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L1 regularization is used for finding sparse solutions to an
underdetermined linear system. As sparse signals are widely
expected in remote sensing, this type of regularization scheme and
its extensions have been widely employed in many remote sensing
problems, such as image fusion, target detection, image super-
resolution, and others and have led to promising results. However,
solving such sparse reconstruction problems is computationally
expensive and has limitations in its practical use. In this paper,
we proposed a novel efficient algorithm for solving the complex-
valued L1 regularized least squares problem. Taking the high-
dimensional tomographic synthetic aperture radar (TomoSAR)
as a practical example, we carried out extensive experiments,
both with simulation data and real data, to demonstrate that
the proposed approach can retain the accuracy of second order
methods while dramatically speeding up the processing by one or
two orders. Although we have chosen TomoSAR as the example,
the proposed method can be generally applied to any spectral
estimation problems.

Index Terms—L1 regularization, TomoSAR, basis pursuit
denoising (BPDN), second order cone programming (SOCP),
proximal gradient (PG)

I. INTRODUCTION

In this paper, we focus on the so-called L1 regularized least

squares (L1LS) minimization problem of the following form:
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min
x

‖Ax− b‖2
2
+ λ‖x‖1 (1)

It is an unconstrained convex optimization problem with a

non-differentiable objective function due to the presence of

the L1 term. This L1LS problem is also known as the basis

pursuit denoising approach (BPDN) or least absolute shrinkage

and selection operator (LASSO). It promotes sparse solutions,

which are commonly desired in many applications in computer

vision, machine learning or other fields. Sparsity is also widely

exploited in remote sensing. For example, for multi- and

hyperspectral sensors, it is used for pan-sharpening [1] and

spectral unmixing [2]. It is also used for spectral estimation

in tomographic SAR [3][4], rational polynomial coefficients’

estimation of rational function model for photogrammetric

mapping [5], and others.

Usually, BPDN solvers are either first- or second-order

methods. First-order methods are typically based on linear

approximations. Examples include iterative shrinkage thresh-

olding methods (ISTA), alternating direction method of multi-

pliers (ADMM), and coordinate descent (CD). As for second-

order methods, they are often computationally expensive. An

example of a second-order method is the primal-dual interior-

point method (PDIPM), which has computationally expensive

iterations. In any wise, sparse reconstruction based methods

are computationally much more expensive than classic linear

methods. Yet, specific structures of the sensing matrix A can

be exploited for faster solutions.

In this work, we address tomographic SAR (TomoSAR),

for which A is an irregular Fourier transform matrix with a

typical matrix size of ca. 100 times 1 million. For instance, A

has the dimension n×m, where n is equal to the number of

interferograms in the application of TomoSAR and m is equal

to the amount of discretization. The typical value of n is from

20 to 100, and m is above 1 million. When multiplied, they

indicate the amount of discretization along each dimension,

such as elevation, seasonal motion and linear deformation.

Besides TomoSAR, our findings and algorithms are applicable

to further examples, such as SAR focusing, inverse SAR, and

underground sonar imaging for DOA estimation. In TomoSAR,

it is demonstrated that basis pursuit denoising approach based

on L1 regularized least squares, such as “scale-down by

L1 norm minimization, model selection, and estimation re-

construction” (SL1MMER algorithms, pronounced “slimmer”)

proposed in [3], can achieve significant super-resolution [6][7],

compared to classic linear methods [8][9]. Yet the downside
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of this method is its computational cost. For example, to

reconstruct one scene covered by a radar satellite image,

like in TerraSAR-X high-resolution spotlight mode, about 20

million problems of the abovementioned size should be solved,

which makes it infeasible for large-scale processing. In [10],

Wang et al. proposed an efficient approach to address this

issue, which uses the well-established and computationally

efficient persistent scatterer interferometry [11] to obtain a

prior knowledge of the estimates, followed by the linear

method and L1LS-based SL1MMER algorithm applied to pre-

classified different groups of pixels. This approach speeds

up the processing, but only to the extent of reducing the

percentage of pixels that requires sparse reconstruction. This

is to say, if 10% of the pixels will be processed by SL1MMER

(i.e., solving L1LS), the whole processing can only be sped

up by up to a factor of ten. In other words, the strategy is to

only use theses algorithms for pixels where super-resolution is

needed. For the rest of the pixels, processing will be done with

fast algorithms, e.g., linear estimators. Since the computational

time of linear estimators is almost negligible compared to

sparse reconstruction algorithms, in the end, the percentage of

pixels demanding super-resolving is decisive to the possible

extent of speeding up. In this work, we want to speed up the

sparse reconstruction algorithms, which is currently causing a

bottleneck.

