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Abstract

We propose a simple, fast, and accurate one-stage ap-

proach to visual grounding, inspired by the following in-

sight. The performances of existing propose-and-rank two-

stage methods are capped by the quality of the region candi-

dates they propose in the first stage — if none of the candi-

dates could cover the ground truth region, there is no hope

in the second stage to rank the right region to the top. To

avoid this caveat, we propose a one-stage model that en-

ables end-to-end joint optimization. The main idea is as

straightforward as fusing a text query’s embedding into the

YOLOv3 object detector, augmented by spatial features so

as to account for spatial mentions in the query. Despite be-

ing simple, this one-stage approach shows great potential

in terms of both accuracy and speed for both phrase local-

ization and referring expression comprehension, according

to our experiments. Given these results along with careful

investigations into some popular region proposals, we ad-

vocate for visual grounding a paradigm shift from the con-

ventional two-stage methods to the one-stage framework.

1. Introduction

We propose a simple, fast, and accurate one-stage ap-

proach to visual grounding, which aims to ground a natural

language query (phrase or sentence) about an image onto

a correct region of the image. By defining visual ground-

ing at this level, we deliberately abstract away the subtle

distinctions between phrase localization [30, 42], referring

expression comprehension [15, 24, 48, 47, 22], natural lan-

guage object retrieval [14, 16], visual question segmenta-

tion [9, 13, 20, 25], etc., each of which can be seen as a vari-

ation of the general visual grounding problem. We bench-

mark our one-stage approach for both phrase localization

and referring expression comprehension. Results show that

it is about 10 times faster than the state-of-the-art two-stage

methods and meanwhile more accurate than them. Hence,
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†Now at Google.
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Figure 1. Visual grounding is the task of localizing a language

query in an image. The output is often a bounding box as drawn in

the yellow color. (a). Existing two-stage methods first extract re-

gion candidates and then rank them according to their similarities

with the query. The inference speed is slow and the performance

is capped by the quality of the region proposals (e.g., on the right,

the “bottom right grass” is not covered by any of the region can-

didates). (b). Our proposed one-stage method directly predicts

a grounding box given the input image and a query. It is hence

significantly faster and also accurate in inference.

we expect this work provides for visual grounding a new

strong baseline, upon which one can conveniently build fur-

ther to tackle variations (e.g., phrase localization) to the ba-

sic visual grounding problem by bringing in corresponding

domain knowledge (e.g., attributes, relationship between

phrases, spatial configuration of regions, etc.).

Visual grounding is key to machine intelligence and pro-

vides a natural channel for humans to communicate with

machines about the physical world. Its potential appli-

cations include but are not limited to robotics, human-

computer interaction, and early education. In addition, a

good visual grounding model can benefit a variety of re-

search problems such as visual question answering [53, 9,

17], image captioning [45, 1, 8], and image retrieval [37].

There are mainly two thriving threads of work in visual

grounding: phrase localization [15, 30, 42] and referring ex-

pression comprehension [24, 48, 47, 14, 16] — plus some

work on grounding as segmentation [13, 9, 20, 25]. The lan-

guage query in the former is a local phrase of a full sentence
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describing an image, implying that multiple phrase queries

could co-occur in the sentence. In the latter, the query is

an expression referring to a particular region of an image

through a combination of object categories, attributes, rela-

tionships with other objects, etc. Notably, in phrase local-

ization, an image region linked to a phrase of one sentence

can also be linked to a phrase of another sentence, establish-

ing a coreference chain. Compared with phrase localization,

referring expression has less ambiguity in general.

Recent advances in computer vision and natural lan-

guage processing offer a rich set of tools, such as region

proposals [54, 41], object detection [10, 34, 11], text em-

bedding [28, 26, 4], syntactic parsing [39], etc., leading

to methods [43, 42, 29, 2, 49, 47] exploiting various cues

in the visual grounding problem. However, somehow sur-

prisingly, the main bodies of these methods are remark-

ably alike: they propose multiple region candidates per im-

age and then rank them according to their similarities with

the language query. We contend that this propose-and-rank

two-stage framework is flawed in at least two major ways.

• If none of the region candidates of the first stage hits

the ground truth region, the whole framework fails no

matter how good the second ranking stage could per-

form. We find that 200 Edgebox region proposals [54]

per image can only hit 68% of the ground truth regions

in ReferItGame [15], a benchmark dataset for refer-

ring expression comprehension. A hit is considered

successful if any of the 200 proposals could reach 0.5

or higher intersection-over-union (IoU) [30] with the

ground truth region.

