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A FAST AND ACCURATE FFT-BASED METHOD FOR PRICING

EARLY-EXERCISE OPTIONS UNDER LÉVY PROCESSES

R. LORD∗, F. FANG† , F. BERVOETS‡ , AND C.W. OOSTERLEE§

Abstract. A fast and accurate method for pricing early exercise and certain exotic options
in computational finance is presented. The method is based on a quadrature technique and relies
heavily on Fourier transformations. The main idea is to reformulate the well-known risk-neutral
valuation formula by recognising that it is a convolution. The resulting convolution is dealt with
numerically by using the Fast Fourier Transform (FFT). This novel pricing method, which we
dub the Convolution method, CONV for short, is applicable to a wide variety of payoffs and
only requires the knowledge of the characteristic function of the model. As such the method is
applicable within many regular affine models, among which the class of exponential Lévy models.
For an M -times exercisable Bermudan option, the overall complexity is O(MN log2(N)) with
N grid points used to discretise the price of the underlying asset. American options are priced
efficiently by applying Richardson extrapolation to the prices of Bermudan options.

Key words. option pricing, Bermudan options, American options, convolution, Lévy Pro-
cesses, Fast Fourier Transform

AMS subject classifications. 65Y20, 65T50, 62P05, 60E10, 91B28

Preferred short title : CONV method for option pricing

1. Introduction. When valuing and risk-managing exotic derivatives, practi-
tioners demand fast and accurate prices and sensitivities. As the financial models
and option contracts used in practice are becoming increasingly complex, efficient
methods have to be developed to cope with such models. Aside from non-standard
exotic derivatives, plain vanilla options in many stock markets are actually of the
American type. As any pricing and risk management system has to be able to
calibrate to these plain vanilla options, it is important to be able to value these
American options quickly and accurately.

By means of the risk-neutral valuation formula the price of any option without
early exercise features can be written as an expectation of the discounted payoff
of this option. Starting from this representation one can apply several numerical
techniques to calculate the price itself: Monte Carlo simulation, numerical solution
of the corresponding partial-(integro) differential equation (P(I)DE) and numerical
integration. While the treatment of early exercise features within the first two
techniques is relatively standard, the pricing of such contracts via quadrature pricing
techniques has not been considered until recently, see [2, 40]. Each of these methods
has its merits and demerits, though for the pricing of American options the PIDE
approach currently seems to be the clear favourite [22, 43].

In the past couple of years a vast body of literature has considered the mod-
eling of asset returns as infinite activity Lévy processes, due to the ability of such
processes to adequately describe the empirical features of asset returns and at the
same time provide a reasonable fit to the implied volatility surfaces observed in op-
tion markets. Valuing American options in such models is however far from trivial,
due to the weakly singular kernels of the integral terms appearing in the PIDE, as
reported in, e.g., [4, 5, 12, 23, 36, 42].
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In this paper we present a quadrature-based method for pricing options with
early exercise features. The method combines the recent quadrature pricing meth-
ods of [2] and [40] with the methods based on Fourier transformation pioneered
by [9, 37, 32]. Though the transform methods so far have mainly been used for
the pricing of European options, we show how early exercise features can be in-
corporated naturally. The requirements of the method are that the increments of
the driving processes are independent of each other, and that the conditional char-
acteristic function of the underlying asset is known. This is certainly the case for
many exponential Lévy models and models from the broader class of regular affine
processes of [15], which also encompasses the exponentially affine jump-diffusion
class of [14]. In contrast to the PIDE methods, processes of infinite activity, such
as the Variance Gamma (VG) or CGMY models can be handled with relative ease.

The present paper is organised as follows. We start with an overview of the re-
cent history of transform and quadrature methods in option pricing. Subsequently
we introduce the novel method called Convolution (CONV) method for early ex-
ercise options. Its high accuracy and speed are demonstrated by pricing several
Bermudan and American options under Geometric Brownian Motion (GBM), VG,
CGMY and Kou’s model.

2. Overview of Transform and Quadrature Methods. All transform
methods start from the risk-neutral valuation formula that, for a European option,
reads:

V (t, S(t)) = e−rτ
E [V (T, S(T ))] , (1)

where V denotes the value of the option, r is the risk-neutral interest rate, t is the
current time point, T is the maturity of the option and τ = T − t. The variable S
denotes the asset on which the option contract is based. The expectation is taken
with respect to the risk-neutral probability measure. As (1) is an expectation, it
can be calculated via numerical integration provided that the probability density is
known in closed-form.

This is not the case for many models which do however have a characteristic
function in closed form.1 A number of papers starting from Heston [21] have solved
the problem differently. Focusing on a plain vanilla European call option, note
that (1) can be written very generally as:

V (t, S(t)) = e−rτ (F (t, T ) · S(S(T ) > K) − K · P(S(T ) > K)), (2)

where F (t, T ) is the forward price of the underlying asset at time T , as seen from t,
and P and S indicate respectively the risk-neutral probability measure and the stock
price measure, induced by taking the asset price itself as the numeraire asset. Note
that (2) has the same form as the celebrated Black-Scholes formula. As such, both
the cumulative probabilities can be found by inverting the characteristic function, an
approach which in the form used here dates back to Gurland [19] and Gil-Pelaez [18].
We can write:

P(S(T ) > K)=
1

2
+

1

π

∫ ∞

0

Re
e−iukφ(u)

iu
du, (3)

S(S(T ) > K)=
1

2
+

1

π

∫ ∞

0

Re
e−iukφ(u − i)

iuφ(−i)
du, (4)

where i is the imaginary unit, k is the logarithm of the strike price K, Re denotes
taking the real part of the integral and φ is the characteristic function of the log-

1Or, the probability density involves complicated special functions whereas the characteristic
function is comparatively easier.
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underlying, i.e.,

φ(u) = E

[
eiu ln S(T )

]
.

Carr and Madan [9] considered another approach. Note that L1-integrability is a
sufficient condition for the Fourier transform of a function to exist. A call option is
not L1-integrable with respect to the logarithm of the strike price, as:

lim
k→−∞

V (t, S(t)) = S(t),

Damping the option price with exp (αk) for α > 0 solves this however, and Carr
and Madan proposed the following solution:

F{eαkV (t, k)} = e−rτ

∫ ∞

0

Re eiukeαk
E

[
(S(T ) − ek)+

]
dk

=
e−rτφ(u − (α + 1)i)

−(u − αi)(u − (α + 1)i)
, (5)

where we now consider the option price V as a function of time and k. Though
this approach was new to mathematical finance, the idea of damping functions on
the positive real line in order to be able to find their Fourier transform dates back
to Dubner and Abate [13].

A necessary and sufficient condition for (5) to exist is that

|φ(u − (α + 1)i)| ≤ φ(−(α + 1)i) = E[S(T )α+1] < ∞,

i.e., that the (α + 1)th moment of the asset price exists. The option price can be
recovered by inverting (5) and undamping

V (t, k) =
1

2π
e−rτ−αk

∫ ∞

0

Re e−iuk φ(u − (α + 1)i)

−(u − αi)(u − (α + 1)i)
du. (6)

The representation in (6) has two distinct advantages over (2). Firstly, it only re-
quires one numerical integration. Secondly, whereas (2) can suffer from cancellation
errors, the numerical stability of (6) can be controlled by means of the damping co-
efficient α, see [30, 33]. Finally we note that if we discretise (6) with Newton-Côtes
quadrature the option price can very efficiently be evaluated by means of the FFT,
yielding option prices over a whole range of strike prices.

The methods discussed until here can only handle the pricing of European
options. Before turning to methods that can handle early exercise features, let us
introduce some notation. We define the set of exercise dates as T = {t1, . . . , tM}
and 0 = t0 ≤ t1. For ease of exposure we assume the exercise dates are equally
spaced, so that tm+1 − tm = ∆t. The best known examples of options with early
exercise features are American and Bermudan options. American options can be
exercised at any time prior to the option’s expiry, whereas Bermudan options can
only be exercised at certain dates in the future. If the option is exercised at some
time t ∈ T the holder of the option obtains the exercise payoff E(t, S(t)). The
Bermudan option price can then be found via backward induction as





V (tM , S(tM )) = E(tM , S(tM ))
C(tm, S(tm)) = e−r∆t

Etm
[V (tm+1, S(tm+1))]

V (tm, S(tm)) = max{C(tm, S(tm)), E(tm, S(tm))},
V (t0, S(t0)) = C(t0, S(t0)),

m = M − 1, . . . , 1, (7)

with C the continuation value of the option and V the value of the option imme-
diately prior to the exercise opportunity. Note that we now attached a subscript
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to the expectation operator to indicate that the expectation is being taken with
respect to all information available at time tm.

The dynamic programming problem in (7) is a successive application of the
risk-neutral valuation formula, as we can write the continuation value as

C(tm, S(tm)) = e−r∆t

∫ ∞

−∞

V (tm+1, y)f(y|S(tm))dy, (8)

where f(y|S(tm)) represents the probability density describing the transition from
S(tm) at tm to y at tm+1. Based on (7) and (8) the QUAD method was introduced
in [2]. The method requires the transition density to be known in closed-form, which
is the case in e.g. the Black-Scholes model and Merton’s jump-diffusion model. This
requirement is relaxed in [40], where the QUAD-FFT method is introduced. The
underlying idea is that the transition density can be recovered by inverting the
characteristic function, so that the QUAD method can be used for a wider range of
models. As such the QUAD-FFT method, also applied in [11], effectively combines
the QUAD method with the early transform methods. The overall complexity of
both methods is O(MN2) for an M -times exercisable Bermudan option with N grid
points used to discretise the price of the underlying asset.

