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A Fast and Accurate Video Semantic

Indexing System Using Fast MAP Adaptation and

GMM Supervectors
Nakamasa Inoue, Student Member, IEEE, and Koichi Shinoda, Senior Member, IEEE

Abstract—We propose a fast maximum a posteriori (MAP)
adaptation method for video semantic indexing that uses Gaus-
sian mixture model (GMM) supervectors. In this method, a
tree-structured GMM is utilzed to decrease the computational
cost, where only the output probabilities of mixture components
close to an input sample are precisely calculated. Experimental
evaluation on the TRECVID 2010 dataset demonstrates the
effectiveness of the proposed method. The calculation time of
the MAP adaptation step is reduced by 76.2% compared to that
of a conventional method. The total calculation time is reduced
by 56.6% while keeping the same level of the accuracy.

Index Terms—Video Semantic Indexing, GMM Supervectors,
MAP Adaptation.

I. INTRODUCTION

RECENTLY, a large amount of video data has been made

available. An effective video retrieval and searching

system is demanded since it is often difficult to find relevant

video manually. Although current keyword-based text search

systems are sometimes useful for this purpose, they require

metadata that describe the video contents. To automatically

generate metadata, semantic indexing, i.e., assigning semantic

concepts such as airplane, bus, outside, nighttime, and singing

to video segments, is necessary. It has been a challenging task

due to the semantic gap between the low-level features and

high-level semantic concepts.

Most previous studies used statistical modeling to construct

a model that describes the relationship between video and

semantic concepts. In particular, statistical methods for generic

object recognition in image processing have been effective for

semantic indexing, since semantic indexing can be viewed as

an extension of generic object recognition to video processing.

The bag-of-visual-words (BoW) method [13], [14] that uses

low-level features such as scale-invariant feature transform

(SIFT) [15] is the most widely used method for generic

object recognition. In this method, hard clustering, vector

quantization (VQ), of features is used, but its quantization

errors often degrade the indexing performance. Several soft

clustering methods [20], [23] are introduced to solve this

problem and have been proved to be effective. In particular,

Gaussian mixture model (GMMs) are often preferred since
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it is a straightforward extension of VQ to a probabilistic

framework.

In video semantic indexing, it is well-known that not only

image features but also video-specific features such as audio

features and movement features are important to improve the

performance of video semantic indexing [2], [8], [9], [10]. In

[2], we have shown the effectiveness of the combination of the

audio hidden Markov model and the multi-frame feature ex-

traction with GMM supervectors. Our method achieves higher

accuracy than the best method of TRECVID 2010 semantic

indexing [3], [4], [8]. However, video semantic indexing is

more computationally expensive than image classification. In

the testing phase of our method, 28.8%, 67.7%, and 3.5%

of calculation time are spent for low-level feature extraction,

GMM parameter estimation, and classification using SVM,

respectively. Since the amount of video data to be processed

is very large and rapidly increasing, it is strongly demanded

to decrease these computational costs.

The speeded up robust features (SURF) [18] reduces the

cost for low-level feature extraction by using integral images.

The GPU implementation of SIFT [11], [12], and the BoW

algorithm [7] have also been proposed. While these imple-

mentations are faster than a CPU implementation, the focus

was not on the fast algorithm but on the fast implementation.

In our method of GMM-supervector based semantic indexing,

67.7% of calculation time is spent for estimation of GMM

parameter. Therefore, we aim at reducing its computational

cost.

In this paper, we propose a fast maximum a posteriori

(MAP) adaptation method using a tree-structured GMM to

reduce the cost of the estimation of GMM parameters. Its basic

idea is to calculate probabilities only for important Gaussian

components and to skip the calculation for others. We consider

a Gaussian component as important if it is located near the

observed low-level feature. The tree structure is utilized to

search the important Gaussian components. We expect that

the performance of semantic indexing is not to be decreased

by using the proposed method since probabilities for important

Gaussian components are calculated precisely. We evaluated

our system on the TRECVID 2010 video benchmark.

The rest of this paper is organized as follows. Previous

studies are summarized in Section II. Our semantic indexing

system based on the proposing fast MAP adaptation and

GMM supervectors is described in Section III. Experimental

results and conclusions are given in Section IV and Section V,

respectively.



II. PREVIOUS STUDIES

A basic approach for semantic indexing is the bag-of-visual-

words approach [13], [14], which classifies videos by creating

histograms of quantized low-level features (visual words). The

bag-of-visual-words algorithm consists of three steps: 1) low-

level feature extraction, 2) feature coding and 3) classification.

1) Low-level feature extraction

SIFT [15] is the most widely used method for low-level

feature extraction since it is robust against changes in

scale, rotation, and illumination. However, the original

SIFT only uses gray scale intensities. To capture color

information, color descriptors such as hue histogram

[16] and color SIFT [17] have been proposed and used

in image classification.