• Most of the computation spent on the region candi-

dates, such as generating proposals, extracting fea-

tures, fusing with the query embedding, scoring sim-

ilarities, and so on, are merely to rank them down to

the list. After all, in most test cases, only one or two

region proposals are correct. We believe this scheme

is a waste of computation and should be improved.

The two caveats are left unresolved probably due to the

long-standing pursuit of how to model different cues in vi-

sual grounding. In this paper, we take a step back and re-

examine the visual grounding problem at an abstract level,

without discriminating the query types. We propose to shift

the paradigm from grounding as ranking multiple region

candidates to directly proposing one region as the output.

To this end, we study an end-to-end one-stage approach

to visual grounding. The main idea is as straightforward as

fusing a text query’s embedding into the YOLOv3 object

detector [33]. Additionally, we augment the feature maps

with spatial features to account for spatial mentions in the

language queries (e.g., “the man on the right”). Finally, we

replace the sigmoid output layer with a softmax function

in order to enforce the network to generate only one im-

age region in response to a query. Other cues explored in

the two-stage methods, such as attributes, attention, bound-

ing box annotations around extra objects, and so on, can be

naturally added to our one-stage model. We focus on the

vanilla model in the main text and examine its extensibili-

ties to some other cues in supplementary materials.

The advantages of this one-stage approach are multiple-

fold. First of all, it is fast in inference. It extracts features

from the input image with only one pass and then directly

predicts the coordinates of the output region. Without any

code optimization, our implementation is about 10 times

faster than state-of-the-art two-stage methods. Additionally,

it is also accurate. Unlike the two-stage framework whose

performance is capped by the region candidates, it enables

end-to-end optimization. We show promising results on

both phrase localization and referring expression compre-

hension. Finally, it generalizes better to different datasets

than the two-stage methods because it does not depend on

any additional tools or pre-trained models. Hence, we ad-

vocate this one-stage framework for future work on visual

grounding and hope our approach in this work provides a

new strong baseline.

2. Approach

In this section, we first review the existing two-stage

frameworks for visual grounding [42, 30, 48, 24, 47, 35, 29]

and then present our one-stage approach in detail.

2.1. Two­stage methods

Conventional methods for visual grounding, especially

for the task of phrase localization [30, 42, 29, 2], are mainly

composed of two separate stages. As shown in Figure 1,

given an input image, the first step is to generate candidate

regions using either unsupervised object proposal meth-

ods [54, 42, 29, 2] or a pre-trained object detection net-

work [50, 47]. The second step is to rank the candidate

regions conditioning on a language query about the image.

Most existing two-stage methods differ from each other in

the second step by scoring functions, network architectures,

multi-task learning, and training algorithms. A number of

studies [51, 42] cast the second step as a binary classifica-

tion task, where a region-query pair is tagged “positive”,

“negative”, or “ignored” based on the region’s IoU with the

ground truth region. The maximum-margin ranking loss is

another popular choice for the second stage [24, 27, 43].

As a concrete example, we next describe the similarity

network [42, 29] since it gives rise to state-of-the-art perfor-

mance on benchmark datasets. The authors employ a Fast

R-CNN [10, 34] pre-trained on Pascal [7] to extract visual

features for each candidate region. To embed the text query,

they find the Fisher encoding [28] works as well as or bet-

ter than recurrent neural networks. The region features and

query embeddings are fed through two network branches,

respectively, before they merge by a layer of element-wise
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multiplication. A few nonlinear layers are added after they

merge. Finally, the network outputs a similarity score by a

sigmoid function. The authors train this network by a cross-

entropy loss with positive labels for the matched pairs of

regions and queries and negative labels for the mismatched

pairs. A region is a match to the query if its IoU with the

ground truth is greater than 0.7 and the regions with IoUs

less than 0.3 are considered mismatches.

The overall performance of the two-stage framework is

capped by the first stage. Besides, the candidate regions

cause heavy computation cost. We next present a different

paradigm, a one-stage visual grounding network which en-

ables end-to-end optimization and is both fast and accurate.