The complexity of this method can be improved to O(MN log2(N)) if the un-
derlying is a monotone function of a Lévy process. We will demonstrate this shortly.
In the remainder we assume, as is common, that the underlying process is modelled
as an exponential of a Lévy process. Let x1, . . . , xN be a uniform grid for the log-
asset price. If we discretise (8) by the trapezoidal rule we can write the continuation
value in matrix form as

C(tm) ≈ e−r∆t∆x

[
FV −

1

2
(V (tm+1, x1) f1 + V (tm+1, xN ) fN )

]
, (9)

where

fi =




f(xi|x1)
...

f(xi|xN )


 , F = (f1, . . . , fN), V =




V (tm+1, x1)
...

V (tm+1, xN )


 ,

and f(y|x) now denotes the transition density in logarithmic coordinates. The key
observation is that the increments of Lévy processes are independent, so that due
to the uniform grid

Fj,ℓ = f(yj|yℓ) = f(yj+1|yℓ+1) = Fj+1,ℓ+1; (10)

The matrix F is hence a Toeplitz matrix. A Toeplitz matrix can easily be repre-
sented as a circulant matrix, which has the property that the FFT algorithm can
be employed to efficiently calculate matrix-vector multiplications. Therefore, an
overall computational complexity of O(MN log2(N)) can be achieved. Though this
method is significantly faster than [2] or [40], we do not pursue it in this paper as
the method we develop in the next section has the same complexity, yet requires
fewer operations.

The previous literature does not seem to have picked up on a presentation
by Reiner [38], where it was recognised that for the Black-Scholes model the risk-
neutral valuation formula in (8) can be seen as a convolution or correlation of the
continuation value with the transition density. As convolutions can be handled
very efficiently by means of the FFT, an overall complexity of O(MN log2 N) can
be achieved. By working forward instead of backward in time a number of discrete
path-dependent options can also be treated, such as lookbacks, barriers, Asian
options and cliquets. Building on Reiner’s idea, Broadie and Yamamoto [7] reduced
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the complexity to O(MN) for the Black-Scholes model by combining the double-
exponential integration formula and the Fast Gauss Transform. Their technique is
applicable to any model in which the transition density can be written as a weighted
sum of Gaussian densities, which is the case in e.g. Merton’s jump-diffusion model.

As one of the defining properties of a Lévy process is that its increments are
independent of each other, the insight of Reiner has a much wider applicability than
only to the Black-Scholes model. This is especially appealing since the usage of Lévy
processes in finance has become more established nowadays. By combining Reiner’s
ideas with the work of Carr and Madan, we introduce the Convolution method, or
CONV method for short. The complexity of the method is O(MN log2 N) for an
M -times exercisable Bermudan option.

Our method has similarities with both the quadrature pricing and the PIDE
methods. Though the complexity of our method is smaller than that of the QUAD
variants, we share the construct that time steps are only required on the exercise
dates of the product. However, our application of the FFT to approximate convo-
lution integrals bears more resemblance to the approximation of the integral term
in the numerical solution of a PIDE. Here Andersen and Andreasen [1] were the
first to suggest that for jump-diffusion models the integral term in the PIDE can be
calculated efficiently via use of the FFT, rendering the complexity O(MN log2 N)
instead of O(MN2). Since then similar ideas have been applied to various jump-
diffusion and infinite activity Lévy models [20, 4, 5, 42]. We will compare our
method in terms of accuracy and speed to two PIDE methods in Appendix C. Al-
ternative methods for valuing options in Lévy models are the lattice-based approach
of Këllezi and Webber [28], which is O(MN2) and the multinomial tree of Maller,
Solomon and Szimayer [35] which is O(M2).

3. The CONV Method. The main premise of the CONV method is that
the conditional probability density f(y|x) in (8) only depends on x and y via their
difference

f(y|x) = f(y − x). (11)

Note that x and y do not have to represent the asset price directly, they could
be monotone functions of the asset price. The assumption made in (11) therefore
certainly holds when the asset price is modelled as a monotone function of a Lévy
process, since one of the defining properties of a Lévy process is that its increments
are independent of each other. As mentioned earlier, we choose to work with ex-
ponential Lévy models in the remainder of this paper. In this case x and y in
(11) represent the log-spot price. By including (11) in (8) and changing variables
z = y − x the continuation value can be expressed as

C(tm, x) = e−r∆t

∫ ∞

−∞

V (tm+1, x + z)f(z)dz, (12)

which is a cross-correlation2 of the option value at time tm+1 and the density f(z),
or equivalently, a convolution of V (tm+1) and the conjugate of f(z). If the density
function has a closed-form expression, it may be beneficial to proceed along the lines
of (9). However, for many exponential Lévy models we either do not have a closed-
form expression for the density (e.g. the CGMY/KoBoL model of [6] and [8] and
many regular affine models), or if we have, it involves one or more special functions

2The cross-correlation of two functions f(t) and g(t), denoted f ⋆ g, is defined by

f ⋆ g ≡ f̄(−t) ∗ g(t) =

Z ∞

−∞

f(τ)g(t + τ)dτ,

where ‘∗’ denotes the convolution operator.
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(e.g. the VG model). In contrast, the characteristic function of the log-spot price
can typically be obtained in closed-form or, in case of regular affine models, via the
solution of a system of OIDEs.

We therefore take the Fourier transform of (12). The insight that the continua-
tion value can be seen as a convolution is useful here, as the Fourier transform of a
convolution is the product of the Fourier transforms of the two functions being con-
volved. In the remainder we will employ the following definitions for the continuous
Fourier transform and its inverse,

ĥ(u) := F{h(t)}(u) =

∫ ∞

−∞

eiuth(t)dt, (13)

h(t) := F−1{ĥ(u)}(t) =
1

2π

∫ ∞

−∞

e−iutĥ(u)du. (14)

If we dampen the continuation value (12) by a factor exp (αx) and subsequently
take its Fourier transform, we obtain

er∆tF{c(tm, x)}(u) =

∫ ∞

−∞

eiuxeαx

∫ ∞

−∞

V (tm+1, x + z)f(z)dzdx (15)

=

∫ ∞

−∞

∫ ∞

−∞

eiu(x+z)v(tm+1, x + z)e−iz(u−iα)f(z)dzdx,

where in the first step we used the risk-neutral valuation formula from (12).
We introduced the convention that small letters indicate damped quantities, i.e.,
c(tm, x) = eαxC(tm, x) and v(tm, x+ z) = eα(x+z)V (tm, x+ z). Changing the order
of integration and remembering that x = y − z, we obtain

er∆tF{c(tm, x)}(u) =

∫ ∞

−∞

∫ ∞

−∞

eiuyv(tm+1, y)dy e−i(u−iα)zf(z)dz

=

∫ ∞

−∞

eiuyv(tm+1, y)dy

∫ ∞

−∞

e−i(u−iα)zf(z)dz

= F{eαyV (tm+1, y)}(u) φ(−(u − iα)). (16)

In the last step we used the fact that the complex-valued Fourier transform of the
density is the extended characteristic function

φ (x + yi) =

∫ ∞

−∞

ei(x+yi)zf(z)dz, (17)

which is well-defined when φ(yi) < ∞, as |φ(x + yi)| ≤ |φ(yi)|. As such (16) puts a
restriction on the damping coefficient α, because φ(αi) must be finite.

The difference with the Carr-Madan approach in (5) is that we take a trans-
form with respect to the log-spot price instead of the log-strike price, something
which [32] and [37] also consider for European option prices. The damping factor is
again necessary when considering e.g. a Bermudan put, as then V (tm+1, x) tends to
a constant when x → −∞, and as such is not L1-integrable. For the Bermudan put
we must choose α > 0. Though other values of α are allowed in principle, we need
to know the payoff-transform itself in order to apply Cauchy’s residue theorem, see
[32, 30, 33]. This restriction on α will disappear when we switch to a discretised
version of (16) in the next section. The Fourier transform of the damped continua-
tion value can thus be calculated as the product of two functions, one of which, the
extended characteristic function, is readily available in exponential Lévy models.
We now recover the continuation value by taking the inverse Fourier transform of
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the right-hand side of (16), and calculate V (tm) as the maximum of the continu-
ation and the exercise value at tm. This procedure, as outlined in (7) is repeated
recursively until we obtain the option price at time t0. In pseudo-code the CONV
algorithm is presented in Algorithm 1.

Algorithm 1: The CONV algorithm for Bermudan options

V (tM , x) = E(tM , x) for all x
E(t0, x) = 0 for all x
For m = M − 1 to 0

Dampen V (tm+1, x) with exp(αx) and take its Fourier transform
Calculate the right-hand side of (16)
Calculate C(tm, x) by applying Fourier inversion to (16) and undamping
V (tm, x) = max {(E(tm, x), C(tm, x)}

Next m

In Appendix A we demonstrate how the hedge parameters can be calculated in
the CONV method. As differentiation is exact in Fourier space, they will be more
stable than when calculated via finite-difference based approximations.

