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Abstract

Genome-wide association study (GWAS) methods applied to bacterial genomes have

shown promising results for genetic marker discovery or detailed assessment of marker

effect. Recently, alignment-free methods based on k-mer composition have proven their

ability to explore the accessory genome. However, they lead to redundant descriptions and

results which are sometimes hard to interpret. Here we introduce DBGWAS, an extended k-

mer-based GWASmethod producing interpretable genetic variants associated with distinct

phenotypes. Relying on compacted De Bruijn graphs (cDBG), our method gathers cDBG

nodes, identified by the association model, into subgraphs defined from their neighbourhood

in the initial cDBG. DBGWAS is alignment-free and only requires a set of contigs and pheno-

types. In particular, it does not require prior annotation or reference genomes. It produces

subgraphs representing phenotype-associated genetic variants such as local polymor-

phisms and mobile genetic elements (MGE). It offers a graphical framework which helps

interpret GWAS results. Importantly it is also computationally efficient—experiments took

one hour and a half on average. We validated our method using antibiotic resistance pheno-

types for three bacterial species. DBGWAS recovered known resistance determinants such

as mutations in core genes inMycobacterium tuberculosis, and genes acquired by horizon-

tal transfer in Staphylococcus aureus and Pseudomonas aeruginosa—along with their MGE

context. It also enabled us to formulate new hypotheses involving genetic variants not yet

described in the antibiotic resistance literature. An open-source tool implementing

DBGWAS is available at https://gitlab.com/leoisl/dbgwas.

Author summary

Genome-wide association studies (GWAS) help explore the genetic bases of phenotype

variation in a population. Our objective is to make GWAS amenable to bacterial genomes.

These genomes can be too different to be aligned against a reference, even within a single
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species, making the description of their genetic variation challenging. We test the associa-

tion between the phenotype and the presence in the genomes of DNA subsequences of

length k – the so-called k-mers. These k-mers provide a versatile descriptor, allowing to

capture genetic variants ranging from local polymorphisms to insertions of large mobile

genetic elements. Unfortunately, they are also redundant and difficult to interpret. We

rely on the compacted De Bruijn graph (cDBG), which represents the overlaps between k-

mers. A single cDBG is built across all genomes, automatically removing the redundancy

among consecutive k-mers, and allowing for a visualisation of the genomic context of the

significant ones. We provide a computationally efficient and user-friendly implementa-

tion, enabling non-bioinformaticians to carry out GWAS on thousands of isolates in a few

hours. This approach was effective in catching the dynamics of mobile genetic elements in

Staphylococcus aureus and Pseudomonas aeruginosa genomes, and retrieved known local

polymorphisms inMycobacterium tuberculosis genomes.

Introduction

The aim of Genome-Wide Association Studies (GWAS) is to identify associations between

genetic variants and a phenotype observed in a population. They have recently emerged as an

important tool in the study of bacteria, given the availability of large panels of bacterial

genomes combined with phenotypic data [1–7].

GWAS rely on a representation of the genomic variation as numerical factors. The most

common approaches are based on single nucleotide polymorphisms (SNPs), defined by align-

ing all genomes of the studied panel against a reference genome [1, 3, 4] or against a pangen-

ome built from all the genes identified by annotating the genomes [8], and on gene presence/

absence, using a pre-defined collection of genes [5, 7]. The use of a reference genome becomes

unsuitable when working on bacterial species with a large accessory genome—the part of the

genome which is not present in all strains. On the other hand, methods focusing on genes are

unable to cover variants in noncoding regions, including those related to transcriptional and

translational regulation [9, 10]. Moreover, some poorly studied species still lack a representa-

tive annotation [11].

To circumvent these issues and make bacterial genomes amenable to GWAS, recent studies

have relied on k-mers: all nucleotide substrings of length k found in the genomes [2, 5, 6].

The presence of k-mers in genomes can account for diverse genetic events such as the acquisi-

tion of SNPs, (long) insertions/deletions and recombinations. Unlike SNP- or gene-based

approaches, k-mer analyses do not require a reference genome or any assumption on the

nature of the causal variants and can even be performed without assembling the genome

sequences [12].