2.2. Our one­stage approach

In short, our one-stage approach to the visual grounding

is to fuse a text query’s embedding into YOLOv3 [33], aug-

ment it with spatial features as the spatial configuration is

frequently used by a query, replace its sigmoid output layer

with a softmax function because we only need to return

one region for a query, and finally train the network with

YOLO’s loss [31]. Despite being simple, this one-stage

method signifies a paradigm shift away from the prevalent

two-stage framework, and it gives rise to superior results in

terms of both accuracy and speed.

We present this vanilla one-stage model as below and

amend it in supplementary materials to account for some

cues explored in the two-stage methods. Figure 2 illustrates

the network architecture, mainly consisting of three feature

encoding modules and three fusion modules.

Visual and text feature encoding. Our model is end-to-

end, taking as input an image and a text query and then re-

turning an image region as the response to the query. For the

text query, we embed it to a 768D real-valued vector using

the uncased version of Bert [4], followed by two fully con-

nected layers either with 512 neurons. In addition, we also

test the other embedding methods to fairly compare with

the existing works. In particular, recent works [30, 42, 29]

employ Fisher vectors of word2vec [28, 26]. Bidirectional

LSTMs are adopted in [2, 35].

We use Darknet-53 [33] with feature pyramid net-

works [18] to extract visual features for the input image,

which is resized to 256 × 256, at three spatial resolutions:

8×8×D1, 16×16×D2, and 32×32×D3. In other words,

the feature maps are respectively 1

32
, 1

16
, and 1

8
of the origi-

nal image size. There are D1 = 1024, D2 = 512, and D3 =
256 feature channels at the three resolutions, respectively.

We add a 1× 1 convolution layer with batch normalization

and RELU to map them all to the same dimension D = 512.

Spatial feature encoding. We find that the text queries of-

ten use spatial configurations to refer to objects, such as “the

man on the left” and “the bottom right grass”. However,

the Darknet-53 features mainly capture visual appearances,

lacking the position information. Hence, we explicitly en-

code some spatial features for each position of the three spa-

tial resolutions. Specifically, as shown in Figure 2, we gen-

erate a coordinate map of size W ′ × H ′ × Dspatial at each

resolution, where W ′ and H ′ are the spatial size of a visual

feature map, i.e., 8×8, 16×16, or 32×32, and Dspatial = 8
indicating we encode eight spatial features. If we place the

feature map in a coordinate system such that its top-left and

bottom-right corners lie at (0, 0) and (1, 1), respectively, the

eight features for any position (i, j), i ∈ {0, 1, · · · ,W ′−1}
and j ∈ {0, 1, · · · , H ′ − 1}, are calculated as follows:

( i

W ′
,
j

H ′
,
i+ 0.5

W ′
,
j + 0.5

H ′
,
i+ 1

W ′
,
j + 1

H ′
,
1

W ′
,
1

H ′

)

,

which captures the coordinates of the top-left corner, center,

and bottom-right corner of the grid at (i, j), along with the

inverse of W ′ and H ′.

Fusion. We use the same operation to fuse the visual, text,

and spatial features at the three spatial resolutions. In partic-

ular, we first broadcast the query embedding to each spatial

location (i, j) and then concatenate it with the visual and

spatial features, giving rise to a 512 + 512 + 8 = 1032D

feature vector. The visual, text, and spatial features are ℓ2
normalized respectively before the concatenation. We add

a 1 × 1 convolution layer to better fuse them at each loca-

tion independently. We have also tested 3 × 3 convolution

kernels hoping to make the fusion aware of the neighbor-

hood structure, and yet the results are about the same as the

1× 1 fusion. After this fusion step, we have a 512D feature

vector for each location of the three spatial resolutions, i.e.,

three feature blobs of the sizes 8× 8× 512, 16× 16× 512,

and 32× 32× 512, respectively.

Grounding. The grounding module takes the fused features

as input and generates a box prediction to ground the lan-

guage query onto an image region. We design this module

by following YOLOv3’s output layer except that we 1) re-

calibrate its anchor boxes and 2) change its sigmoid layer to

a softmax function.

There are 8× 8 + 16× 16 + 32× 32 = 1344 locations

out of the three spatial resolutions — and each location is

associated with a 512D feature vector as a result of the fu-

sion module. YOLOv3 centers around each of the locations

three anchor boxes. To better fit our grounding datasets,

we customize the widths and heights of the anchors by K-

means clustering over all the ground truth grounding boxes

in the training set with (1− IoU) as the distance [32, 33].