These low-level feature extraction methods usually con-

sist of two phases: interest point detection and feature

description. Therefore, approaches to fast feature extrac-

tion have focused on either of the two phases. The fast

Hessian detector used in SURF [18] improves the speed

of interest point detection by using integral images.

With dense sampling [19], the phase of interest point

detection can be skipped since grid-points are used as

interest points. GPU implementations of SIFT [11], [12]

and color SIFT [7] have been also proposed for feature

description.

To improve the accuracy of semantic indexing, the

fusion of several types of low-level features has been

used in recent studies. The combination of SIFT and

color SIFT [8] have performed the best in semantic

indexing at TRECVID [3], [4]. In [2], the multi-modal

approach that uses SIFT and mel-frequency cepstral

coefficients (MFCCs) improved the accuracy of semantic

indexing. The MFCCs have first been proposed for

speech recognition to describe the short-time spectral

shape of audio frames.

2) Feature coding

Vector quantization (VQ) techniques such as k-means

clustering are typically used in this step. Each low-

level feature is assigned to one of clusters with VQ in

order to create histogram of low-level features. The soft-

assignment of low-level features [20] has been proposed

to reduce quantization error in VQ. Gaussian mixture

models (GMMs) used in [23] can also be viewed as a

soft-assignment clustering method. The GMMs usually

perform better than the other clustering methods since it

captures variances of low-level features for each cluster.

Beyond the histogram-based method, the GMM super-

vector is first proposed as a speaker verification method

[21], and then supervector coding [5] has been used

for image classification. GMM supervector is made by

concatenated the parameters of mixture components in

a GMM and is used as instead of a histogram of low-

level features. In these methods, an image (or an audio

segment) is modeled by a GMM, i.e., a GMM parameter

is estimated for each image.

The Fisher vector [22], which describes the derivative of

the gradient of the likelihood function, has been applied

to image classification in [24]. The Fisher vector is

equivalent to the GMM supervector if a GMM is used

to compute likelihood in the generation of the Fisher

vector as in [24].

Although the GMM-based method outperforms the

histogram-based bag-of-visual-words, it is computation-

ally more expensive to estimate their parameters.

3) Classification

The original bag-of-visual-words method [13], [14] used

support vector machines (SVMs) for image classifica-

tion. Multiple kernel learning (MKL) [25] enables to

learn a linear combination of base kernels (e.g. ker-

nels for different features). The weight coefficient for

each base kernel is optimized during its training phase.

Multiple kernel Fisher discriminant analysis (MK-FDA)

[26] is an extension of the FDA to multiple kernels.

These multiple kernel methods are computationally more

expensive than the SVM. A linear combination of SVM

scores still often performs well in terms of accuracy.

III. PROPOSED METHOD

In this section, we describe our fast and accurate system for

video semantic indexing, which uses fast MAP adaptation and

GMM supervectors.

A. Overview

The overview of our semantic indexing system is shown in

Fig. 1. We assume videos are automatically segmented into

shots in preprocessing. A shot consists of continuous frames

without switching between cameras.

Our system consists of three parts. First, four types of low-

level features (three types of SIFT features and MFCCs) are

extracted from a video shot. The SIFT features are extracted

by using three different interest point detectors: Harris-Affine

[27], Hessian-Affine [27], and Dense [19]. The MFCCs, which

describe the short-time spectral shape of audio frames, are

extracted to capture audio information. The details of low-

level feature extraction are described in Sec IV-B. Second,

a GMM supervector is created for each type of features. A

GMM models the distribution of low-level features extracted

from a video shot. Its parameter is estimated by using MAP

adaptation, in which a tree-structured GMM is utilized to

reduce the computational cost for parameter estimation. Here,

basic idea is to calculate probabilities only for important

Gaussian components. We consider a Gaussian component as

important if it is located near the observed low-level feature.

The tree structure enables fast search of important Gaussian

components. Third, the outputs of SVMs for the four feature

types are fused to compute a final score.

B. Gaussian Mixture Model

Let X = {xi}
n

i=1
be a set of (one type of) low-level features

extracted from a video shot. A probability distribution function

(pdf) of a Gaussian mixture model (GMM) is given by

p(x|θ) =
K∑

k=1

wkN (x|µk, Σk), (1)



Fig. 1. Overview of our semantic indexing system. Our system consists of three parts: 1) low-level feature extraction, 2) GMM supervector extraction by
using fast MAP adaptation, and 3) SVM classification. First, four types of visual and audio features are extracted. Second, GMM parameters are estimated
by using MAP adaptation. Tree-structured GMMs are used to improve the speed of MAP adaptation. Third, the outputs of SVMs for the four feature types
are fused to compute a final score.

where x is a low-level feature vector, θ = {wk, µk, Σk}
K
k=1 is

a set of parameters, K is the number of mixture components,

wk is a mixture coefficient. N (·|µk, Σk) is a Gaussian pdf

with a mean vector µk and a covariance matrix Σk.