The following section deals with the implementation of the CONV algorithm.
In particular we employ the FFT to approximate the continuous Fourier transforms
that are involved.

4. Implementation Details of the CONV Method. The essence of the
CONV method is the calculation of a convolution3:

c(x) =
1

2π

∫ ∞

−∞

e−iuxv̂(u)φ (−(u − iα)) du, (18)

where v̂(u) is the Fourier transform of v:

v̂(u) =

∫ ∞

−∞

eiuyv(y)dy. (19)

In the remainder of this section we will focus on equations (18) and (19) for nota-
tional ease. To be able to use the FFT means that we have to switch to logarithmic
coordinates. For this reason the state variables x and y will represent lnS(tm) and
lnS(tm+1), up to a constant shift. This section is organised as follows. Section 4.1
deals with the discretisation of the convolution in (18) and (19). Section 4.2 anal-
yses the error made by one step of the CONV method and provides guidelines on
choosing the grids for u, x and y. Section 4.3 considers the choice of grid further
and investigates how to deal with points of discontinuity. This will prove to be
important if we want to guarantee a smooth convergence of the algorithm. Finally,
sections 4.4 and 4.5 deal with the pricing of Bermudan and American options with
the CONV method.

4.1. Discretising the Convolution. We approximate both integrals in (18)
and (19) by a discrete sum, so that the FFT algorithm can be employed for their
computation. This necessitates the use of uniform grids for u, x and y:

uj = u0 + j∆u, xj = x0 + j∆x, yj = y0 + j∆y, (20)

where j = 0, . . . , N −1. Though they may be centered around a different point, the
x- and y-grids have the same mesh size: ∆x = ∆y. Further, the Nyquist relation
must be satisfied, i.e.,

∆u · ∆y =
2π

N
. (21)

3For notational convenience we have dropped the discounting term out of the equation.
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In principle we could use the Fractional FFT algorithm (FrFT) which does not
require the Nyquist relation to be satisfied. Numerical tests indicated however that
this advantage of the FrFT does not outweigh the speed of the FFT, so we use
the FFT throughout. Details about the exact location of x0 and y0 will be given
in Section 4.3. Inserting (19) into (18), and approximating (19) with a general
Newton-Côtes rule and (18) with the left-rectangle rule yields:

c(xp) ≈
∆u∆y

2π

N−1∑

j=0

e−iujxpφ (−(uj − iα))
N−1∑

n=0

wneiujynv(yn), (22)

for p = 0, . . . , N − 1. When using the trapezoidal rule we choose the weights wn as:

w0 =
1

2
, wN−1 =

1

2
, wn = 1 for n = 1, . . . , N − 2. (23)

Though it may seem that the choice for the left-rectangle rule in (18) would cause
the leading error term in (22) to be O(du), the error analysis will show that the
Newton-Côtes rule one uses to approximate (19) is the determining factor. Inserting
the definitions of our grids into (22) yields:

c(xp) ≈
e−iu0(x0+p∆y)

2π
∆u

N−1∑

j=0

e−ijp2π/N eij(y0−x0)∆uφ (−(uj − iα)) v̂(uj), (24)

where the Fourier transform of v is approximated by:

v̂(uj) ≈ eiu0y0∆y

N−1∑

n=0

eijn2π/Neinu0∆ywnv(yn). (25)

Let us now define the DFT and its inverse of a sequence xp, p = 0, . . . , N − 1, as:

Dj{xn} :=

N−1∑

n=0

eijn2π/Nxn, D−1
n {xj} =

1

N

N−1∑

j=0

e−ijn2π/Nxj . (26)

Though the reason why will be described later, let us set u0 = −N/2∆u. As
einu0∆y = (−1)n this finally leads us to write (24), (25) as:

c(xp) ≈ eiu0(y0−x0)(−1)pD−1
p {eij(y0−x0)∆uφ (−(uj − iα))Dj{(−1)nwnv(yn)}}.

(27)

4.2. Error Analysis for Bermudan Options. A first inspection of (27)
suggests that errors will arise from two 4 sources:

- Discretisation of both integrals in (18) and (19);
- Truncation of these integrals.

We will now consider both integrals in (18), (19) separately, and estimate both dis-
cretisation and truncation errors by applying the error analysis of [3]. [30] recently
combined an analysis similar to theirs with sharp upper bounds on European plain
vanilla option prices to find a sharp error bound for the discretised Carr-Madan for-
mula. Though it is possible to use parts of their analysis, we found that the resulting
error bounds overestimated the true error of the discretised CONV formula. To be
precise, the discretisation of (18) does not contribute to the error of (27) which is

4If the spot price for which we want to calculate our option price does not lie on the grid,
another error source will be added as we will have to interpolate between option prices
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why we can use the left-rectangle rule to approximate (18). Based on a Fourier
series expansion of the damped continuation value c(x), we will show why this is
the case. This is natural, as the Fourier transform itself is generalised from Fourier
series of periodic functions by letting their period approach infinity. We start from
the risk-neutral valuation formula with damping and without discounting:

c(x) =

∫ ∞

−∞

v(x + z)e−αzf(z)dz. (28)

Suppose that the density f(z) is negligible outside [−A/2, A/2], and that we are
only interested in c(x) for values of x in [−B/2, B/2]. According to (28), we require
knowledge of v(x) for x in [−(A + B)/2, (A + B)/2]. Truncating the integration
range in (28) leads to

c(x) ≈ c̃1(x) =

∫ A/2

−A/2

v(x + z)e−αzf(z)dz. (29)

We can replace v by its Fourier series expansion on [−L/2, L/2], where we defined
L = A + B:

c̃1(x) =

∫ A/2

−A/2

∞∑

j=−∞

vje
−ij(x+z) 2π

L e−αzf(z)dz

=
∞∑

j=−∞

vje
−ij 2π

L
x

∫ A/2

−A/2

e−(α+ij 2π
L

)zf(z)dz, (30)

and the Fourier series coefficients of v are given by:

vj =
1

L

∫ L/2

−L/2

v(y)eij 2π
L

ydy. (31)

Secondly, we can replace the integral in (30) by the known characteristic function:

c̃1(x) ≈ c̃2(x) =

∞∑

j=−∞

vje
ij 2π

L
xφ(−(j

2π

L
− iα)).

The sum of both truncation errors now equals:

e1(L) + e2(L) = c̃2(x) − c(x) (32)

=

∫

IR\[−A/2,A/2]


v(x + z) −

∞∑

j=−∞

vje
ij 2π

L
(x+z)


 e−αzf(z)dz.

Note that only the parameter L will appear in the final discretisation. A general
guideline for choosing L is to ensure that the mass of the density outside [−L/2, L/2]
is negligible. The function c̃2 can, at least on this interval, be interpreted as an
approximate Fourier series expansion of c(x).

The third error arises by truncating the infinite summation from −N/2 to
N/2 − 1, leading to c̃3 and its associated error e3:

c̃3 =

N/2−1∑

j=−N/2

vje
−ij2πx/Lφ

(
−(j

2π

L
− iα)

)
,

|e3(L, N)| = |c̃2(x) − c̃3(x)| ≤

∞∑

|j|=N/2

|vj ||φ

(
−(j

2π

L
− iα)

)
|. (33)
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To further bound this error we require knowledge about the rate of decay of Fourier
coefficients. It is well known that even if v is only piecewise C1 on [−L/2, L/2]
its Fourier series coefficients vj tend to zero as j → ±∞. The modulus of vj can
therefore be bounded as:

|vj | ≤
η1(L)

|j|β1

. (34)

By ηi(·) we denote a bounding constant, which depends only on the quantities
specified between the brackets. For functions that are piecewise continuous on
[−L/2, L/2] but whose L-periodic extension is discontinuous, we have β1 = 1. The
following example demonstrates this is the case for a European put payoff.

Example 4.2.1 (European Put). Suppose that we have a European put payoff
and that y = lnS(t)− lnK. Then the payoff function equals v(y) = eαyK(1− ey)+

and its Fourier series coefficients equal:

vj = K

(
e−Lα/2(−1)j e−L/2 − 1

L(α + 1) + 2πij
− L

e−Lα/2(−1)j − 1

(L(α + 1) + 2πij)(Lα + 2πij)

)
. (35)

Clearly, β1 = 1 in (34), though when L → ∞ and j2π/L → u it can be shown
that the Fourier series coefficient converges to the Fourier transform of the payoff
function, which can be seen to be O(u−2) from (5).

The characteristic function can be assumed to have power decay:

|φ(x + yi)| ≤
η2(y)

|x|β2

. (36)

This is overly conservative for e.g. the Black-Scholes model, where the characteristic
function of the log-underlying φ(x + yi) decays as exp(−cx2), or the Heston model
where the characteristic function has exponential decay. For the most popular Lévy
models however the power decay assumption is appropriate. The VG model for
example has β2 = 2τ/ν with τ being the time step between two exercise dates.