While k-mers can reflect any genomic variation in a panel, they do not themselves represent

biological entities. Translating the result of a k-mer-based GWAS into meaningful genetic var-

iants typically requires mapping a large and redundant set of short sequences [2, 5, 6, 13].

Recent studies have suggested reassembling the significantly associated k-mers to reduce

redundancy and retrieve longer marker sequences [6, 13]. Nonetheless, k-mer representation

often loses in interpretability what it gains in flexibility, and the best way to encode the geno-

mic variation in bacterial GWAS is not yet clearly defined [14, 15].

Our approach, coined DBGWAS, for De Bruijn Graph GWAS, bridges the gap between, on

the one hand, SNP- and gene-based representations lacking the right level of flexibility to

cover complete genomic variation, and, on the other hand, k-mer-based representations
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which are flexible but not readily interpretable. We rely on De Bruijn graphs [16] (DBGs),

which are widely used for de novo genome assembly [17, 18] and variant calling [12, 19]. These

graphs connect overlapping k-mers (here DNA fragments), yielding a compact summary of all

variations across a set of genomes. Fig 1 illustrates the construction of such a graph for a simple

example, where the only variation among the aligned genomes is a point mutation. DBGs also

accommodate more complex disparities including rearrangements and insertions/deletions

(S1 Fig).

DBGWAS relies on the ability of compacted DBGs (cDBGs) to eliminate local redundancy,

reflect genomic variations, and characterise the genomic environment of a k-mer at the popu-

lation level. More precisely, we build a single cDBG from all the genomes included in the asso-

ciation study (in practice, up to thousands). The graph nodes—called unitigs—represent, by

construction, sequences of variable length and are at the right level of resolution for the set of

genomes considered, taking into account adaptively the genomic variation. The unitigs are

individually tested for association with the phenotype, while controlling for population struc-

ture. The unitigs found to be phenotype-associated are then localised in the cDBG. Subgraphs

induced by their genomic environment are extracted. They often provide a direct interpreta-

tion in terms of genetic events which results from the integration of three types of information:

1) the topology of the subgraph, reflecting the nature of the genetic variant, 2) themetadata

represented by node size and colour, allowing us to identify which unitigs in the subgraph are

associated to a particular phenotype status, and 3) an optional sequence annotation helping to

detect unitig mapping to—or near—a known gene.

We benchmarked our novel method using several antibiotic resistance phenotypes within

three bacterial species of various degrees of genome plasticity:Mycobacterium tuberculosis,

Staphylococcus aureus and Pseudomonas aeruginosa. The subgraphs built from significant uni-

tigs described SNPs or insertions/deletions in both core and accessory regions, and were con-

sistent with results obtained with a resistome-based association study. In addition, novel

genotype-to-phenotype associations were also suggested.

Fig 1. Compacted DBG construction over a set of sequences differing by a single point mutation. In this example two sequences s1 and s2 of
length 12 differ by a single letter. (A) All k-mers (k = 4) present in these sequences are listed. A link is drawn between two k-mers when the
k − 1 = 3 last nucleotides of the first k-mer equal the 3 first nucleotides of the second k-mer. (B) The bubble pattern represents the SNP C to A;
each branch of the bubble represents an allele. (C) Linear paths of the graph are compacted; the compacted DBG of the example only contains
four nodes (unitigs) and represents the same variation as the original DBG, which contained 13 nodes (k-mers).

https://doi.org/10.1371/journal.pgen.1007758.g001
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Results

We developed DBGWAS, available at https://gitlab.com/leoisl/dbgwas, and validated it on

panels for several bacterial species for which genome sequences and antibiotic resistance phe-

notypes were available. DBGWAS comprises three main steps: it first builds a variant matrix,

where each variant is a pattern of presence/absence of unitigs in each genome. Each variant is

then tested for association with the phenotype using a linear mixed model, adjusting for the

population structure. Finally, it uses the cDBG neighbourhood of significantly associated uni-

tigs as a proxy for their genomic environment. DBGWAS outputs a set of such subgraphs

ordered by minq, which is the smallest q-value observed over unitigs in each subgraph. The top

subgraphs therefore represent the genomic environment of the unitigs most significantly asso-

ciated with the tested phenotype. Fig 2 summarises the main steps of the process. A detailed

description of the pipeline is presented in the Methods section.