The GMM parameters are often estimated by using an

expectation maximization (EM) algorithm with the maximum

likelihood criterion. However, a set of extracted feature vectors

may not be enough to estimate the parameters precisely. In

such cases, the alternative way is to use maximum a posteriori

(MAP) adaptation. MAP adaptation, a parameter estimation

using the MAP criterion, is robust against over-fitting caused

by limited data since it uses a prior distribution. A GMM

for prior distribution, namely a universal background model

(UBM), is first estimated by applying the EM algorithm to all

the training data. The UBM presents the feature distribution

for the whole database.

In the proposed method, only mean vectors are adapted for

each shot. The MAP solution gives the following equations:

µ̂k =
τ µ̂

(U)
k +

∑n

i=1 cikxi

τ +
∑n

i=1 cik

, (2)

cik =
w

(U)
k g

(U)
k (xi)

∑K

k=1 w
(U)
k g

(U)
k (xi)

, (3)

g
(U)
k (x) = N (x|µ

(U)
k ,Σ

(U)
k ), (4)

where n is the number of feature vectors, and µ̂
(U)
k is a

mean vector of UBM, g
(U)
k is a Gaussian component, cik is

a responsibility of a Gaussian component gk for a feature

vector xi, which is the posterior probability of xi being at k-th

Gaussian component, and τ is a predefined hyper-parameter.

C. Tree-structured GMMs

A tree structure of Gaussian components that makes cal-

culation of Eq. (3) efficient is constructed from the UBM.

Fig. 2 shows an example of a tree-structured GMM. Each

leaf node corresponds to a Gaussian component of the UBM,

and each other node has a single Gaussian obtained by

combining corresponding Gaussian pdfs of descendant nodes.

This tree structure is constructed by top-down clustering of

Gaussian components. For a given set of Gaussian components

G = {g1, g2, · · · , gK}, we define a combined single Gaussian

G(G) by

G(G)
def
= N (·|µ̄, Σ̄), (5)

µ̄ =
1

K

K
∑

k=1

µk, (6)

Σ̄ =
1

K

K
∑

k=1

(Σk + µkµT

k )− µ̄µ̄T. (7)

To find a pair of Gaussian components which are close to

each other, a distance measure between them is needed. The

sum of Kullback-Leibler divergence from gk to gk′ and that

of from gk′ to gk is used for this measurement as follows:

d(gk, gk′) =

∫

gk(x) log
gk(x)

gk′(x)
dx +

∫

gk′(x) log
gk′(x)

gk(x)
dx

(8)

=
1

2

(

(µk − µk′)T(Σ−1
k + Σ

−1
k′ )(µk − µk′)

+ tr(Σ−1
k′ Σk) + tr(Σ−1

k Σk′)− 2d
)

. (9)

As for the following tree-construction algorithm, it is as-

sumed that the maximum number of child nodes for each layer

(with the exception of the leaf layer) is given. For example, if

the maximum number of child nodes for the first layer (which

only has a root node) is two and that for the second layer is

three, the resulting tree will be designed as shown in Fig. 2.

In this case, a tree with a depth of three (including the leaf

layer) is obtained. This tree-structured GMM is denoted as

T(2,3) = (V, E, GTREE), (10)



Fig. 2. An example of a tree-structured GMM T(2,3).

where V is a set of nodes, E is a set of edges, and GTREE =
{g(v)|v ∈ V } is a set of Gaussian pdfs. In general, a node at

the t-th layer of a tree T(P1,P2,··· ,PT ) has, at most, Pt child

nodes.

The node pdfs g(v) of a tree T(P1,P2,··· ,PT ) are created by the

following algorithm. The basic idea is to apply hierarchical k-

means clustering for Gaussian components. Note that GUBM =

{g
(U)
1 , g

(U)
2 , · · · , g

(U)
K } is a set of mixture components of the

UBM, G(v) is a subset of GUBM corresponding to node v, and

g(v) is a Gaussian pdf for node v.

1) Prepare a queue and enqueue (r,G(r)), where r is the

root node, G(r) = GUBM, and g(r) ← G(G(r)).
2) (Initialization for k-means) Dequeue (v, G(v)). Let

{cp}
P
p=1 be the child nodes of node v. Select the initial

cluster centers g(cp) from the given set of Gaussian com-

ponents G(v), where the min-max selection method is

used instead of random selection. The min-max selection

method is explained in Appendix.

3) (Clustering by k-means) Assign each Gaussian compo-

nent in G(v) to the nearest child node, i.e.