There are (3 anchors per location × 1344 locations) =
4032 anchor boxes in total. What YOLOv3 predicts is, out

of each anchor box, four quantities by regression for shift-

ing the center, width, and height of the anchor box, along

with the fifth quantity by a sigmoid function about the confi-

dence on this shifted box. We keep the regression branch as

is. As only one region is desired as the output for grounding
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Figure 2. The proposed end-to-end one-stage visual grounding framework.

the query — at least according to the current formalization

of the visual grounding problem, we replace the sigmoid

functions with a softmax function over all the 4032 boxes.

Accordingly, we replace the loss function over the confi-

dence scores by a cross entropy between this softmax and a

one-hot vector — the anchor box which has the highest IoU

with the ground truth region is labeled 1 and all the others

are labeled 0. We refer readers to [33] for more details.

2.3. Comparison to other one­stage grounding work

We contrast our approach to some closely related works,

including two existing one-stage grounding methods [52,

44] and some on grounding as segmentation [13, 20, 25, 9].

The Interpretable and Globally Optimal Prediction

(IGOP) [44] also tries to solve supervised visual grounding

in a one-stage manner. IGOP employs feature maps from

multiple vision tasks (e.g., object detection, semantic seg-

mentation, pose estimation, etc.) and models the phrase lo-

calization task as finding a box on the feature maps which

encapsulates the smallest energy. Since IGOP relies on mul-

tiple extra pre-trained vision models, it is not clear how to

optimize it end-to-end.

The Multiple-scale Anchored Transformer Network

(MATN) [52] is also a one-stage grounding model. How-

ever, many design consideratons of this network are to ac-

count for weakly supervised visual grounding. Besides,

MATN directly predicts a single box as the output, essen-

tially searches for one box out of a huge search space at the

scale O(W 2H2), where W,H are width and height of the

input image. This scheme has been shown inferior to those

based on anchor boxes in object detection [32, 33], unless

one has sufficiently big training sets.

We also briefly discuss some works on grounding text

queries to segmentation masks [13, 20, 25, 9]. Due to the

irregular shapes of the segmentation masks, it is hard to fol-

low the propose-and-rank two-stage framework to output

segmentation masks. Instead, they naturally employ one-

stage frameworks. However, their network architectures,

especially the output layer, are very different from ours.

3. Experiments

3.1. Datasets and experiment protocols

We evaluate the proposed one-stage visual grounding ap-

proach on the Flickr30K Entities dataset [30] and the Refer-

ItGame dataset [15]. The supplementary materials con-

tain additional results on RefCOCO [48]. Flickr30K En-

tities augments the original Flickr30K [46] with region-

phrase correspondence annotations. It links 31,783 im-

ages in Flickr30K with 427K referred entities. We follow

the same training/validation/test split used in the previous

work [30] in our experiments. ReferItGame [15] has 20,000

images from the SAIAPR-12 dataset [6]. We employ a

cleaned version of the split provided by [14], which has

9,000, 1,000 and 10,000 images in the training, validation,

and test sets, respectively. Following the same evaluation

protocol in prior works [30, 35], given a language query,

an output image region is considered correct if its IoU is at

least 0.5 with the ground truth bounding box.

Some details of our model architecture. We use Darknet-

53 [33] pre-trained on COCO object detection [19] as the

visual encoder. To embed the language queries, we test

Bert [4], a bi-LSTM framework used in [2], and a Fisher

vector encoding used in [30, 42, 29]. We generate the

anchor boxes by K-means clustering following the proce-

dure of [32, 33]. The anchors on ReferitGame are (18 ×
22), (48 × 28), (29 × 52), (91 × 48), (50 × 91), (203 ×
57), (96×127), (234×100), (202×175) and on Flickr30K

Entities are (17×16), (33×35), (84×43), (50×74), (76×
126), (125× 81), (128× 161), (227× 104), (216× 180).

Training details. We keep the original image ratio when

we resize an input image. We resize its long edge to 256

and then pad the image pixels’ mean value along the short

edge so that the final image size is 256 × 256. We fol-
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low [33] for data augmentation, i.e., adding randomization

to the color space (saturation and intensity), horizontal flip,

and random affine transformations. We train the model with

RMSProp [40] optimization. We start with a learning rate of

10−4 and follow a polynomial schedule with a power of 1.

As the Darknet has been pre-trained, we multiply the main

learning rate by 0.1 for the Darknet portion of our model.