Here we rely on a few experiments to illustrate how the subgraphs output by DBGWAS can

be read as genetic events. We then benchmark DBGWAS against two other k-mer-based

approaches and one resistome-based approach. DBGWAS recovers known variants, while sug-

gesting novel candidates out of the range of the resistome-based approach. We also find it to

be more computationally efficient and to provide more interpretable outputs than the other

k-mer-based methods.

A synthetic description of the discussed subgraphs is provided in Table 1, while a descrip-

tion of the top subgraphs obtained for all tested antibiotics is provided in S3, S4, and S5 Tables.

Fig 2. DBGWAS pipeline.DBGWAS takes as input draft assemblies and phenotype data for a panel of bacterial strains. A variant matrix X is
built in step 1 using cDBG nodes (called unitigs). Variants are tested in step 2 using a linear mixed model taking into account the population
structure. Significant variants are post-processed in step 3 to provide an interactive interface assisting their interpretation.

https://doi.org/10.1371/journal.pgen.1007758.g002
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Table 1. Resistance determinants identified by DBGWAS for S. aureus (SA),M. tuberculosis (TB) and P. aeruginosa (PA) panels.

Panel Phenotype Rank Sign.

unitigs

minq Est.

effect

Annotation Type Knowledge

on markers

SA Methicillin 1 71/565 7.68 × 10−188 0.949 mecA + 7000 bp of SC Cmec MGE Pos

2 99/735 3.39 × 10−72 0.865 6000 bp of SCCmec MGE r2 = 0.96

3 11/190 2.14 × 10−61 0.813 2000 bp of SCCmec MGE r2 = 0.94

4 13/117 2.29 × 10−37 0.957 1500 bp of SCCmec MGE r2 = 0.93

Ciprofloxacin 1 7/57 8.67 × 10−104 -0.893 parCQRDR LPG Pos

2 7/31 2.21 × 10−76 0.955 gyrAQRDR LPG Pos

Erythromycin 1 110/510 2.69 × 10−100 0.823 ermC + circular plasmid MGE Pos

Fusidic acid 1 7/50 2.75 × 10−136 -0.910 fusA LPG Pos

2 214/882 7.94 × 10−49 0.924 fusC + SCC fusCcassette MGE Pos

3 22/260 5.35 × 10−43 0.924 1,500 bp of SCCfusC MGE r2 = 0.98

3 1/72 5.35 × 10−43 0.924 200 bp of SCCfusC MGE r2 = 0.98

5 5/64 2.02 × 10−22 -0.888 purN LPG r2 = 2 × 10−3

Trimethoprim 1 7/54 8.38 × 10−24 0.969 folA LPG Pos

2 3/41 9.30 × 10−18 -0.966 btw. hyp. prot. & VOC prot. LPN r2 = 0.19

3 11/70 9.30 × 10−18 -0.966 ybaK LPG r2 = 0.44

4 2/30 6.82 × 10−10 -0.632 mqo1 LPG r2 = 0.29

Gentamicin 1 173/1193 1.30 × 10−205 0.873 aac(6’)gene within a plasmid MGE Pos

2 127/367 9.02 × 10−75 0.751 seq. of plasmid carrying aac(6’) MGE r2 = 0.38

3 2/23 9.01 × 10−53 0.634 seq. of plasmid carrying aac(6’) MGE r2 = 0.40

4 1/29 1.04 × 10−40 0.579 seq. of plasmid carrying aac(6’) MGE r2 = 0.48

5 2/56 1.49 × 10−33 -0.831 odhB LPG r2 = 8 × 10−5

TB Rifampicin 1 36/115 4.84 × 10−70 -0.577 rpoBRRDR LPG Pos

2 6/37 4.35 × 10−20 -0.355 katG LPG CR

3 5/41 4.02 × 10−8 -0.224 embBM306V LPG Pos

Streptomycin 1 5/30 3.70 × 10−31 0.544 rpsL(30S ribos.protein S12) LPG Pos

2 6/37 1.06 × 10−28 -0.428 katG LPG CR

3 25/113 2.87 × 10−16 -0.339 rpoBRRDR LPG CR

4 6/45 1.40 × 10−9 -0.271 embBM306V LPG CR

5 8/31 2.86 × 10−9 -0.535 rrs, 16S rRNA C517T LPG Pos

6 13/69 9.18 × 10−5 -0.216 gyrAQRDR LPG CR

7 2/20 1.20 × 10−3 0.739 espG1 LPG r2 = 3 × 10−3