G(cp)
← {g ∈ G(v) | p = argmin

p′

d(g, g(cp′ ))}. (11)

Update g(cp) by using Eq. (5) as follows:

g(cp)
← G(G(cp)), (12)

Repeat this step until the following sum of distance

converges:

D =

P
∑

p=1

∑

g∈G(cp)

d(g, g(cp)). (13)

4) For p = 1, 2, · · · , P , enqueue (cp, G
(cp)) if cp is not in

the (T +1)-th layer and |G(cp)| > 1. Go to step 5 if the

queue is empty; otherwise, return to step 2.

5) For each node v in the (T +1)-th layer, create leaf nodes

! for each g
(U)
k ∈ G(v) ⊂ GUBM and set

g(!) = g
(U)
k . (14)

D. Fast MAP Adaptation

A fast MAP adaptation technique which estimates cik in

Eq. (3) efficiently by using a tree-structured GMM is explained

in the following. For a constructed tree-structured GMM

T(P1,P2,··· ,PT ), node weights are first defined as follows:

a) For each leaf node !, set

w(!) = w
(U)
k , (15)

if g(!) = g
(U)
k ∈ GUBM.

b) Calculate weights for t = T + 1, T, · · · , 1 as follows.

For each node v in the t-th layer,

w(v) =
∑

c∈C(v)

w(c), (16)

where C(v) is a set of child nodes of the node v.

The algorithm for estimating cik for feature vector xi is

described as follows. The key idea is to construct a GMM of

active nodes VA, which means vector xi will be assigned to

descendants of nodes in VA. |VA| is kept small by obtaining

active nodes from the root node.

1) Set VA ← {r}, where r is the root node.

2) Expand active nodes by making child nodes of the active

nodes active:

VA ←
⋃

v∈VA

C(v), (17)

where C(v) is a set of child nodes of the node v. Here,

C(!) = {!} is used for leaf nodes ! to keep the leaf

nodes active.

3) Consider a GMM for active node VA given by

p(x|VA) =
∑

v∈VA

w̃(v)g(v)(x), (18)

where

w̃(v) =
w(v)

∑

v∈VA
w(v)

. (19)

Calculate

c
(v)
i =

w̃(v)g(v)(xi)
∑

v∈VA
w̃(v)g(v)(xi)

=
w(v)g(v)(xi)

∑

v∈VA
w(v)g(v)(xi)

.

(20)

4) Keep a node v active if c
(v)
i is larger than the predeter-

mined threshold cTH, i.e.

VA ← {v ∈ VA | c
(v)
i > cTH}. (21)

5) If all nodes in VA are leaf nodes, output

ĉik =

{

c
(!)
i (! ∈ VA, g(!) = g

(U)
k )

0 (otherwise)
. (22)

Otherwise, return to Step 2.

Since the observed ĉik for non-active nodes is 0, the sum

in Eq. (2) can be calculated for non-zero ĉik only. Our fast

MAP adaptation requires O(n log K) time which improves

O(nK) time for the basic MAP adaptation. Moreover, cal-

culation speed and levels of approximation can be controlled

by selecting the threshold cTH in 0 < cTH ≤ 1. Note that the

same cik as given by Eq. (3) is obtained when cTH is set to 0
(because all leaf nodes will be active at the final step).



E. GMM Supervector SVM

The combination of GMM supervectors and support vector

machines (SVMs) was first proposed as a speaker recognition

method [21] and has been applied to image and video recog-

nition [2], [6]. GMM supervectors are created for each shot

and are given by

φ(X) =











µ̃1

µ̃2

...

µ̃K











, µ̃k =

√

w
(U)
k

(

Σ
(U)
k

)− 1

2

µ̂k, (23)

where µ̂k is an adapted mean vector obtained from Eq. (2), and

θ(U) is the GMM parameter for the UBM. The dimension of

GMM supervectors is Kd, where K is the number of Gaussian

components and d is the dimension of the low-level feature

vector. The weighted sum of Mahalanobis distances between

corresponding Gaussian pairs is obtained by calculating the

squared Euclidean distance between two GMM supervectors.

RBF kernels are used for SVM classification:

k(X, X ′) = e−γ‖φ(X)−φ(X′)‖2

, (24)

where γ is a kernel parameter. An SVM is trained for each

semantic concept and for each type of features. Note that the

proposed method can be used for creating the Fisher vectors

[22], [24].

F. Score Fusion

SVMs for the four types of features described in Sec-

tion IV-B are combined by calculating the weighted sum of

detection scores as

f(X) =
∑

F∈{SIFT-Har, SIFT-Hes,

SIFTH-D, MFCC}

βFfF(X), (25)

where βF is a combination weight and fF(X) is a detection

score for the feature F. The combination weights are optimized

for each semantic concept by cross validation.

IV. EXPERIMENTS

A. Database and Task

Our experiments were conducted on the TRECVID 2010

dataset [3], [4]. The dataset consists of 400 hours of Internet

archive videos with creative commons licenses. The shot

boundaries and key-frame images are automatically detected

and provided with the video data. Half of the videos were used

for training, and the others were used for testing. The number

of shots was 119,685 for training and 146,788 for testing.