The batch size is 32 in all our experiments. We observe

about 1% improvement when we use larger batch sizes on

a workstation with eight P100 GPUs, but we opt to report

the results of the small batch size (32) so that one can easily

reproduce our results on a desktop with two GPUs.

Competing baselines beyond existing methods. We com-

pare with state-of-the-art visual grounding methods, about

which the descriptions are deferred to Section 3.2. Beyond

them, we also systematically study the following baselines

and variations of our approach.

• Similarity Net-Darknet. Previous two-stage methods

often use detection networks with a VGG-16 back-

bone [38] to extract visual features, while Darknet

is adopted in our model. Naturally, one may won-

der about the influence of the backbones in addition

to the framework change from the two stages to the

one stage. To single out the influence of the backbone

networks, we construct a baseline using the two-stage

similarity network [42] based on the Darknet visual

features, modifying the code released with [29]. We

first pool region features from all three feature blobs

output by the feature pyramid network in YOLOv3,

then ℓ2 normalize them, respectively, and finally con-

catenate them as the visual features.

• Similarity Net-Resnet. We also test in the simi-

larity network visual features extracted by Mask R-

CNN [11] with a Resnet-101 [12] backbone, which is

pre-trained on COCO detection. The feature dimen-

sion is 2048.

• CITE-Resnet. Furthermore, we compare to CITE [29]

with Resnet-101 features. We keep the number of em-

beddings as the default value K = 4 in CITE. Region

proposals and visual and language encoders remain the

same as “Similarity Net-Resnet”.

• Ours-FV. The Fisher vector (FV) encoding [28] of

word2vec [26] features is used in some state-of-the-art

visual grounding methods [30, 42, 29]. We include it

in our approach as well. A language query is encoded

to a 6000D FV embedding.

• Ours-LSTM. The LSTM encoding of language

queries is also frequently used in the literature [2, 35],

so we investigate its effect in our approach as well. We

use a bi-LSTM layer with 512D hidden states in this

work. We do not use word2vec features to initialize

the embedding layer.

• Ours-Bert. We use the uncased version of Bert [4]

that outputs a 768D embedding as our main language

query encoder. We do not update the Bert parameters

during training.

• Ours-Bert-no Spatial. In this ablated version of our

approach, we remove the spatial features and only fuse

the visual and text features.

3.2. Visual grounding results

Flickr30K Entities. Table 1 reports the phrase localization

results on the Flickr30K Entities dataset. The top portion

of the table contains the numbers of several state-of-the-art

visual grounding methods [14, 43, 35, 30, 44, 2, 42, 29].

The results of two additional versions of the similarity net-

work [42], respectively based on Resnet and Darkent, are

shown in the middle of the table. Finally, the four rows at

the bottom are different variations of our own approach.

We list in the “Region Proposals” column different re-

gion proposal techniques used in the visual grounding meth-

ods, followed by the number of region candidates per im-

age (e.g., N=100). Edgebox [54] and selective search [41]

are two popular options for proposing the regions. In the

“Visual Features” column, we list the backbone networks

followed by the datasets on which they are pre-trained. The

“Language Embedding” column indicates the query embed-

ding adopted by each grounding method.

Among the two-stage methods, not surprisingly, “Simi-

larity Net-Resnet” gives much better results than “Similar-

ity Net” because the Resnet visual features are generally

higher-quality than the VGG features.

Although Darknet-53 and Resnet-101 give rise to com-

parable results on ImageNet [36], the Darknet features lead

to poor visual grounding results. This is reasonable because

Darknet does not have a separate region proposal network,

making it tricky to extract the region features. Furthermore,

the large down-scale ratios (1/8, 1/16, and 1/32) and the low

feature dimensions (256, 512, 1024) of Darknet make its re-

gion features not as discriminative as Resnet’s.

Our one-stage method and its variations outperform the

two-stage approaches with large margins. By the last two

rows of the table, we investigate the effectiveness of our

spatial features. It is clear that the spatial information boosts

the accuracy of “Ours-Bert-no Spatial” by about 1.6%. Fi-

nally, we note that language embedding techniques only

slightly influence the results within a small range.

ReferitGame. Table 2 reports the referring expression

comprehension results on ReferItGame [15]. Organiz-

ing the results in the same way as Table 1, the top por-

tion of the table is about state-of-the-art grounding meth-

ods [14, 23, 50, 35, 44, 2, 42, 29], the middle is two versions

of the similarity network, and the bottom shows our results.