Remark. It should be noted that the error analysis here is valid for Bermudan
options and not for American options in the limit τ → 0. In Section 4.5 we will
price American options by Richardson extrapolation on the prices of Bermudan op-
tions with a varying number of exercise opportunities. For problems where the time
intervals are very small and the characteristic function decays slowly, we may en-
counter some numerical problems due to the oscillatoriness of the integrand. These
problems are however well-known and can in part be overcome by choosing a proper
value of parameter α. ✷

Combining (34) and (36) yields:

|e3(L, N)| ≤

∞∑

|j|=N/2

η1(L)

|j|β1

η2(α)
(

2π
L

)β2

|j|β2

≤ η3(α, L)

∫ ∞

N/2−1

x−β1−β2dx

= η3(α, L)
(N/2 − 1)1−β1−β2

β1 + β2 − 1
, (37)

where η3(α, L) = 2η1(L)η2(α)(2π/L)−β2 . We finally arrive at the discretised CONV
formula in (27) by approximating the Fourier series coefficients of v in (33) with a
Newton-Côtes rule:

ṽ(uj) =
1

L
∆y

N−1∑

n=0

wneiujynv(yn). (38)

This is equal to the right-hand side of (24) multiplied by 1/L. It becomes clear that
we can set ∆y = L/N and y0 = −L/2.
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Inserting (38) in c̃3 results in the final approximation:

c̃4(x) =

N/2−1∑

j=−N/2

ṽ(uj)e
−ij2π/Lxφ

(
−(j

2π

L
− iα)

)
. (39)

Assuming that the chosen Newton-Côtes rule is of O(N−β3), one can bound:

|vj − ṽ(uj)| ≤
η4(α, L)

Nβ3

, (40)

leading to the following error estimate for β2 6= 1:

|e4(L, N)| = |c̃3(x) − c̃4(x)| ≤
η4(α, L)

Nβ3

N/2−1∑

j=−N/2

|φ

(
−(j

2π

L
− iα)

)
|

≤
η4(α, L)

Nβ3



3φ(iα) + 2η2(α)

(
2π

L

)−β2
N/2∑

j=2

1

|j|β2





=
η5(α, L)

Nβ3

+
η6(α, L)

(1 − β2)Nβ3

(
2β2−1

Nβ2−1 − 1

)
. (41)

with η5(α, L) = 3η4(α, L)φ(iα) and η6(α, L) = 2η2(α)η4(α, L)(2π/L)−β2. For
β2 = 1 the second error term should be η6(α, L) ln (N/2)/Nβ3 .

Summarising, if we use a Newton-Côtes rule to discretise the Fourier transform
of the payoff function v, the error in the discretised CONV formula can be bounded
as:

|c(x) − c̃4(x)| ≤ e1(L) + e2(L, N) + e3(L, N) + e4(L, N)

= e1(L) + e2(L) + O(N−β3+min (1−β2,0)) (42)

As demonstrated, when we exercise into a European put or call we will have β1 = 1.
The magnitude of β3 will depend on the interplay between the chosen Newton-Côtes
rule and the nature of the payoff function, something we investigate in the next sec-
tion. However, let us assume that β3 ≥ 2, which we may expect if we use the
trapezoidal rule or more sophisticated Newton-Côtes rules. This implies that, aside
from the truncation error, the order of convergence will be:

- O(N−β3) for characteristic functions decaying faster than a polynomial;
- O(Nmin (−β3−min (0,β2−1)) for characteristic functions having power decay.

For the Black-Scholes model this implies that the order of convergence will be
fully dictated by the chosen Newton-Côtes rule, whereas in the VG model where
β2 = 2τ/ν we can loose up to an order for sufficiently small time steps.

One final word should be mentioned on the damping coefficient α. In the
continuous version of the algorithm in Section 3 α was chosen such that the damped
continuation value was L1-integrable. The direct construction of the discretised
CONV formula in Section 4.2 via a Fourier series expansion of the continuation
value replaces L1-integrability on (−∞,∞) with L1-summability on [−L/2, L/2],
so that the restriction on α is removed. In principle any value of α is allowed as
long as φ(iα) is finite. Nevertheless it makes sense to adhere to the guidelines stated
before, as the function will resemble its continuous counterpart more and more as L
increases. The impact of α on the accuracy of the CONV algorithm is investigated
in Section 5.1.

This concludes the error analysis of one step of the CONV algorithm. It is easy
to show that the error is not magnified further in the remaining time steps. The
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leading error of our algorithm is therefore dictated by the time step where the order
of convergence in (42) is the smallest.

Remark. We explicitly mention that aliasing, a commonly observed feature when
dealing with a convolution of sampled signals by means of the FFT, is not a problem
in our application. We encounter a convolution of the characteristic function and
the DFT of a vector with option values. The DFT is periodical but this would make
the convolution circular only if the characteristic function would also be obtained
by a DFT. We can however work with the analytical characteristic function, which
is not periodic. ✷

4.3. Dealing with Discontinuities. Our focus in this section lies on achiev-
ing smooth convergence for the CONV algorithm. As numerical experiments have
shown that it is difficult to achieve smooth convergence with higher order Newton-
Côtes rules, we will from here on focus on the second order trapezoidal rule in (23).
Smooth convergence is desirable as we will be using extrapolation techniques later
on to price American options in Section 4.5.

The previous section analysed the error in the discretised CONV formula when
we use a Newton-Côtes rule to integrate the function V , the maximum of the con-
tinuation value and the exercise value. If we focus on a simple Bermudan put it
is clear that already at the last time step this function will have a discontinuous
first derivative. Certainly it is also possible that V itself is discontinuous, think of
contracts with a barrier clause. This will affect the order of convergence.

It is well-known that if we numerically integrate a function with (a finite num-
ber of) discontinuities, we should split up the integration domain such that we are
only integrating continuous functions. Appendix B demonstrates this for the trape-
zoidal rule. In particular, we show that the trapezoidal rule remains second-order if
only the first derivative of the integrand is discontinuous, at the cost of non-smooth
convergence. If the integrand itself is discontinuous, the trapezoidal rule loses an
order. Smooth second-order convergence can be restored by placing the disconti-
nuities on the grid. This notion has often been utilised in lattice-based techniques,
though the solutions have more often than not been payoff-specific. An approach
that is more or less payoff-independent was recently proposed in [25], generalising
previous work by [26]. Unfortunately, we cannot use their methodology here, as our
desire to use the FFT binds us to a uniform grid.

Before investigating how to handle discontinuities in the CONV algorithm, we
collect the results from the previous sections and restate the grid choice for the
basic CONV algorithm. Equating the grids for x and y for now we have:

uj = (j −
n

2
)∆u, xj = yj = (j −

1

2
)∆y, j = 0, . . . , N − 1.

Here x and y represent, up to a constant shift, lnS(tm) and lnS(tm+1), respectively.
If in particular x = lnS(tm) − lnS(0) and y = lnS(tm+1) − lnS(0), so that x and
y represent total log-returns, we will refer to this discretisation as Discretisation I.
A convenient property of this discretisation is that the spot price always lies on
the grid, so that no costly interpolation is required to determine the desired op-
tion value. Note that we need to ensure that the mass of the density of x and y
outside [−L/2, L/2] is negligible. Though more sophisticated approximations can
be devised, we use a rule of thumb from [40] which chooses L as a multiple of the
standard deviation of lnS(tm), i.e.,

L = δ ·

√

−
∂2φ(tm, u)

∂u2

∣∣∣∣
u=0

+

(
∂φ(tm, u)

∂u

∣∣∣∣
u=0

)2

(43)

where φ(tm, u) is the characteristic function of lnS(tm) conditional upon lnS(0),
and δ is a proportionality constant. Note that there is a trade-off in the choice
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of L: as we set ∆y = L/N , the Nyquist relation implies ∆u = 2π/L and hence
[u0, uN−1] = [−Nπ/L, (N − 2)π/L]. While larger values of L imply smaller trun-
cation errors, they also cause the range of the grid in the Fourier domain to be
smaller, so that the error in turn will be larger initially.

A choice of grid that allows us to place one discontinuity on the grid is described
here. Suppose that at time tm the discontinuity we would like to place on the grid
is dm. We then shift our grid by a small amount to get:

xj = ǫx + (j −
L

2
)∆y, yj = ǫy + (j −

L

2
)∆y, (44)

where ǫx = dm−⌈dm/∆x⌋·∆x and ǫy is chosen in a similar fashion. This discretisa-
tion will be referred to as Discretisation II. Even for plain vanilla European options
where only one time step is required this is useful. By choosing ǫy = lnK/S(0)
and ǫx = 0 we ensure that the discontinuity of the call or put payoff lies on the
y-grid, and the spot price lies on the x-grid. When more discontinuities are present
it seems impossible to guarantee smooth convergence while keeping the restriction
of a uniform grid. In order to still be able to use the computational speed of the
FFT we will then have to resort to e.g. the discontinuous FFT algorithm of [16] or
a recent transform inversion technique in [27]. These directions are left for further
research. Discretisation II is however well-suited for the pricing of Bermudan and
American options, as we will show in the following sections.

4.4. Pricing Bermudan Options. It is well-known that in the case of Amer-
ican options under Black-Scholes dynamics the derivative of the value function is
continuous (smooth fit principle). This is however not the case anymore when pric-
ing Bermudan options, for which the function V in (7) will have a discontinuous
first derivative. Though at the final exercise time tM the location of this disconti-
nuity is known, this is not the case at previous exercise times. All we know after
approximating V is that the discontinuity is contained in an interval of width ∆x,
say [xℓ, xℓ+1].