We evaluated our system on the TRECVID 2010 Semantic

Indexing benchmark. The task is to detect the 30 semantic con-

cepts (including objects, events and scenes) listed in Table I.

They are considered useful for video searching.

The annotated labels for the 30 concepts are also provided

with the video data (including testing videos for evaluation).

The labels for training data are created using a collaborative

annotation system [28]; however, some of the training shots

are still unlabeled. It was assumed that the unlabeled samples

TABLE I
THE 30 TARGET SEMANTIC CONCEPTS IN THE TRECVID 2010 DATASET

Airplane Flying Female Human Face Closeup
Animal Flowers
Asian People Ground Vehicles
Bicycling Hand
Boat ship Mountain
Bus Nighttime
Car Racing Old People
Cheering Running
Cityscape Singing
Classroom Sitting down
Dancing Swimming
Dark-skinned People Telephones
Demonstration Or Protest Throwing
Doorway Vehicle
Explosion Fire Walking

are negative since the annotation system is based on an active

learning method that requires shots appearing to be positive

samples to be annotated preferentially. On the other hand,

labels for testing videos are attached on the basis of the

submission pool of TRECVID 2010, which allows precise

estimation of average precision.

The evaluation measures are Mean average precision (Mean

AP) and the calculation time of the testing phase. Mean AP is

defined as the mean of APs over all 30 target concepts. APs

are calculated as

AP =
1

R

N
∑

r=1

Pr(r)Rel(r), (26)

where R is the number of positive samples, N is the number

of testing samples, Pr(r) is the precision at the rank of r

and Rel(r) takes a value of one if the r-th shot is positive;

otherwise, it takes zero. The AP is estimated by using a method

called inferred average precision (Inf AP), proposed in [31].

B. Experimental Conditions

The following four types of visual and audio features are

extracted from video data.

1) SIFT features with Harris-Affine detector (SIFT-Har)

Scale-invariant feature transform (SIFT) [15] is a low-

level feature extraction method that is widely used for

object categorization. The extracted features are invari-

ant to image scaling and changing illumination. The

Harris-Affine local region detector [27], which is an

extension of the Harris corner detector, provides affine-

invariant local regions. The proposed method uses 32-

dimension SIFT features, whose dimensions are reduced

from 128 to 32 by applying principal component anal-

ysis (PCA). The SIFT features are extracted from every

other frame.

2) SIFT features with Hessian-Affine detector (SIFT-Hes)

SIFT features are extracted with a Hessian-Affine detec-

tor [27], which is complementary to the Harris-Affine

detector. The combination of several different detectors

can improve the robustness against noise. Features are

extracted from every other frame, and PCA is applied

to reduce their dimensions from 128 to 32.



TABLE II
THE AVERAGE NUMBERS OF EXTRACTED FEATURES.

Feature # of features per shot

SIFT-Har 19,536
SIFT-Hes 18,986
SIFTH-Dense 30,000
MFCC 5,160

3) SIFT and hue histogram with dense sampling (SIFTH-

Dense)

To capture color information, SIFT features and hue his-

tograms [16] are combined. As a result, 164 dimensional

low-level features (which consist of 128-dimension SIFT

features and 36-dimension hue histograms) are obtained.

PCA is also used to reduce the dimensions to 32. This

feature is extracted only from key frames by using dense

sampling, which provides a much larger number of low-

level features than sparse sampling such as the Harris-

Affine and Hessian-Affine detectors.

4) MFCC audio features (MFCC)

Mel-frequency cepstral coefficients (MFCCs), which de-

scribe the short-time spectral shape of audio frames, are

extracted to capture audio information. Semantic con-

cepts related to people speaking, talking, and singing can

be detected by using MFCCs since MFCCs are effective

for speech recognition and audio classification. The

38-dimension audio features consist of 12-dimension

MFCCs, 12-dimension ∆ MFCCs, 12-dimension ∆∆

MFCCs, 1-dimension ∆ log-power and 1-dimension

∆∆ log-power are extracted. Here, “∆” means the

derivative of the feature.

SiftGPU [12] and Mikolajczyk’s implementation [27] were

used for SIFT feature extraction. MFCC features were ex-

tracted by using a speech recognition toolkit HTK [29]. The

average numbers of features per shot are summarized in

Table II.

The number of mixtures (vocabulary size) K for GMMs

was 512 for visual features and 256 for audio features. For

computational efficiency, it was assumed that covariance ma-

trices are diagonal. Hyper parameter τ in the MAP adaptation

was set to 20.0, which is the standard value of the toolkit HTK.