Ofloxacin 1 31/85 9.66 × 10−144 -0.888 gyrAQRDR LPG Pos

2 9/68 1.59 × 10−4 0.507 ubiA(Rv3806c) LPG CR

3 3/32 3.86 × 10−2 -0.746 Rv3909 LPG r2 = 9 × 10−3

Ethionamide 1 9/39 7.86 × 10−11 -0.462 fabG1promoter LPN Pos

2 15/47 5.16 × 10−10 -0.406 gyrAQRDR LPG CR

3 4/26 5.55 × 10−4 0.319 rrs, 16S rRNA A1401G LPG CR

XDR 1 6/68 3.66 × 10−39 0.905 rpoBI1187T (out. RRDR) LPG Ukn

1 3/27 3.66 × 10−39 0.905 Rv2000 LPG r2 = 1

3 3/24 9.58 × 10−36 0.883 espApromoter LPN r2 = 0.98

PA Amikacin 1 4/83 5.86 × 10−9 0.621 SNP in aac(6’) LPG Pos

2 3/82 1.37 × 10−6 0.662 DEAD/DEAH box helicase LPG r2 = 0.55

3 38/315 2.21 × 10−6 0.523 plasmid mapping on pHS87b MGE r2 = 0.17

Levofloxacin 1 5/27 7.21 × 10−29 -0.884 gyrAQRDR LPG Pos

2 5/29 5.68 × 10−6 -0.737 parCQRDR LPG Pos

3 5/38 1.87 × 10−2 0.688 Histidine kinase/response regulator LPG r2 = 0.17

For each antibiotic, we report subgraphs with their rank, number of significant unitigs over all unitigs in the subgraph (Sign. unitigs), q-value of the unitig with the

lowest q-value (minq), the corresponding estimated effect (b̂ coefficient of the linear mixed model) and annotation of the subgraph. The type of event represented by the

subgraph is colour-coded as: yellow for MGE, light blue for local polymorphism in gene (LPG), and dark blue for local polymorphism in noncoding region (LPN).

Known resistance markers are indicated in dark green (Pos), determinants whose presence was described to be caused by co-resistance in orange (CR), unknown

variants arriving at the first rank in grey (Ukn). For other subgraphs, an r2 value relative to the first subgraph is provided as an estimation of linkage disequilibrium with

the first subgraph. It was computed between the most significant patterns of the first and the considered subgraphs.

https://doi.org/10.1371/journal.pgen.1007758.t001
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The subgraphs themselves are available at http://pbil.univ-lyon1.fr/datasets/DBGWAS_

support/experiments/#DBGWAS_all_results.

Coloured bubbles highlight local polymorphism in core genes, accessory
genes and noncoding regions

For P. aeruginosa levofloxacin resistance, the subgraph obtained with the lowest minq
highlighted a polymorphic region in a core gene (Fig 3A). Indeed, it showed a linear structure

containing a complex bubble, with a fork separating susceptible (blue) and resistant (red)

strains. The annotation revealed that all unitigs in this subgraph mapped to the quinolone

resistance-determining region (QRDR) of the gyrA gene. gyrA codes for a subunit of the DNA

gyrase targeted by quinolone antibiotics such as levofloxacin and its alteration is therefore a

prevalent and efficient mechanism of resistance [20, 21]. In all our experiments related to

quinolone resistance, DBGWAS identified QRDR mutations in either gyrA or parC, which

codes for another well-known quinolone target: P. aeruginosa levofloxacin (first subgraph,

gyrA: minq = 7.21 × 10−29 and second, parC: 5.68 × 10−06), S. aureus ciprofloxacin (first, parC:

minq = 8.67 × 10−104 and second, gyrA: 2.21 × 10−76), and ofloxacin resistance inM. tuberculo-

sis, whose genome does not contain the parC gene [22] (first, gyrA: minq = 9.66 × 10−144).

