bi(ω) with 1 ≤ i ≤ 4.

Appendix C: Calculation of sleeper strains

The strain of an Euler-Bernoulli beam can be calculated

from the beam deflection w as follows:

εx(x,z, t) =−zs

∂2wr(x, t)

∂x2
(20)

where zs is the distance to the neutral axis of the sleeper. For

the sleeper, the beam deflection is calculated by equation (9).

By combining this equation and equation (20), the sleeper

strain in the frequency domain is the following:

ε̂x(x,z,ω) = zs

(

R̂1

EsIs

∂2G(x,a)

∂x2
+

R̂2

EsIs

∂2G(x,−a)

∂x2

)

(21)