Parameter γ in the RBF kernel was γ = d̄−1, where d̄ is pre-

calculated average distance between two GMM supervectors in

training data. SVMs were trained for each semantic concept by

using the libSVM implementation [30]. Combination weights

for the fusion in Eq. (25) were optimized by using two-fold

cross validation on training data.

For tree-structured GMMs, the optimal tree structure Topt

was selected as

Topt = argmin
T ∈S

CT(T ), (27)

where CT(T ) is calculation time when the tree T is used and

S = {T(P1,P2,··· ,PT ) | 1 ≤ T ≤ 5, 1 ≤ Pt ≤ 5}. (28)

The trees T(4,4,5), T(4,5,5), T(3,4,4,5) and T(3,3) were selected

for SIFT-Har, SIFT-Hes, SIFTH-Dense and MFCC, respec-

tively. Parameter α in Eq. (32) was fixed to 0.1.

Threshold cTH for the fast MAP adaptation was set to

0.001. Here, a low threshold was set so as to keep detection

performance high. Experiments using different thresholds were

also conducted (see Subsection IV-C4).

In the experiments, calculation time was measured by using

a single core of Intel Xeon 2.93 GHz CPU. Calculation time

without feature extraction time is reported since some features

were pre-extracted by using GPUs. The average feature extrac-

tion time per shot was 0.38 sec by using a GPU NVIDIA Tesla

M2050.

C. Results

1) Mean Inf APs: Table III summarizes obtained Inf APs

and Mean Inf AP for each types of low-level features and

two fusion methods: visual fusion and multi-modal fusion.

The visual fusion is a combination of three types of visual

features (SIFT-Har, SIFT-Hes, and SIFTH-Dense). The multi-

modal fusion combines the MFCC in addition to the visual

features. As a result, we can see that the Mean Inf APs using

tree-structured GMMs are comparable to those using no trees.

Some example video shots for training and testing sets are

shown in Fig. 3.

2) Calculation time: Table IV lists calculation times for

MAP adaptation using different features and different trees.

The results for binary trees (Tbinary) are also listed in the

table. The calculation speed when the optimal tree is used

on average 4.2 times faster than when trees were not used;

that is, calculation time was reduced by 76.2%.

Fig. 4 shows calculation time for each step in the testing

phase of the proposed semantic indexing system. The testing

cost was reduced, on average, by 56.6% by using tree-

structured GMMs. The second and third highest costs were

for the PCA projection and the SVM prediction (including

calculation of kernels). The SVM prediction can be speed

up by using linear kernels instead of RBF kernels. To avoid

decrease in detection accuracy, a possible compromise is to

use linear kernels for roughly ranking shots and re-evaluate

high-ranked shots by using RBF kernels.

3) Analysis of estimation error: Estimation errors of cik

were evaluated from the mean absolute error (MAE), given as

follows:

MAE =
1

n

n∑

i=1

K∑

k=1

|ĉik − cik|, (29)

where ĉik and cik are given by Eq. (22) and Eq. (3), respec-

tively. The MAE for SIFTH-Dense was 0.32 on average (note

that 0 ≤ MAE ≤ 2). Although we have estimation errors of cik

in the fast MAP adaptation algorithm, they can be cancelled

when the distance in Eq. (24) is calculated since the same

errors occur in training and testing phases.

4) Effect of using different thresholds: Table V lists the

results obtained using different thresholds cTH for the fast MAP

adaptation. The number of leaf nodes that are active (at least

once in Eq. (17) ) and MAE are also listed in the table.

As cTH gets higher, the calculation time shortens, but Mean

Inf AP was decreased when cTH = 0.1 and 0.5. Moreover, the

number of active leaf nodes decreases, and MAE increases.



Fig. 3. Example video shots for training and testing sets. The top 5 results obtained by using our system (multi-modal fusion) are shown in the right side
of the figure.

TABLE III
RESULTING INFERRED AVERAGE PRECISIONS (INF APS) FOR EACH SEMANTIC CONCEPT AND FOR EACH METHOD. MEAN INF APS ON THE TESTING SET

AND MEAN APS ON A TWO-FOLD CROSS-VALIDATION SPLIT OF THE TRAINING DATA ARE ALSO SHOWN.