We draw from Table 2 about the same observation as

from Table 1. In general, our model with Darknet visual fea-
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Table 1. Phrase localization results on the test set of Flickr30K Entities [30].

Method Region Proposals Visual Features Language Embedding Accu@0.5 Time (ms)

SCRC [14] Edgebox N=100 VGG16-Imagenet LSTM 27.80 -

DSPE [43] Edgebox N=100 VGG19-Pascal Word2vec, FV 43.89 -

GroundeR [35] Selec. Search N=100 VGG16-Pascal LSTM 47.81 -

CCA [30] Edgebox N=200 VGG19-Pascal Word2vec, FV 50.89 -

IGOP [44] None Multiple Network N-hot 53.97 -

MCB + Reg + Spatial [2] Selec. Search N=100 VGG16-Pascal LSTM 51.01 -

MNN + Reg + Spatial [2] Selec. Search N=100 VGG16-Pascal LSTM 55.99 -

Similarity Net [42] Edgebox N=200 VGG19-Pascal Word2vec, FV 51.05 -

Similarity Net by CITE [29] Edgebox N=200 VGG16-Pascal Word2vec, FV 54.52 -

CITE [29] Edgebox N=500 VGG16-Pascal Word2vec, FV 59.27 -

CITE [29] Edgebox N=500 VGG16-Flickr30K Word2vec, FV 61.89 -

Similarity Net-Resnet [42] Edgebox N=200 Res101-COCO Word2vec, FV 60.89 184

CITE-Resnet [29] Edgebox N=200 Res101-COCO Word2vec, FV 61.33 196

Similarity Net-Darknet [42] Edgebox N=200 Darknet53-COCO Word2vec, FV 41.04 305

Ours-FV None Darknet53-COCO Word2vec, FV 68.38 16

Ours-LSTM None Darknet53-COCO LSTM 67.62 21

Ours-Bert-no Spatial None Darknet53-COCO Bert 67.08 38

Ours-Bert None Darknet53-COCO Bert 68.69 38

Table 2. Referring expression comprehension results on the test set of ReferItGame [15].

Method Region Proposals Visual Features Language Embedding Accu@0.5 Time (ms)

SCRC [14] Edgebox N=100 VGG16-Imagenet LSTM 17.93 -

GroundeR + Spacial [35] Edgebox N=100 VGG16-Pascal LSTM 26.93 -

VC [50] SSD Detection [21] VGG16-COCO LSTM 31.13 -

CGRE [23] Edgebox VGG16 LSTM 31.85 -

MCB + Reg + Spatial [2] Edgebox N=100 VGG16-Pascal LSTM 26.54 -

MNN + Reg + Spatial [2] Edgebox N=100 VGG16-Pascal LSTM 32.21 -

Similarity Net by CITE [29] Edgebox N=500 VGG16-Pascal Word2vec, FV 31.26 -

CITE [29] Edgebox N=500 VGG16-Pascal Word2vec, FV 34.13 -

IGOP [44] None Multiple Network N-hot 34.70 -

Similarity Net-Resnet [42] Edgebox N=200 Res101-COCO Word2vec, FV 34.54 184

CITE-Resnet [29] Edgebox N=200 Res101-COCO Word2vec, FV 35.07 196

Similarity Net-Darknet [42] Edgebox N=200 Darknet53-COCO Word2vec, FV 22.37 305

Ours-FV None Darknet53-COCO Word2vec, FV 59.18 16

Ours-LSTM None Darknet53-COCO LSTM 58.76 21

Ours-Bert-no Spatial None Darknet53-COCO Bert 58.16 38

Ours-Bert None Darknet53-COCO Bert 59.30 38

tures and Bert query embeddings outperforms the existing

methods by large margins. Careful analyses reveal that the

poor region candidates in the first stage are a major reason

that the two-stage methods underperform ours. We present

these analyses in Section 3.4.

3.3. Inference time comparison

A fast inference speed is one of the major advantages

of our one-stage method. We list the inference time in

the rightmost columns of Tables 1 and 2, respectively.

We conduct all the tests on a desktop with Intel Core i9-

9900K@3.60GHz and NVIDIA 1080TI. Typical two-stage

approaches generally take more than 180ms to process one

image-query pair, and they spend most of the time on gener-

ating region candidates and extracting features for them. In

contrast, our one-stage approaches all take less than 40ms to

ground a language query to an image — especially, “Ours-

FV” takes only 16ms, making it potentially feasible for real-

time applications.