The main contributions of this paper are listed as follows;

• A novel approach randomized blockwise proximal gra-

dient (RBPG) has been proposed to solve the complex-

valued sparse optimization problem in radar remote sens-

ing.

• Systematic performance evaluation of the proposed ap-

proach has been carried out using both simulated data and

real data with the application of tomographic SAR. The

results show that it can maintain the accuracy and super-

resolution power of second order sparse reconstruction

methods and dramatically speed up the whole processing

by one or two orders.

• Operational-level processing for a large-scale problem

has been carried out, which is demonstrated by an ac-

curate 4-D point cloud reconstruction over a very large

area – the whole city of Munich.

The paper is organized as follows: In section II, the high-

dimensional SAR imaging model and TomoSAR inversion

are introduced; In section III, the SL1MMER algorithms are

reviewed, and a novel approach for its sparse optimization pro-

cedure is introduced; The experiments, using simulated data

and real data, are presented in section IV; Finally, conclusions

are given in section V.

II. SAR IMAGING

In this section, we first introduce the high-dimensional

SAR imaging model for TomoSAR. Furthermore, we compare

different TomoSAR inversion approaches. As an extension of

TomoSAR, differential synthetic aperture radar tomography

(D-TomoSAR) uses multi-baseline, multi-temporal SAR ac-

quisitions for reconstructing the 3D distribution of scatterers

and their motion [12][13][14]. The D-TomoSAR system model

can be expressed as follows:

Fig. 1. TomoSAR imaging geometry with an artistic view of TerraSAR-
X/TanDEM-X

gn =

∫

∆s

γ(s) exp(j2π(ξns+ 2d(s, tn)/λ))ds (2)

where gn is the complex-valued measurement at an azimuth-

range pixel for the nth acquisition at time tn(n = 1, 2, ..., N).
γ(s) represents the reflectivity function along elevation s with

an extent of ∆s, ξn = 2bn/(λr) is the spatial frequency

proportional to the respective aperture position (baseline) bn,

λ is the wavelength and r is the range. d(s, tn) is the line-

of-sight (LOS) motion as a function of elevation and time.

The motion relative to the master acquisition may be modeled

using a linear combination of the M base function τm(tn)

d(s, tn) =
M
∑

m=1

pm(s)τm(tn) (3)

where pm(s) is the corresponding motion coefficient to be

estimated and τm(tn) are the temporal frequencies. The choice

of the base functions depends on the underlying physical

motion process. Therefore, we generalize it in the multicom-

ponent model:

gn =

∫

...

∫ ∫

γ(s)δ(p1 − p1(s), ..., pM − pM (s))

exp(j2π(ξns+ η1,np1 + ...+ ηM,npM ))dsdp1...dpM
(4)

The inversion of the system model provides retrieval of the

elevation and deformation information, even of multiple scat-

terers inside an azimuth-range resolution cell, thus obtaining

a high-dimensional map of scatterers. In the presence of noise

ε, the discrete-TomoSAR system model can be rewritten

g = Rγ + ε (5)
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where g is the measurement vector with N elements, and γ
is the reflectivity function along elevation uniformly sampled

at sl(l = 1, 2, ..., L). R is an N × L irregularly sampled

discrete Fourier transformation mapping matrix.

Theoretically speaking, we would ideally solve Eq. (5) by

L0 minimization, which would give the correct solution, but,

unfortunately, the L0 minimization problem is NP-hard. For

L≫ N (i.e., with γ sufficiently sparse), it can be shown that

the L1 norm minimization leads to nearly the same result as

the L0 minimization.