Semantic concept SIFT-Har SIFT-Hes SIFTH-Dense MFCC Visual fusion Multi-modal fusion
No tree Topt No tree Topt No tree Topt No tree Topt No tree Topt No tree Topt

Airplane Flying 0.064 0.064 0.080 0.078 0.032 0.030 0.001 0.001 0.105 0.105 0.105 0.117

Animal 0.039 0.041 0.034 0.035 0.026 0.020 0.002 0.002 0.068 0.073 0.076 0.076

Asian People 0.024 0.029 0.014 0.015 0.001 0.002 0.041 0.041 0.012 0.009 0.012 0.009
Bicycling 0.039 0.041 0.040 0.033 0.029 0.026 0.000 0.000 0.045 0.056 0.045 0.056

Boat Ship 0.046 0.044 0.040 0.041 0.050 0.049 0.000 0.000 0.085 0.084 0.085 0.084
Bus 0.012 0.012 0.011 0.013 0.007 0.009 0.000 0.000 0.018 0.016 0.021 0.016
Car Racing 0.021 0.019 0.014 0.013 0.060 0.054 0.000 0.000 0.040 0.040 0.056 0.043
Cheering 0.053 0.051 0.044 0.045 0.033 0.037 0.008 0.008 0.052 0.051 0.052 0.051
Cityscape 0.090 0.098 0.109 0.110 0.125 0.108 0.009 0.009 0.180 0.177 0.185 0.179
Classroom 0.004 0.005 0.020 0.022 0.010 0.010 0.000 0.000 0.015 0.011 0.017 0.021
Dancing 0.034 0.036 0.030 0.028 0.034 0.033 0.001 0.001 0.068 0.067 0.068 0.067
Dark-skinned People 0.089 0.088 0.073 0.071 0.118 0.133 0.138 0.139 0.151 0.159 0.208 0.203
Demonstration Or Protest 0.095 0.095 0.065 0.069 0.130 0.121 0.001 0.001 0.137 0.132 0.137 0.132
Doorway 0.084 0.082 0.068 0.067 0.073 0.068 0.000 0.001 0.098 0.097 0.104 0.098
Explosion Fire 0.025 0.025 0.026 0.025 0.045 0.043 0.011 0.011 0.050 0.047 0.050 0.047
Female-Human-Face-Closeup 0.139 0.124 0.096 0.105 0.125 0.121 0.021 0.021 0.169 0.175 0.173 0.178

Flowers 0.030 0.028 0.019 0.017 0.029 0.028 0.001 0.001 0.043 0.044 0.043 0.044

Ground Vehicles 0.159 0.165 0.148 0.150 0.153 0.151 0.021 0.020 0.211 0.210 0.208 0.206
Hand 0.078 0.073 0.062 0.073 0.047 0.055 0.000 0.000 0.092 0.089 0.090 0.090
Mountain 0.059 0.055 0.053 0.054 0.192 0.194 0.003 0.003 0.180 0.169 0.182 0.164
Nighttime 0.072 0.073 0.055 0.054 0.120 0.113 0.002 0.002 0.127 0.133 0.120 0.132
Old People 0.043 0.045 0.040 0.041 0.022 0.023 0.013 0.011 0.059 0.058 0.061 0.063

Running 0.039 0.041 0.047 0.045 0.020 0.018 0.000 0.000 0.073 0.077 0.073 0.077

Singing 0.112 0.105 0.069 0.074 0.069 0.068 0.086 0.090 0.154 0.158 0.182 0.188

Sitting Down 0.002 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.002 0.003 0.003 0.004

Swimming 0.121 0.131 0.162 0.164 0.343 0.339 0.199 0.199 0.173 0.186 0.278 0.276
Telephones 0.008 0.010 0.006 0.006 0.008 0.009 0.001 0.000 0.010 0.012 0.010 0.018

Throwing 0.059 0.059 0.063 0.063 0.019 0.016 0.019 0.020 0.062 0.065 0.062 0.066

Vehicle 0.158 0.150 0.163 0.172 0.150 0.146 0.015 0.014 0.205 0.200 0.205 0.200
Walking 0.093 0.103 0.135 0.138 0.061 0.060 0.002 0.002 0.134 0.142 0.135 0.143

Mean InfAP 0.063 0.063 0.060 0.061 0.071 0.070 0.020 0.020 0.094 0.095 0.102 0.102

Mean AP on validation set 1 0.078 0.078 0.081 0.082 0.105 0.107 0.028 0.028 0.147 0.148 0.153 0.154

Mean AP on validation set 2 0.084 0.085 0.092 0.091 0.111 0.111 0.028 0.027 0.158 0.158 0.162 0.161

It can thus be concluded that calculation time should be

reduced not by setting a high threshold cTH but by selecting a

better-structured tree to keep detection performance high. In

particular, cTH should be equal to or smaller than 0.01.

5) Effect of using different tree structures: Fig. 5 shows

calculation time obtained using different tree structures. The

tree of T(3,4,4,5) was the best in terms of calculation time. We

can see that the tree should not be too deep to improve the

speed of MAP adaptation. Fig. 6 shows MAE obtained using

different tree structures. MAE can be reduced by changing the

tree structure. However, we conclude that any tree structures

will not be the cause for decreasing final performance since

there was no decrease in Mean Inf AP even in the case of

MAE = 0.53 in Table V.

6) Comparison With Other Methods: Fig. 7 compares Mean

Inf APs obtained in the above-described experiment with those

values obtained by the other methods used at TRECVID 2010.