3.4. Oracle analyses about the region candidates

Why could the one-stage methods achieve those big im-

provements over the two-stage ones? We conjecture that it

is mainly because our one-stage framework can avoid im-

perfect region candidates. In contrast, the performances of

the two-stage methods are capped by the hit rate of the re-

gion candidates they propose in the first stage. We say a
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Table 3. Hit rates of region proposal methods.

Hit rate, N=200
Flickr30K Entities ReferitGame

val set test set val set test set

MRCN Detect. [11] 48.76 49.28 27.63 28.12

MRCN RP [11] 76.40 76.60 44.80 46.50

Edgebox [54] 82.91 83.69 68.62 68.26

Selec. Search [41] 84.85 85.68 81.67 80.34

Ours 95.32 95.48 92.40 91.32

ground truth region is hit by the region candidates if its IoU

is greater than 0.5 with any of the candidates, and the hit rate

is the number of ground truth regions hit by the candidates

divided by the total number of ground truth regions.

We study the hit rates of some popular region pro-

posal methods: Edgebox [54], selective search [41], the re-

gion proposal network in Mask R-CNN [11] pre-trained on

COCO [11], Mask R-CNN itself whose detection results are

regarded as region candidates, and our one-stage approach

whose box predictions are considered the region candidates.

We keep top N=200 region candidates for each of them or as

many regions as possible if it outputs less than 200 regions.

Table 3 shows the hit rates on both Flickr30K Entities

and ReferItGame. It is interesting to see that the hit rates

are in general higher on Flickr30 than on ReferItGame, es-

pecially when Edgebox generated proposals are used, some-

how explaining why the two-stage grounding results on

Flickr30K Entities (Table 1) are better than those on Refer-

ItGame (Table 2). Another notable observation is that the

top 200 boxes of our approach have much higher hit rates

than the other techniques, verifying the benefit of learning

in an end-to-end way.

One may wonder under what scenarios the region pro-

posal methods but ours fail to hit the ground truth regions.

Figure 3 gives some insights by showing the Edgebox re-

gion candidates on ReferItGame. We find that the region

candidates mainly fail to hit stuff ground truth regions (e.g.,

the “grass” in Figure 3 (c)). Tiny objects are also hard to

hit (cf. Figure 3 (e) and (f)). Finally, when a query refers to

more than one objects, it might fail region proposal meth-

ods which are mostly designed to place a tight bounding

box around only one object (cf. Figure 3 (a) and (b)).

3.5. Qualitative results analyses

In this section, we analyze the success and failure cases

of the two-stage similarity network as well as our model to

show the advantages and limitations of the proposed one-

stage method. Figure 4 shows the mistakes made by the

similarity network that can be corrected by our method. The

blue boxes are predictions, and the yellow boxes represent

the ground truths. We group some common mistakes into

the following scenarios.

• Queries referring to multiple objects. A language

query in the visual grounding problem can refer to

more than one objects, but the region proposals by de-

Query: sky, bottom right leaf, 
foliage above the train, bottom right 
grass,, bird, or whatever os on top 

of the rock,llama on left 

(a). Query: two 
people on right

(c). Query: grass on 
right of roadway

(e). Query: red lamp 
under guitar

(b). Query: two 
people sitting

(d). Query: city in the 
distance above the 

center span of bridge

(f). Query: the black 
backpack on the 

bottom right

Figure 3. Failure cases of the Edgebox region candidates (boxes

shown in the red color) on ReferitGame. The yellow boxes are

ground truths. For visualization purpose, we randomly hide some

region candidates.

sign aim to each cover only one object. Check the

queries “two people on right” and “two people sitting”

in Figures 4 (a) and (b), respectively, for examples. it

is (almost) impossible to overcome this type of mis-

matches by the existing propose-and-rank two-stage

methods. In contrast, our approach is not restricted to

one object per box at all and, instead, can flexibly adapt

the box regression function according to the queries.

• Queries referring to stuff as opposed to things. The

second kind of common errors made by the two-stage

methods is on the queries referring to stuff as opposed

to things, such like the “grass” and “city” shown in

Figures 4 (c) and (d), respectively. This kind of errors

is again due to that the region proposals mostly focus

on thing classes — the “objectness” is often an impor-

tant cue for proposing the regions. In sharp contrast,

stuff regions generally have low “objectness” scores.