III. METHODOLOGY

A. Review of SL1MMER

In [3], Zhu et al. proposed the SL1MMER algorithm. They

demonstrated its super-resolution power and robustness for

spaceborne tomographic SAR in [15][16]. The SL1MMER

algorithm improves the CS algorithm and estimates these

parameters in a very accurate and robust way. It consists

of three main steps: (1) an L1LS minimization, (2) model

selection, and (3) parameter estimation. Among all the steps,

L1LS minimization is the most time-consuming one. In case

there is no prior knowledge about the number of scatters, and

in the presence of measurement noise, it can be approximated

by

γ̂ = argmin
γ
{‖Rγ − g‖2

2
+ λ‖γ‖1} (6)

Generic methods for non-differentiable convex problems,

such as the ellipsoid method or subgradient methods [17][18],

can be used to solve Eq. (6). These methods are often

very slow. The equation (6) can be transformed to a convex

quadratic problem, with linear inequality constraints. The

equivalent quadratic program (QP) can be solved by standard

convex optimization methods such as interior-point methods.

However, the data of InSAR is complex-valued, which requires

the use of the second order cone program (SOCP), instead

of QP, for solving Eq. (6). In [3], the second order method

PDIPM with self-dual embedding techniques was adopted

to solve the SOCP. This is computationally expensive and

is difficult to extend to large scales. To make TomoSAR

processing fit for high throughput or operational use, a fast

L1LS solver is crucial.

B. Randomized Blockwise Proximal Gradient Algorithms

In this section, we propose a novel approach for solving

L1LS minimization, which can retain the super-resolution

power of the standard BPDN solver and extremely speed up

the processing for matrix A of the random Fourier transform

as used in TomoSAR.

Our unconstrained optimization problems with an objec-

tive function can be split into the convex differentiable part

and convex non-differentiable part, leading to the so-called

proximal gradient (PG) method. The PG method is used for

optimization of an unconstrained problem with an objective

function F (x) split in two components. We consider the

following problem,

min
x

F (x) = f(x) + r(x) (7)

where f(x) is the convex differentiable function, and r(x)
is the convex and non-differentiable regularization function.

The iterative approach to solve (7) can be written as

xk+1 = argmin
(

〈∇f(xk),x−xk〉+
1

2αk

‖x−xk‖22+r(x)
)

(8)

where∇f is the partial gradient of function f . The proximal

gradient formulation is

xk+1 = proxαkr
(xk − αk∇f(x

k)) (9)

where αk > 0 is the step size, which can be constant or

determined by line search. For r(x) = ‖x‖1, the proximal

operator can be chosen as soft-thresholding:

proxαkr
(x) =











x− αk, x > αk

0, −αk ≤ x ≤ αk

x+ αk, x < αk

(10)

Proximal gradient algorithms can be accelerated by using

Nesterov’s method [19] in the following way:

yk+1 = xk + θk(
1

θk−1
− 1)(xk − xk−1) (11)

xk+1 = proxαkr
(yk+1 − αk∇f(y

k+1)) (12)

where θk is chosen as 2/(k + 1). The convergence rate

of the basic PG algorithms is improved to O(1/k2) by the

extrapolation. In order to further accelerate the algorithms, a

randomized block coordinate is adopted. As shown in [20][21],

by applying block coordinate techniques, the equation (8) can

be written as

xk+1
ik

= argmin
(

〈∇fik(x
k
ik
),xik − xk

ik
〉

+ 1
2αk

ik

‖xik − xk
ik
‖22 + rik(x)

)

(13)

where ik is the index of the block. The choice of the

update index ik for each iteration is crucial for good per-

formance. Often, it is easy to switch index orders. However,

the choice of index affects convergence, possibly resulting

in faster convergence or divergence. In this work, we chose

the randomized variants scheme, which has strengths, such

as less memory consumption, good convergence performance

and empirical avoidance of the local optimal. ik is chosen

randomly following the probability distribution given by the

vector

Pik =
Lik

∑J
j=1 Lj

, ik = 1, ..., J (14)

where Lik is the Lipschitz constant of∇ikf(x), the gradient

of f(x) with respect to the ik-th group (in our case, L =
||ATA||). However, setting αk = 1/L usually results in very

small step sizes. Consequently, the time step αk is adaptively

chosen by using backtracking line search method in [22][23].
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The step length αk is determined iteratively by multiplica-

tion of a factor, Cα ∈ (0, 1), until the following holds:

f(x′) ≤ f(x) +∇f(x)T (x′ − x) +
1

2αk

||x′ − x||2 (15)