If we proceed with the CONV algorithm without placing the discontinuity
on the grid, the algorithm will show a non-smooth convergence. In the QUAD
method [2] this is overcome by equating the exercise payoff and the continuation
value, and solving numerically for the location of the discontinuity. In our frame-
work this can be quite costly, so that we propose an effective alternative. We can
use a simple linear interpolation to locate the discontinuity, say dm:

dm ≈
xℓ+1(C(tm, xℓ) − E(tm, xℓ)) − xℓ(C(tm, xℓ+1) − E(tm, xℓ+1))

(C(tm, xℓ) − E(tm, xℓ)) − (C(tm, xℓ+1) − E(tm, xℓ+1))
. (45)

We assume that the error made in determining dm in (45) is negligible compared
the other error terms appearing (see also the discussion in Appendix B).

As in Discretisation II we can now shift the grid such that dm lies on it, and
recalculate both the continuation and the exercise value. In particular, note that
the inner DFT of (27) does not have to be recalculated, the only term that is
affected is the outer inverse DFT. Moreover, calculating dm automatically gives us
an approximation of the exercise boundary.

It is demonstrated in Appendix B that if we choose the trapezoidal rule a
linear interpolation is sufficient to guarantee a smooth convergence. Obviously, if
higher-order Newton-Côtes rules are used, higher order interpolation schemes will
have to be employed to locate the discontinuity. The resulting algorithm we use
to value Bermudan call or put options with a fixed strike K is presented below in
pseudo-code.
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Algorithm 2: Details of the algorithm for valuing Bermudan options.

Ensure that the strike K lies on the grid by setting ǫy = lnK/S(0)
For m = M − 1 to 1

Equate the x-grid at tm to the y-grid at tm+1

Compute C(tm, x) through (27)
Locate xℓ and xℓ+1 and approximate dm, e.g. via (45)
Set ǫx = dm and recompute C(tm, x)
Calculate V (tm, x) = max (E(tm, x), C(tm, x))
Set the y-grid at tm to be equal to the x-grid at tm

Next m
Set ǫx = 0 such that the initial spot price lies on the grid
Compute V (0, x) = C(0, x) using (27)

4.5. Pricing American Options. Within the CONV algorithm there are
basically two approaches to value an American option. One way is to approximate
an American option by a Bermudan option with many exercise opportunities, the
other is to use Richardson extrapolation on a series of Bermudan options with an
increasing number of exercise opportunities. The method we use has been described
in detail by Chang, Chung, and Stapleton [10], though the approach in finance
dates back to Geske and Johnson [17]. The QUAD method in [2] also uses the same
technique to price American options. We restrict ourselves to the essentials here.
Let V (∆t) be the price of a Bermudan option with a maturity of T years where the
exercise dates are ∆t years apart. It is assumed that V (∆t) can be expanded as

V (∆t) = V (0) +

∞∑

i=1

ai(∆t)γi , (46)

with 0 < γi < γi+1. V (0) is the price of the American option. Classical extrapola-
tion procedures assume that the exponents γi are known, which means that we can
use n + 1 Bermudan prices with varying ∆t in order to eliminate n of the leading
order terms in (46). The only paper we are aware of that considers an expan-
sion of the Bermudan option price in terms of ∆t is Howison [24], who shows that
γ1 = 1 for the Black-Scholes model. Nevertheless, numerical tests indicate that the
assumption γi = i produces satisfactory results for the Lévy models we consider.

5. Numerical Experiments. By various experiments we show the accuracy
and speed of the CONV method. The method’s flexibility is presented by showing
results for three asset price processes, GBM, VG, and CGMY. In addition, we
value a multi-asset option to give an impression of the CPU times required to value
a basket option of moderate dimension. The pricing problems considered are of
European, Bermudan and American style. We typically present the (positive or
negative) error V (0, S(0)) − Vref (0, S(0)), where the reference value Vref (0, S(0))
is either obtained via another numerical scheme, or via the CONV algorithm with
220 grid points. In the tables to follow we will also present the error convergence
defined as the absolute value of the ratio between two consecutive errors. A factor
of 4 then denotes second order convergence. All single-asset tests were performed
in C++ on an Intel Xeon CPU 5160, 3.00GHz with 2 GB RAM. The multi-asset
calculations were programmed in C on an Intel Core 2 CPU 6700, 2.66 GHz and
8 GB RAM. In Appendix C we compare the speed and accuracy of our method
to that of two PIDE methods, one for the VG model, a Lévy process with infinite
activity, and a recent PIDE scheme for Kou’s jump-diffusion model.

5.1. Characteristic Function for Lévy Price Processes. The CONV
method, as outlined in Section 3, is particularly well-suited for exponential Lévy
models whose characteristic functions are available in closed-form. We will briefly
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review some defining properties of these models before discussing the extended
CGMY/KoBoL model (from hereon extended CGMY model) of [6] and [8] that will
be used to analyse the performance of the CONV method. For more background
information we refer you to [12] for the usage of Lévy processes in a financial context
and to [39] for a detailed analysis of Lévy processes in general.

In exponential Lévy models the asset price is modelled as an exponential func-
tion of a Lévy process L(t):

S(t) = S(0) exp(L(t)). (47)

Though the CONV method can be adapted to cope with discrete dividend pay-
ments, for ease of exposure we assume the asset pays a continuous stream of div-
idends, measured by the dividend rate q. In addition, we assume the existence of
a bank account B(t) which evolves according to dB(t) = rB(t)dt, r being the risk-
free rate. Recall that a process L(t) on (Ω,J , P ), with L(0) = 0, is a Lévy process if:

1 it has independent increments;
2 it has stationary increments;
3 it is stochastically continuous, i.e., for any t ≥ 0 and ǫ > 0 we have

lim
s→t

P(|L(t) − L(s)| > ǫ) = 0. (48)

The first property (cf. (11)) is exactly the property we required to recognise a
cross-correlation in the risk-neutral valuation formula. Each Lévy process can be
characterised by a triplet (µ, σ, ν) with µ ∈ IR, σ ≥ 0 and ν a measure satisfying
ν(0) = 0 and

∫

IR

min (1, |x|2)ν(dx) < ∞. (49)

In terms of this triplet the characteristic function of the Lévy process equals:

φ(u) = E[exp (iuL(t))]

= exp (t(iµu −
1

2
σ2u2 +

∫

IR

(eiux − 1 − iux1[|x|<1]ν(dx))), (50)

the celebrated Lévy-Khinchine formula. As is common in most models nowadays we
assume that (47) is formulated directly under the risk-neutral measure. To ensure
that the reinvested relative price eqtS(t)/B(t) is a martingale under the risk-neutral
measure, we require

φ(−i) = E[exp (L(t))] = e(r−q)t, (51)

which is satisfied if we choose the drift µ as:

µ = r − q −
1

2
σ2 −

∫

IR

(ex − 1 − x1[|x|<1])ν(dx) (52)

The motivation behind using more general Lévy processes than the Brownian
motion with drift is the fact that the Black-Scholes model is not able to repro-
duce the volatility skew or smile present in most financial markets. Over the past
few years it has been shown that several exponential Lévy models are, at least to
some extent, able to reproduce the skew or smile. Most of our examples will stem
from the CGMY model. Its underlying Lévy process is characterised by the triple
(µ, σ, νCGMY ), where the Lévy density is specified as:

νCGMY (x) =






C
exp

“

−G|x|
”

|x|1+Y if x < 0

C
exp

“

−M |x|
”

|x|1+Y if x > 0.

(53)
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The parameters satisfy C ≥ 0, G ≥ 0, M ≥ 0, and Y < 2. The condition Y < 2 is
induced by the requirement that Lévy densities integrate x2 in the neighbourhood
of 0. Conveniently, the characteristic function of the log-asset price can be found
in closed-form as:

φ(u)= (54)

exp

(
iuµt −

1

2
u2σ2t + tCΓ(−Y )[(M − iu)Y − MY + (G + iu)Y − GY ]

)
,

where Γ(x) is the gamma function. One can verify that the parameters G and
M represent respectively the smallest and largest finite moment in the model, as
φ(−iu) = E[S(t)u] is infinite for u < −G and for u > M . The model encompasses
several models. When σ = 0 and Y = 0 we obtain the Variance Gamma (VG)
model, which is often parameterised slightly differently with parameters 5 σ, θ and
ν related to C, G and M through:

C =
1

ν
, G =

1√
1
4θ2ν2 + 1

2σ2ν − 1
2θν

, M =
1√

1
4θ2ν2 + 1

2σ2ν + 1
2θν

. (55)

Finally, when C = 0 the model collapses to the Black-Scholes model.
To conclude this section, Table 1 contains five parameter sets which will be

used in various tests throughout this section. The only two parameters we have
not specified yet are δ from (43), which determines the range of the grid, and the
damping coefficient α. For all GBM tests we set δ = 20; for the other Lévy models,
which have fatter tails, we use δ = 40.