Hence, we argue that the two-stage methods are in-

capable of handling such stuff regions given the sta-

tus quo of region proposal techniques. Our one-stage

method can instead learn to handle the stuff regions

from the training set of the visual grounding datasets.

• Challenging regions. In the third kind of common er-

rors, the two-stage methods fail to deal with challeng-

ing test cases, such as the small regions referred to by

the queries in Figures 4 (e) and (f). There are mainly

three reasons that fail the two-stage methods. First, the

region candidates of the first stage may not provide a

good coverage especially over small objects. Second,

the visual features of small regions are not discrimina-

tive enough for the second stage to learn how to rank.

Third, the image depicts complicated scenes or many

duplicated objects. The last point could equally harm

our approach as well as the two-stage ones.
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(d). Query: ground in 
front of people

(a). Query: two 
people on right

(b). Query: two 
people sitting

(d). Query: city in the 
distance above the 

center span of bridge

Two-stage grounding results

One-stage grounding results

(e). Query: red lamp 
under guitar

(f). Query: the black 
backpack on the 

bottom right

(c). Query: grass on 
right of roadway

(a). Query: sky next 
to clouds

(b). Query: dirt in 
front of kid

(d). Query: 
lighthouse dork

(a). Query: sky next 
to clouds

(b). Query: dirt in 
front of kid

(d). Query: 
lighthouse dork

Two-stage grounding results

One-stage grounding results

(e). Query: girl in 
black

(e). Query: girl in 
black

(f). Query: girl with 
hands on hips

(f). Query: girl with 
hands on hips

(d). Query: 2nd from 
right blue shirt

(c). Query: man and 
woman on right

(c). Query: man and 
woman on right

Figure 4. Mistakes made by the two-stage similarity network (top row) that can be corrected by our one-stage approach (bottom row). Blue

boxes are predicted regions and yellow boxes are the ground truth. There are three types of common failures of the two-stage method:

queries referring to multiple objects (a,b), queries referring to stuff regions (c, d), and challenging regions (e, f).

(a). Query: top of 
purple jeep bag

(a). Query: bike of 
blue pant lady

(d). Query: 
lighthouse dork

(g). Query: man in 
blue

(i). Query: window 
above colonial

(d). Query: 
lighthouse dork

(e). Query: girl in 
black

(e). Query: girl in 
black

(f). Query: girl with 
hands on hips

(f). Query: girl with 
hands on hips

(d). Query: 2nd from 
right blue shirt

(j). Query: sign

(b). Query: the bowl of 
bean on the bottom

(c). Query: person on 
the right

(d). Query: person on 
left closest

(h). Query: kid left

(e). Query: sheep 
farmers

(f). Query: two small 
children

(k). Query: blue shirt (l). Query: man

Figure 5. Success cases on challenging instances (top row) and common failures (bottom row) of our one-stage method. Blue / yellow

boxes are predicted regions / ground truths. The four columns on the left are from ReferitGame and the others are from Flickr30K Entities.

Failure cases of our approach. Figure 5 shows extra suc-

cess and failure cases of our approach. The first row shows

the typical success cases. The “bike of blue pant lady” in

Figure 5 (a) queries an example image with multiple ob-

jects of the same class. Figure 5 (b) provides an example

of correct predictions on tiny objects. (c) and (d) show-

case our approach is able to interpret location information

in the queries. The query in (e) contains a distracting noun,

“sheep”. Our model in (f) successfully predicts a region

containing two objects.

Figures 5 (g)–(l) are some failure cases of our model.

We find our model is insensitive to attributes, such as the

“blue” in (g) and (k). It fails on (h) and (i) simply because

those are very difficult test cases (e.g., one has to recognize

the word “colonial” in the image in order to make the right

prediction). Finally, (j) and (l) give two ambiguous queries

for which our model happens to predict different boxes from

those annotated by users.

4. Conclusion

We have proposed a simple and yet effective one-stage

method for visual grounding. We merge language queries

and spatial features into the YOLOv3 object detector and

build an end-to-end trainable visual grounding model. It is

about 10 times faster than state-of-the-art two-stage meth-

ods and achieves superior grounding accuracy. Besides, our

analyses reveal that existing region proposal methods are

generally not good enough, capping the performance of the

two-stage methods and indicating the need of a paradigm

shift to the one-stage framework. In future work, we plan

to investigate the extensibility of the proposed one-stage

framework for modeling other cues in the visual grounding

problem.
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