This condition ensures that the value f(x′) of f at the new

point x′ is smaller than the value of quadratic approximation

at the point x. The framework of our method is given in

Algorithm 1.

Algorithm 1 RBPG with backtracking

Init: x(0), y(0) = 0; for k ≥ 1, repeat the steps

1: for k = 1, 2, ..., NK do

2:

3: ik ← Pik =
Lik∑
J
j=1

Lj

4: yk+1
ik
← xk

ik
+ θk(

1
θk−1

− 1)(xk
ik
− xk−1

ik
)

5: x̄k+1
ik
← proxαkr

(yk+1
ik
− αk∇f(y

k+1
ik

))
6:

7: while (Eq. (15) is fulfilled) do

8: αk = Cα · αk

9: repeat steps 4, 5
10: end while

11:

12: if (F (x̄k+1
ik

) ≤ F (xk
ik
)) then

13: xk+1
ik

= x̄k+1
ik

14: else

15: xk+1
ik

= xk
ik

16: end if

17:

18: end for

C. Complexity Analysis

The complexity of each algorithms is analyzed in this

section. O(1) is assumed as the computational complexity for

one multiplication.

Among all approaches, SVD-Wiener (Eq.(11) in [9]) needs

the least complexity O(N2Ls), which pays with the price of

non super-resolution. N is the number of acquisitions. Ls is

the multiplication of discretization levels in three dimensions,

namely elevation direction, linear motion direction and sea-

sonal motion direction. The typical range for each direction

can be 200-400, 20-40, or 30-40. In SL1MMER, each iteration

of the PDIPM is dominated by the cost of computing the PD

search direction from the Newton system. This leads to the

computational complexity O(ǫpKpL
3), where L is the multi-

plication of discretization levels in three dimensions for sparse

reconstruction, which is about 2-10 times smaller than Ls. Kp

is the number of iterations of PDIPM (approximately 10-20),

and ǫp is the acceleration factor of PDIPM due to different

techniques, such as the preconditioned conjugate gradient (0.1-

1.0). The main computational cost of RBPG is due to Eq. (13),

which requires at least O(KrMrL
2), where Kr is the number

of iterations of RBPG (approximately 50-100) and Mr is the

number of multiplications of a specific matrix in each iteration.

According to the computational complexity, RBPG should be

ten to several hundred times faster than SOCP.

IV. EXPERIMENTS

A. Simulation

In this section, we compare the RBPG approach to the

SOCP and SVD approaches using simulated data. The inherent

(Rayleigh) elevation resolution ρs of the tomographic arrange-

ment is related to the elevation aperture extent ∆b [6]

ρs =
λr

∆b
(16)

The normalized distance is defined as

κ =
s

ρs
(17)

For the first test case, only one scatterer is placed at s = 0,

and two SNR are chosen: 10 dB and 3 dB. Fig. 2 shows

a performance comparison between SVD, RBPG and SOCP

on simulated data with a single scatterer. As one can see,

all methods can detect the position of the single scatterer,

although the reflectivity profile reconstructed by SVD has

more sidelobe than the others.

For the double scatterers’ case, we assume the situation with

two scatterers inside an azimuth-range pixel: one scatterer lo-

cated at the building facade and another from the ground with

four different normalized distances : κ = 1.2, 0.8, 0.4, 0.2;

and a number of acquisitions, N = 29. Fig. 3 shows the

comparison of the reconstructed reflectivity profiles along the

elevation direction by SVD (blue solid lines), RBPG (green

dash lines) and SOCP (red solid lines), where the x-axis is the

absolute value of normalized reflectivity γ, and the y-axis is

the elevation s.