Regarding the choice of α, Lord and Kahl [33] have demonstrated recently
how to approximate the optimal damping coefficient when the payoff-transform is
known, which increases the numerical stability of the Carr-Madan formula. This is
particularly effective for in/out-of-the-money options and options with short matu-
rities. Though their rationale can to some extent be carried over to the pricing of
European plain vanilla options (the difference being that now the payoff-transform
is also approximated numerically), the problem becomes much more opaque when
dealing with Bermudan options. To see this, note that the continuation value of
the Bermudan option at the penultimate exercise date equals that of a European
option. At each grid point, the European option will have a different degree of
moneyness, calling for a different value of α per grid point. Which single choice
for α will be optimal is not clear at all, a problem which becomes more complex as
the number of exercise dates increases. What is evident from Figure 1, where we
present the error of the CONV algorithm as a function of α for a European and a
Bermudan put under T2-VG, is that there is a relatively large range for which the
error is stable. In all numerical experiments we will set α = 0 which, at least for
our examples, produces satisfactory results.

5.2. European Call under GBM and VG. First of all, we evaluate the
CONV method for pricing European options under VG. The parameters for the
first test are from T2-VG with T = 1. Figure 2 shows that Discretisations I and II
generate results of similar accuracy. What we notice from Figure 2 is that the only
option with a stable convergence in Discretisation I is the at-the-money option with
K = 100. It is clear that placing the strike on the y-grid in Discretisation II ensures
a regular second order convergence. The results are obtained in comparable CPU
time. From the error analysis in Section 4.2 it became clear that for short maturities
in the VG model, the slow decay of the characteristic function (β2 = 2τ/ν) might

5The parameters σ and ν should not be confused with the volatility and Lévy density of the
Lévy triplet.
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T1-GBM: S(0) = 100, r = 0.1, q = 0, σ = 0.25;

T2-VG: S(0) = 100, r = 0.1, q = 0, σ = 0.12,
θ = −0.14, ν = 0.2;

T3-CGMY: S(0) = 1, r = 0.1, q = 0, σ = 0,
C = 1, G = 5, M = 5, Y = 0.5;

T4-CGMY: S(0) = 90, r = 0.06, q = 0, σ = 0
C = 0.42, G = 4.37, M = 191.2, Y = 1.0102;

T5-GBM: S(0) = 40, r = 0.06, q = 0.04, σi = 0.2,
ρij = 0.25.

Table 1
Parameter sets in the numerical experiments
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Fig. 1. Error of CONV method under T2-VG and K = 110 for a European and Bermudan
put in dependence of parameter α.

impair the second order convergence. To demonstrate this, we choose a call option
with a maturity of 0.1 years, and K = 90. Table 2 presents the error of Discretisation
II for this option in models T1-GBM and T2-VG. The convergence under GBM is
clearly of a regular second order. From the error analysis we expect the convergence
under VG to be of first order. The non-smooth convergence observed in Table 2
is caused by the highly oscillatory integrand. Note that all reference values are
based on an adaptive integration of the Carr-Madan formula; all CPU times, in
milliseconds, are determined after averaging the times of 1000 experiments.
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Table 2
CPU time, error and convergence rate for European call options under T1-GBM and T2-VG,

K = 90, T = 0.1 (using Discretisation II)

(N = 2n) GBM: Vref (0, S(0)) = 11.1352431; VG: Vref (0, S(0)) = 10.9937032;

n time(msec) error conv. time(msec) error conv.

7 0.095 -2.08e-3 – 0.15 -2.91e-4 –

8 0.20 -5.22e-4 4.0 0.29 -1.42e-4 2.1

9 0.34 -1.30e-4 4.0 0.55 -4.61e-5 3.1

10 0.58 -3.26e-5 4.0 1.04 -9.49e-6 4.9

11 1.08 -8.15e-6 4.0 2.04 -8.55e-7 11.1

12 2.15 -2.04e-6 4.0 4.19 7.97e-7 1.1

In Appendix A the Greeks of the GBM call from Table 2 are computed.

5.3. Bermudan Option under GBM and VG. Turning to Bermudan op-
tions, we compare Discretisations I and II for 10-times exercisable Bermudan put
options under both T1-GBM and T2-VG. The reference values reported in Table 3
and 4 are found by the CONV method with 220 grid points.

It is shown in Tables 3 and 4 that both Discretisation I and II give results of
similar accuracy. Discretisation I uses somewhat less CPU time, but Discretisation
II shows a regular second order convergence, enabling the use of extrapolation. The
computational speed of both discretisations is highly satisfactory.

Table 3
CPU time, error and convergence rate pricing a 10-times exercisable Bermudan put under

T1-GBM; K = 110, T = 1 and Vref (0, S(0)) = 11.98745352,

(N = 2n) Discretisation I Discretisation II

n time(msec) error conv. time(msec) error conv.

7 0.13 9.09e-3 - 0.23 -2.72e-2 -

8 0.25 -1.29e-3 7.0 0.46 -7.36e-3 3.7

9 0.48 1.80e-6 717.8 0.90 -2.00e-3 3.7

10 1.09 2.71e-5 0.1 2.00 -5.22e-4 3.8

11 2.00 -9.31e-6 2.9 3.85 -1.32e-4 4.0

12 3.98 -1.31e-5 0.7 7.84 -3.31e-5 4.0

Table 4
CPU time, error and convergence rate pricing a 10-times exercisable Bermudan put under

T2-VG; K = 110, T = 1 with reference value Vref (0, S(0)) = 9.040646119.

(N = 2n) Discretisation I Discretisation II

n time(msec) error conv. time(msec) error conv.

7 0.18 -8.45e-2 - 0.28 -9.63e-2 -

8 0.35 -9.02e-3 9.4 0.55 -1.07e-2 9.0

9 0.68 1.70e-4 53.1 1.09 -2.27e-3 4.7

10 1.33 2.04e-4 0.8 2.15 -6.06e-4 3.8

11 2.67 4.28e-5 4.8 4.38 -1.59e-4 3.8

12 5.64 1.11e-5 3.8 9.29 -4.08e-5 3.9

5.4. American Options under GBM, VG and CGMY. Because Discreti-
sation II yields a regular convergence, we choose it in this section to price American
options. We compare the accuracy and CPU time of the two approximation meth-
ods mentioned in Section 4.5, i.e. the direct approximation via a Bermudan option,
and the repeated Richardson extrapolation technique. For the latter we opted for
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2 extrapolations on 3 Bermudan options with 128, 64 and 32 exercise opportuni-
ties, which gave robust results. In our first test we price an American put under
T1-GBM. The reference value was obtained by solving the Black-Scholes PDE on a
very fine grid. The performance of both approximation methods is summarised in
Table 5, where ’P (N/2)’ denotes that the American option is approximated by an
N/2-times exercisable Bermudan option. ’Richardson’ denotes the results obtained
by the 2-times repeated Richardson extrapolation scheme. It is evident that the
extrapolation-based method converges fastest and costs far less CPU time than the
direct approximation approach (e.g. to reach an accuracy of 10−4, the extrapolation
method is approximately 50 times faster).

In Appendix A the Greeks of the American put from Table 5 are computed.

Table 5
CPU time and errors for an American put under T1-GBM, with: K = 110, T = 1,

Vref (0, S(0)) = 12.169417

(N = 2n) P(N/2) Richardson

n time(msec) error conv. time(msec) error conv.

7 0.97 -5.85e-2 – 3.30 -3.06e-2 –

8 3.71 -2.23e-3 2.6 6.63 -7.75e-3 3.9

9 14.80 -9.31e-3 2.4 14.01 -2.06e-3 3.8

10 59.98 -4.16e-3 2.2 28.38 -5.19e-4 4.0

11 251.66 -1.95e-3 2.1 66.39 -1.22e-4 4.3

12 1108.09 -9.39e-4 2.1 151.85 -2.10e-5 5.8

In the remaining tests we demonstrate the ability of the CONV method to price
American options accurately under alternative dynamics, using the VG and both
CGMY test sets. All reported reference values were generated with the CONV
method on a mesh with 220 points and 2-times Richardson extrapolation on 512-,
256- and 128-times exercisable Bermudans. We have included one CGMY test with
Y < 1, and one with Y > 1, as the latter is considered a hard test case when
numerically solving the corresponding PIDE. Both CGMY tests stem from the
PIDE literature, where reference values for the same American puts were reported
as 0.112171 for T3-CGMY [4], and 9.2254842 for T4-CGMY [42]. The VG parameter
set originally stems from [34], and is used in examples in [28, 40, 35]. In [35] the
American option price is reported as 10. The reference values we use are calculated
with the CONV method (using 220 grid points and Richardson extrapolation on
Bermudans with 512, 256 and 128 exercise opportunities) and agree up to four
digits with the values from the literature. Though the convergence in Table 6 is
less stable than for Bermudan options, the results in this section indicate that the
CONV method is able to price American options under a wide variety of Lévy
processes. A reasonable accuracy can be obtained quite quickly, so that it might be
possible to calibrate a model to the prices of American options 6.