Our fusion methods got better results than the best result

reported at TRECVID 2010 (0.900).

Fig. 8 shows the results of significance test obtained by



Fig. 4. Calculation time for each step (The lower bars for each feature show
the time in the case that the optimized tree was used)

TABLE IV
CALCULATION TIME (SEC) FOR MAP ADAPTATION. CALCULATION TIME

WAS MEASURED BY USING A SINGLE CORE OF INTEL XEON 2.93 GHZ

CPU.

Feature No tree Topt Tbinary

SIFT-Har 1.62 0.49 0.98
SIFT-Hes 1.67 0.48 1.00
SIFTH-Dense 2.89 0.81 1.89
MFCC 0.22 0.03 0.08

applying partial randomization test (p < 0.05). The muti-

modal fusion was significantly better than the visual fusion.

Our method performed better than the other methods in

TRECVID 2010 for semantic concepts related to human and

human actions such as “Singing” and “Dancing” since we used

audio features. However, there was no significant difference

between the muti-modal fusion and the top result in TRECVID

2010. This result shows that the performance can be improved

by combining a larger number of visual features since the top

ranked methods in TRECVID 2010 used more than 10 types

of visual features.

Although our final goal is to develop a generic methods for

automatically assigning semantic concepts to videos, overall

performances are still low compared with that of human

annotation. One future challenge is detection of many kinds

of semantic concepts; however, we have to consider which

concepts are really useful for applications of video search.

V. CONCLUSION

A fast and accurate semantic indexing system using fast

MAP adaptation and GMM supervectors was proposed. A

tree-structured GMM was constructed to quickly calculate

posterior probabilities for each mixture component of a GMM.

The calculation time for MAP adaptation was reduced by

76.2% from the conventional method, while high detection

performance was maintained. Our future work will focus on a

GPU implementation of the fast MAP adaptation and feature

extraction.

TABLE V
COMPARISON OF MEAN INF AP, CALCULATION TIME (SEC) FOR MAP

ADAPTATION, NUMBER OF LEAF NODES |VA| AND MEAN ABSOLUTE

ERROR (MAE) OF cik BY USING DIFFERENT THRESHOLDS cTH FOR THE

SIFTH-DENSE FEATURE.

cTH Mean Inf AP Calc. time |VA| MAE

0.001 0.695 0.81 17.0 0.32
0.01 0.699 0.68 11.2 0.53
0.1 0.660 0.59 7.3 0.80
0.5 0.641 0.53 5.4 0.98

Fig. 5. Mean absolute error (MAE) of cik obtained using different tree
structures (the SIFTH-Dense feature and cTH = 0.001 were used). 1,364
trees of depth at most 5 that have at most 5 children per node and the binary
tree are tested. All MAE were less than 0.05.

APPENDIX

For the initialization for k-means clustering (Step 2 in the

tree-construction algorithm in Sec III-C),we use the min-max

selection method. This method is known to provides better

initial values than random selection. This method first selects

from G(v) a node set whose nodes are distant from each other,

and then sets a cluster center at an internal dividing point

between node v and each of the selected nodes.

2-1) Choose the mixture component g̃(c1) that has the largest

distance to g(v), i.e.,

g̃(c1) = argmax
g∈G(v)

d(g, g(v)). (30)

2-2) For p = 2, · · · , P , choose g̃(cp) from the rest of mixture

components which belong to the node v and not yet

assigned to any child node, i.e.,

g̃(cp) = argmax
g∈G

(v)
p−1

min
1≤p′<p

d(g, g̃(c
p′ )), (31)

where G
(v)
p−1 = G(v) \ {g̃(c1), · · · , g̃(cp−1)}. If G

(v)
p−1 is

an empty set, the child node is deleted from the tree.

2-3) For p = 1, 2, · · · , P , set the parameters of child Gaus-



Fig. 6. Calculation time obtained using different tree structures (the SIFTH-
Dense feature and cTH = 0.001 were used). 1,364 trees of depth at most 5
that have at most 5 children per node and the binary tree are tested. T(3,4,4,5)
was the best tree and was selected as the optimized tree.

Fig. 7. Comparison of Mean Inf AP with runs of the TRECVID 2010.

sian pdfs g
(cp) as follows:

g
(cp)

←N (·|µ̄, Σ̄), (32)

µ̄ =αµ̃
(cp) + (1 − α)µ(v)

, (33)

Σ̄ =α(Σ̃(cp) + µ̃
(cp)(µ̃(cp))T)

+ (1 − α)(Σ(v) + µ
(v)(µ(v))T)

− µ̄µ̄
T
, (34)

where 0 ≤ α ≤ 1 is a weight parameter to mix the

selected pdf g̃
(cp) = N (·|µ̃(cp)

, Σ̃
(cp)) and their parent

pdf g
(v) = N (·|µ(v)

, Σ
(v)).
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