From Fig. 3, one can see that for the relatively high SNR

case (10 dB and 3 dB), all methods can distinguish the two

scatterers well when κ = 1.2. However, once they move close

into one elevation resolution cell, SVD failed to detect double

scatterers when κ = 0.8, 0.4 for both the low and high signal

to noise ratio (SNR) conditions. In contrast, SOCP and RBGP

can accurately estimate the position of double scatterers for

all the cases, which exhibits the super-resolution power. If we

further reduce κ = 0.2, SOCP and RBPG can distinguish the

double scatterers for SNR = 10 dB. However, all methods

failed to detect the double scatterers for SNR = 3 dB, which

is not surprising according to the super-resolution power study

reported in [6]. For the low SNR case (0 dB), note that even

with κ = 1.2, SVD cannot distinguish the double scatterers.

In contrast, both SOCP and RBPG can accurately estimate

the position of double scatterers for κ = 1.2, 0.8, 0.4. In order

to obtain more plausible evidence, a Monte Carlo simulation

with 5,000 realizations per SNR value was performed to

evaluate the detection rates of different normalized distances

and schemes.

Fig. 4 presents the detection rate PD as a function of

normalized distance κ at different SNR levels using SVD,

RBPG and SOCP. The phase difference in this simulation,

∆φ = 0, is the worst case for detection [6]. The SNR of two

sets of curves are 2 dB and 7 dB, respectively. The statistics

confirm that the SVD approach does not have super-resolution

power. For the poor SNR condition, the detection rate can not

achieve 50%, even if the normalized distance is κ = 1.2. The
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Fig. 2. Performance comparison between SVD (blue), RBPG (green) and SOCP (red) on simulated data with single scatterer. (a) SNR = 10 dB (b) SNR =
3 dB

RBPG approach behaves similarly to the SOCP approach by

maintaining the super-resolution power of SL1MMER.

B. Real Data

For the real data experiment, we chose TerraSAR-X high

resolution spotlight data with a slant-range resolution of 0.6 m

and an azimuth resolution of 1.1 m. In order to be comparable

to the results obtained with SOCP presented in [15], we

purposely used the same test data stack and test building. I.e.,

the stack taken over the city of Las Vegas consists of 29 images

and has an elevation aperture size of about 269.5 m (i.e., the

inherent elevation resolution is ρs = 40.5 m, approximately a

20 m resolution in height with the elevation-to-height factor

sin θ, where the incidence angle θ is 31.8◦ here). The same

test building – Bellagio was chosen to demonstrate the SR

power of the new approach, in comparision with the results

shown in [15], since its surrounding infrastructure exhibits

strong scatterers that compete with the reflections from the

building facade. Fig. 5 shows the optical image of the Bellagio

from Google Maps and the TerraSAR-X mean intensity map.

Fig. 6 (a) presents the fused topography estimates (i.e. the

estimated elevations), of the detected single scatterers and

double scatterers. The information increment contributed by

the layover separation is significant, and the high density of

detected double scatterers completes the structures of indi-

vidual high-rise buildings. Fig. 6 (b) shows the amplitude of

the seasonal motion. The same as shown in [15], the motion

patterns are quite complex due to the fact that thermal dilation

of buildings depends on many effects, like environmental air

temperature, current sun illumination, internal cooling or heat-

ing, and the location of the major construction elements with

respect to the facade. For the whole area, 29.1% and 29.9% of

the scatterers detected by RBPG and SOCP, respectively, are

found as double scatterers. From Tab. I, we can see that 27.3%
of the double scatterers has been detected by both approaches.

Fig. 7 presents the estimated elevation of the two layers of

the detected double scatterers, with the two layers consisting of

a top layer mainly caused by the reflections from the building

TABLE I
PERCENTAGE OF DOUBLE SCATTERERS DETECTION FOR TWO

APPROACHES

DS only detected by RBPG Intersection DS only detected by SOCP

1.8% 27.3% 2.6%

facade and a ground layer caused by reflections from lower

buildings or ground infrastructures. The gradation of elevation

estimates on the top layer [see Fig. 7 (a)] and the homogeneity

in the ground layer [see Fig. 7 (b)] suggest the correctness

of the elevation estimation and layover separation capability.