5.5. 4D Basket Options under GBM. The CONV method can easily be
generalised to higher dimensions. The only assumption that the multi-dimensional
model is required to satisfy is the independent increments assumption in (11). We
do not state the multi-dimensional version of Algorithm 1 here as it is a trivial
generalisation of the univariate case. Its ability to price options of a moderate di-
mension is demonstrated by considering a 4-asset basket put option. Upon exercise
at time ti, the payoff is:

6The majority of exchange-traded options in the equity markets are American.
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Table 6
CPU time and errors for American puts under VG and CGMY

T2-VG T3-CGMY T4-CGMY

K = 110, T = 1 K = 1, T = 1 K = 98, T = 0.25

(N = 2n) Vref (0, S(0)) = 10.0000 Vref (0, S(0) = 0.112152 Vref (0, S(0) = 9.225439

n time(msec) error time(msec) error time(msec) error

7 3.42 -4.53e-2 3.82 4.58e-5 3.83 3.38e-2

8 6.85 4.26e-2 7.60 9.52e-5 7.68 6.63e-3

9 14.29 1.34e-2 15.87 -1.03e-4 15.78 -1.94e-3

10 28.99 -5.00e-3 32.21 -1.58e-5 33.37 -5.41e-6

11 61.67 -1.88e-2 68.16 -1.09e-5 68.59 -1.72e-4

12 135.09 1.31e-3 148.16 3.73e-6 147.96 -7.94e-5

V (ti,S(ti)) = max(K −
1

4

4∑

p=1

Sp(ti), 0). (56)

The results of pricing a European and a 10-times exercisable Bermudan put under
T5-GBM are summarised in Table 7. The CPU times on the tensor-product grids
are very satisfactory, especially as the results on the coarse grids obtained in only
a few seconds seem to have converged within practical tolerance levels. In order to
be able to price higher-dimensional problems the multi-dimensional CONV method
is combined with sparse grids in [31].

Table 7
CPU time and prices for multi-asset European and 10-times exercisable Bermudan basket

put options under T5-GBM, K = 40, T = 1

European 10-times exerc. Bermudan

N result time (sec) result time (sec)

164 1.6428 0.02 1.7721 0.15

324 1.6537 0.51 1.7390 3.12

644 1.6539 7.0 1.7394 61.6

1284 1.6538 159.2 1.7393 1511.7

6. Conclusions. In this paper we have presented a novel FFT-based method
for pricing options with early-exercise features, the CONV method. Like other FFT-
based methods, it is flexible with respect to the choice of asset price process and the
type of option contract, which has been demonstrated in numerical examples for Eu-
ropean, Bermudan and American options. Path-dependent exotics can in principle
also be valued by a forward propagation in time, though this has not been demon-
strated here. The crucial assumption of the method is that the underlying assets
are driven by processes with independent increments, whose characteristic function
is readily available. Though we have mainly focused on univariate exponential Lévy
models, the techniques presented here certainly also extend to multivariate models,
as Section 5.5 has shown. The main strengths of the method are its flexibility and
computational speed. By using the FFT to calculate convolutions we achieve a com-
plexity of O(MNlog2N), where N is the number of grid points and M is the number
of exercise opportunities of the option contract. In comparison, the QUAD method
of [2] is O(MN2). We have compared the CONV method to two PIDE schemes
in Appendix C. The conclusion of this experiment is that we expect the CONV
method to have an edge over PIDE schemes for the pricing of Bermudan options,



The CONV Method 21

in particular in exponential Lévy models with infinite activity. However, there will
always be special cases, such as the Black-Scholes model and Kou’s jump-diffusion
model for which highly efficient P(I)DE schemes can be designed. The speed of the
method may make it possible to calibrate models to the prices of American options,
as exchange-traded options are mainly of the American type. Future research will
focus on the usage of more advanced quadrature rules, combined with speeding up
the method for high-dimensional problems.

Acknowledgments: The authors would like to thank Coen Leentvaar for his
help in producing numbers for Table 7. Furthermore, we are grateful to Ariel
Almendral for providing us with his VG PIDE code and to Jari Toivanen for his
penalty method-based PIDE code for Kou’s model and for assisting us with the
comparison.

Large parts of research for this paper were performed when the first author was
employed by the Modelling and Research Department at Rabobank International
and the Tinbergen Institute at the Erasmus University of Rotterdam. The authors
are grateful to seminar participants at Rabobank International.

REFERENCES

[1] L. Andersen and J. Andreasen, Jump-diffusion processes: volatility smile fitting and nu-
merical methods for option pricing. Review of Deriv. Research, 4: 231-262, 2000.

[2] A.D. Andricopoulos, M. Widdicks, P.W. Duck and D.P. Newton, Universal Option
Valuation Using Quadrature, J. Financial Economics, 67,3: 447-471, 2003,

[3] J. Abate and W. Whitt, The Fourier-series method for inverting transforms of probability
distributions. Queueing Systems, 10: 5–88, 1992.

[4] A. Almendral and C.W. Oosterlee, Accurate Evaluation of European and American
Options Under the CGMY Process., SIAM J. Sci. Comput. 29: 93-117, 2007.

[5] A. Almendral and C.W. Oosterlee, On American options under the Variance Gamma
process. Applied Math. Finance, 14(2): 131-152, 2007.
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[11] K. Chourdakis, Switching Lévy models in continuous time: Finite distributions and op-
tion pricing Proc. Quant. Methods in Finance 2005, Sydney, Australia, 2005. See:
gemini.econ.umd.edu/cgi-bin/conference/download.cgi?db_name=QMF2005

&paper_id=81.
[12] R. Cont and P. Tankov, Financial modelling with jump processes, Chapman & Hall, Boca

Raton, FL, 2004.
[13] H Dubner and J. Abate, Numerical inversion of Laplace transforms by relating them to

the finite Fourier cosine transform. Journal of the ACM 15(1): 115–123, 1968.
[14] D. Duffie, J. Pan and K. Singleton, Transform analysis and asset pricing for affine

jump-diffusions. Econometrica 68: 1343–1376, 2000.
[15] D. Duffie, D. Filipovic and W. Schachermayer, Affine Processes and Applications in

Finance. Ann. of Appl. Probab., 13(3): 984-1053, 2003.
[16] G. Fan and G.H. Liu, Fast Fourier Transform for discontinuous functions, IEEE Trans.

Antennas and Propagation 52(2): 461-465, 2004.
[17] R. Geske, H. Johnson, The American put valued analytically J. of Finance 39: 1511-1542,

1984.
[18] J. Gil-Pelaez, Note on the inverse theorem. Biometrika 37: 481-482, 1951.
[19] J. Gurland, Inversion formulae for the distribution of ratios. Ann. of Math. Statistics 19:

228-237, 1948.
[20] Y. d’Halluin, P.A. Forsyth and G. Labahan, A penalty method for American options



22 R.Lord, F.Fang, F.Bervoets, C.W.Oosterlee

with jump diffusion processes, Num. Mathematik 97: 321-352, 2004.
[21] S. Heston, A closed-form solution for options with stochastic volatility with applications to

bond and currency options, Rev. Financ. Stud., 6: 327–343, 1993.
[22] D. J. Higham, An Introduction to Financial Option Valuation, Cambridge University Press,

Cambridge, UK, 2004.
[23] A. Hirsa and D. B. Madan, Pricing American Options Under Variance Gamma, J. Comp.

Finance, 7, 2004.
[24] S. Howison, A matched asymptotic expansions approach to continuity corrections for dis-

cretely sampled options. Part 2: Bermudan options. Applied Mathematical Finance, 14:
91-104, 2007

[25] Z. Hu, J. Kerkhof, P. McCloud, and J. Wackertapp, Cutting edges using domain inte-
gration, Risk, 19(11): 95-99, 2006.

[26] P. Hunt, J. Kennedy and A.A.J. Pelsser, Markov-functional interest rate models. Finance
and Stochastics 4(4): 391-408, 2000.

[27] P. den Iseger, Numerical transform inversion using Gaussian quadrature Probab. in the
Eng. and Inform. Sciences 20(1): 1-44, 2006.
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Appendix A. The Hedge Parameters. Here, we present the CONV formulae
for two important hedge parameters ∆ and Γ, defined as,

∆ =
∂V

∂S
=

1

S

∂V

∂x
, Γ =

∂2V

∂S2
=

1

S2

(
−

∂V

∂x
+

∂2V

∂x2

)
. (57)

As it is relatively easy to derive the corresponding CONV formulae, we merely
present them here. For notational convenience we define:

F{eαxV (t0, x)} = e−r∆tA(u), (58)

where A(u) = F{eαyV (t1, y)} · φ(−u + iα), and we assume t1 > 0. We now obtain
the CONV formula for ∆, as

∆ =
e−αxe−r∆t

S

[
F−1{−iuA(u)} − αF−1{A(u)}

]
, (59)
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and for Γ:

Γ =
e−αxe−r∆t

S2

[
F−1{(−iu)2A(u)} − (1 + 2α)F−1{−iuA(u)}

+ α(α + 1)F−1{A(u)}
]
. (60)

Note that the only additional calculations occur at the final step of the CONV
algorithm, where we calculate the value of the option given the continuation and
exercise values at time t1. Since differentiation is exact in Fourier space the rate of
convergence of the Greeks will be the same as that of the value. To demonstrate this
we evaluate the delta and gamma under T1-GBM of the European call from Table 2
and the American put from Table 5. For both tests we choose Discretisation II.
Tables 8 and 9 present the results. The reference values for the European call option
are analytic solutions, for the American call these were found by numerically solving
the Black-Scholes PDE on a very fine grid. Note that the delta and gamma of the
American put converge to a slightly different value - this is due to our approximation
of the American option via 2 Richardson extrapolations on 128-, 64- and 32-times
exercisable Bermudans. If we would increase the number of exercise opportunities
of the Bermudan options, the delta and gamma would, at the cost of a longer
computation time, converge to their true values.