Comparable to SOCP [15], the full structure of the high-rise

building is almost captured with only the detected double

scatterers.

C. Large-Scale Demonstration

To validate our approach, we chose a large-scale test area

covering the whole city of Munich. The TerraSAR-X data

stack is composed of 78 very high-resolution spotlight images

and covers approximately 50 km2. Four-dimensional point

clouds with a density of about one million points per square

kilometer are reconstructed. The experiments were carried

out on a high-performance computer at Lebnitz-Rechnung-

Zentrum (LRZ) with about 2,000 cores. With the same number

of cores, the run time using the SOCP approach is estimated to

be 120 CPU hours whereas RBPG took only six CPU hours.

The new approach speeds up by a factor of 20 for this large-

scale case.

The histogram of elevation differences of both methods is

shown in Fig. (8). Note that most of the elevation differences

collapse at zero, which indicates the estimation accuracy of

RBPG as being similar to SOCP.

Fig. 9 (b) shows the elevation estimates of InSAR stacks. As

a comparison, we show the corresponding area of the optical

image in Fig. 9 (a).
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Fig. 3. Performance comparison between SVD (blue), RBGP (green) and SOCP (red) on simulated data with two scatterers. (a)(d)(g)(j) with SNR = 10 dB,
(b)(e)(h)(k) with SNR = 3 dB, (c)(f)(i)(l) with SNR = 0 dB, and the normalized distance κ = 1.2, 0.8, 0.4, 0.2 from top to bottom.
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Fig. 4. Detection rate as a function of normalized distance κ using SVD (blue), RBPG (green) and SOCP (red), with SNR = 2/2 and 7/7 dB, N = 29, and
∆φ = 0

(a) (b)

Fig. 5. Test building: Bellagio hotel. (a) Optical image (Copyright Google) (b) TerraSAR-X mean intensity map.

A clear seasonal deformation is observed in the central train

station in Munich, which is caused by thermal dilation of

the metallic building structure. As one can see in Fig. 10, a

red color indicates movement toward the sensor, a blue color

means movement away from the sensor, with the amplitude of

the deformation is up to 10 mm/year.

An another interesting example shows an area near the

LowenBrau Keller, which is a famous beer company. We chose

this area due to the clear linear deformation patterns. From the

corresponding time-lapse of optical images from Google Earth

illustrated in Fig. 11, we can see that the linear deformation

is caused by the construction of new buildings.

V. CONCLUSION

In this work, we have proposed a fast and accurate opti-

mization approach for solving complex-valued L1 regularized

least squares – a widely employed optimization formulation

in radar remote sensing. Tomographic SAR processing was

used as a practical application. Experiments using simulated

data and real data demonstrate that the new approach retains

the super-resolution power of second order sparse recovery in

TomoSAR processing and speeds it up for one or two orders

of magnitude, which allows for the operational processing of

large-scale problems. Combining the proposed optimization

approach with the processing strategy proposed in [10], a
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(a) (b)

Fig. 6. Test building: Bellagio hotel. (a) Elevation in meters, estimated by RBPG (b) Amplitude of seasonal motion estimates in millimeters, estimated by
RBPG.

further speed-up of about 50 times can be expected. While our

exposition uses TomoSAR in remote sensing as an example,

the proposed algorithm can be generally used for spectral

estimation.
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Fig. 7. Test building: the Bellagio. (a) Top layer, mainly caused by returns from building facade (b) Ground layer, mainly caused by returns from ground
structures.

Fig. 8. Histogram of elevation differences of both methods for large-scale
demonstration.
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(a)

(b)

Fig. 9. Test Area: Munich. (a) optical image of the test area c©Google. (b) reconstructed point cloud with height color-coded.

(a) (b)

Fig. 10. Estimated seasonal deformation of the central train station in Munich. Red color indicates movement toward the sensor, blue color away from the
sensor.
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Fig. 11. (a) Linear deformation caused by the construction of new buildings. (b) Time-lapse of optical images from Google Earth.
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