Table 8
Accuracy of hedge parameters for a European call under T1-GBM; K = 110, T = 0.1

(N = 2d) European call

∆ref = 0.933029 Γref = 0.01641389

d ∆ error conv. Γ error conv.

7 -3.75e-4 – 3.79e-5 –

8 -9.37e-5 4.0 9.43e-6 4.0

9 -2.34e-5 4.0 2.35e-6 4.0

10 -5.86e-6 4.0 5.88e-7 4.0

11 -1.46e-6 4.0 1.47e-7 4.0

12 -3.66e-7 4.0 3.68e-8 4.0

Table 9
Values of hedge parameters for an American put under T1-GBM; K = 110, T = 0.1

(N = 2d) American put:

d ∆ref = −0.62052 Γref = 0.0284400

7 -0.62170 0.028498

8 -0.62035 0.028687

9 -0.62050 0.028464

10 -0.62053 0.028463

11 -0.62054 0.028463

12 -0.62055 0.028463

Appendix B. Error Analysis of the Trapezoidal Rule.

Suppose we are integrating f ∈ C∞ over an interval [a, b]. The discretisation
error induced by approximating this integral with the trapezoidal rule follows from
the Euler-Maclaurin summation formula:

∫ b

a

f(x)dx − T (a, b, f,∆x) =

∞∑

j=1

(∆x)2j B2j

(2j)!

(
f (2j−1)(b) − f (2j−1)(a)

)
, (61)
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where Bj is the j-th Bernoulli number and T (a, b, f,∆x) is the trapezoidal sum:

T (a, b, f,∆x) = ∆x{

N−2∑

j=1

f(xj) +
1

2
(f(a) + f(b))}, (62)

with ∆x = (b−a)/(N −1) and xj = a+ j∆x. From (61) it is clear that if the value
of the first derivative is not the same in a and b, the trapezoidal rule is of order
1/N2.

The trapezoidal rule can obviously also be applied to functions that are piece-
wise continuously differentiable. The convergence may however be less stable if we
do not know the exact location of the discontinuities. To see this, suppose that f
can be written as:

f(x) =

{
g(x) x ≤ z
h(x) x > z

. (63)

Further, we define:

ℓ = max {j|xj ≤ z, j = 0, . . . , N − 1}, (64)

so that the interval [xℓ, xℓ+1] contains z. Placing the discontinuity on the grid would
result in the same order of convergence as the trapezoidal rule itself:

∫ b

a

f(x)dx ≈ T (a, xℓ, g, ∆x) + T (xℓ+1, b, h, ∆x) +

1

2
(z − xℓ)(g(xℓ) + g(z)) +

1

2
(xℓ+1 − z)(h(z) + h(xℓ+1)). (65)

A straightforward application of the trapezoidal rule would lead to T (a, b, f,∆x).
The difference with (65) is:

1

2
∆xg(xℓ) +

1

2
∆xh(xℓ+1)−

1

2
(z − xℓ)(g(xℓ) + g(z))−

1

2
(xℓ+1 − z)(h(z) + h(xℓ+1)).

Expanding both g and h around the point of discontinuity z yields:

1

2
(xℓ+1 + xℓ − 2z)(g(z)− h(z)) +

1

2
(xℓ+1 − z)(z − xℓ)(g

(1)(z) − h(1)(z)) +

1

2
(xℓ+1 − z)

∞∑

j=1

1

j!
g(j)(z) +

1

2
(z − xℓ)

jh(j)(z).

If f is continuous, but the first derivatives of g and h do not match at z, the order
of convergence is still 1/N2 since (xℓ+1 − z)(z − xℓ) ≤ (∆x)2. It is clear that as
N changes, the ratio of (xℓ+1 − z)(z − xℓ) to (∆x)2 may vary strongly, leading to
non-smooth convergence. If f is discontinuous, i.e., if the values of g and h in z
disagree, the order of convergence is O(1/N).

Now suppose that we have computed g and h at grid points xj , j = 0, . . . , N−1.
We know that g(z) = h(z), though we do not know the exact location of z. All we
know is that it is contained in [xℓ, xℓ+1]. This is a situation we encounter in the
pricing of Bermudan options, as outlined in Section 4.4. If we proceed to integrate
f on this grid, we will not obtain smooth convergence. A simple approximation of
the discontinuity can however be found by assuming a linear relationship between
x and g(x) − h(x). This leads to

z ≈
xℓ+1(g(xℓ − h(xℓ)) − xℓ(g(xℓ+1) − h(xℓ+1))

(g(xℓ − h(xℓ)) − (g(xℓ+1) − h(xℓ+1))
+ O

(
∆x2

)
, (66)
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where the error estimate follows from linear interpolation. Now suppose that we
shift our grid (and recalculate g and h) such that either xℓ or xℓ+1 coincide with
this approximation of z, and redo the numerical integration. It is easy to see that
smooth convergence will be restored, as the contribution of the error term in (66)
to the error term in (65) will be of O

(
∆x3

)
. Note that if we use higher-order

Newton-Côtes rules, a higher order interpolation step will be required.

Appendix C. Comparison of CONV with PIDE methods. In this sec-
tion we will compare the speed and accuracy of the CONV method to two PIDE
schemes, one for the VG model [5] and one recent scheme for Kou’s model [41]. An
advantage of the CONV method over various PIDE schemes is that it is flexible
with respect to the choice of model, whereas the integral term in PIDEs typically
requires a very careful treatment, for example due to its weakly singular kernel
for infinite activity Lévy models. Furthermore PIDE methods require a relatively
fine discretisation in the time direction to guarantee an accurate representation of
the solution, whereas in the CONV method we only require as many time steps as
exercise dates. For Bermudan options with few exercise dates this is advantageous,
though for American options it works in our disadvantage.

At the end of the day however the only fair comparison is to compare two
implementations in the same computer language, on the same CPU, in terms of
speed and accuracy. First we compare the PIDE scheme from [5] to our method.
Parameters for the problem solved in this section are given by T6-VG in Table 10.
Code for the PIDE scheme from [5] was available in Matlab. As we wrote the

T6-VG: S(0) = 1, r = 0.1, q = 0, σ = 0.282842,
θ = 0, ν = 1.

T7-Kou: S(0) = 100, r = 0.05, q = 0, σ = 0.15,
λ = 0.1, p = 0.3445, η− = 3.0775, η+ = 3.0465.

Table 10
Parameter sets in the numerical experiments

CONV code in both Matlab and C++, we were able to conduct a fair comparison.
We found the CONV code, for large values of N , to be roughly three times as
fast as the Matlab code, so we scaled CPU times in Figure 3 accordingly. For a
Bermudan option with relatively few exercise dates the CONV method is a clear
winner. The advantage is reduced when pricing American options, as we price these
by extrapolating the values of Bermudan options with a relatively large number
of exercise dates. Nevertheless, in case of the VG model the CONV method still
reaches a higher accuracy given the same computational budget as the PIDE scheme
of [5].

One other model we consider when comparing the speed and accuracy of the
CONV method to PIDE schemes, is the Kou model [29]. Its characteristic function
equals:

φ(u) = exp

(
iuµt−

1

2
u2σ2t + iuλ(

p

η+ − iu
−

1 − p

η− + iu
)

)
, (67)

In Kou’s jump-diffusion model jumps arrive via a Poisson process with intensity λ.
The logarithm of each jump follows a double-exponential density. Toivanen’s [41]
recent schemes for Kou’s model utilises the log-double-exponential form of the jump
density to derive efficient recursion formulae for evaluating the integral term in the
PIDE. The benefits are clear: the complexity is reduced to O(MN), and in addition
his schemes are no longer bound to uniform grids. Therefore it is to be expected
that this method outperforms ours, which is not tailored to any specific model.
Code for the penalty method from [41] was available in C++. We use parameter set
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Fig. 3. Comparison of the performance for a VG computation of the CONV method with
PIDE solver [5] for Bermudan and American options.

T7-Kou in Table 10. In both examples in Figure 4 the PIDE scheme reaches a higher
accuracy than the CONV method for small computational budgets. This is partially
due to the fact that for this example we required a very wide grid for the CONV
method (δ = 100) in order to converge to the right solution, which implies a lower
accuracy for small values of N . For the Bermudan option the CONV method is still
competitive, yet for the American option the PIDE scheme is the clear favourite.
Though the CONV method appears to converge faster than the penalty method,
the PIDE scheme would be the method of choice for practical levels of accuracy.
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Fig. 4. Comparison of performance for jump-diffusion computation (Kou’s model) of the
CONV method with PIDE solver [5] for Bermudan and American options.

Although we have only compared to two methods we believe it is fair to say
that the CONV method will compare favourable to most PIDE schemes for the
pricing of Bermudan options under Lévy models. There will however always be
special cases, such as Kou’s jump-diffusion model, for which one can design highly
efficient PIDE schemes that are faster and more accurate than the CONV method.