For P. aeruginosa amikacin resistance, the top subgraph (minq = 5.86 × 10−9) highlighted a

SNP in an accessory gene (Fig 3B). As in Fig 3A, it contained a fork separating a blue and a red

node. However, other remaining nodes were not grey: they represented an accessory sequence

because they were not present in all the strains. Most of these nodes were pale-red, showing

that the accessory sequence was more frequent in resistant samples. The annotation revealed

that this subgraph corresponded to aac(6’), a gene coding for an aminoglycoside 6-acetyltrans-

ferase, an enzyme capable of inactivating aminoglycosides, such as amikacin, by acetylation

[23]. Most unitigs in this gene had a low association with resistance, except for the ones

describing this particular SNP. Mapping the sequence of these unitigs on the UniProt database

[24] revealed an amino-acid change at L83S, right in the enzyme binding site. This SNP was

previously shown to be responsible for substrate specificity alteration in a strain of Pseudomo-

nas fluorescens [25]. It appears to increase the amikacin acetylation ability of aac(6’), making

its association to amikacin resistance more significant than the gene presence itself.

Finally, forM. tuberculosis ethionamide resistance, the top subgraph (minq = 7.86 × 10−11,

Fig 3C) represented a polymorphic region in a core gene promoter. The subgraph was mostly

grey and linear with a localised blue and red fork. The most reliable annotation for this sub-

graph was fabG1 (also known asmabA), a core gene previously shown to be involved in ethi-

onamide and isoniazid resistance [26, 27]. None of the significantly associated unitigs mapped

to the fabG1 gene, but their close neighbours did (highlighted in Fig 3C by black circles), sug-

gesting that the detected variant was located in the promoter region of the gene. This was con-

firmed by mapping the significant unitig sequences using the Tuberculosis Mutation database

of themubii resource [28].

Long single-coloured paths denote mobile genetic element insertions

For S. aureus resistance to methicillin, the top subgraph (minq = 7.68 × 10−188), shown in Fig

3D, revealed a gene cassette insertion. It contained a long path of red nodes, and a branching

region including another red node path. The first path mapped to themecA gene, extensively

described in this context and known to be carried by the Staphylococcal Cassette Chromosome

mec (SCCmec) [21, 29, 30]. The other part of the subgraph represented a>5,000 bp fragment

of the cassette. It was less linear because it summarised several types of the cassette differing by

their structure and gene content [29]. The next subgraphs represented other regions of the
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same cassette. Interestingly, retaining a greater number of unitigs to build the subgraphs leads

to merging these individual subgraphs, representing related genomic regions, into a single

one. This can be done by increasing the Significant Features Filter (SFF) parameter value,

which defines the unitigs used to build the subgraphs. By default, the unitigs corresponding to

Fig 3. Different types of genetic events identified by DBGWAS. Each subgraph represents a distinct genetic event. Colours are continuously
interpolated between blue for susceptible unitigs and red for resistant ones. Untested unitigs, present in> 99% or< 1% of the strains, are shown
in grey. Nodes found to be not significative are shown with a transparency degree. The node size relates to its allele frequency: the larger the
node, the higher the allele frequency. Circled black nodes map to annotated genes. The two tables in each panel provide information on the
sugraph nodes. As an example, the subgraph in panel (A) is composed of 27 unitigs, 5 of which were significantly associated with resistance. All
unitigs of this subgraph mapped to the gyrA gene. The subgraphs presented in the four other panels correspond to the top subgraphs (with
lowest minq) obtained for different panels/phenotypes. All subgraphs are snapshots taken from DBGWAS interactive visualisation and are
available online.

https://doi.org/10.1371/journal.pgen.1007758.g003
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the 100 lowest q-values are retained (SFF = 100). Increasing the SFF value to 150 (150th q-

value = 1.60 × 10−27) allowed us to reconstruct the entire SCCmec cassette, as shown in S3 Fig.

For S. aureus erythromycin resistance, a unique subgraph was generated (minq =

2.69 × 10−100). As shown in Fig 3E, the subgraph described the circular structure of a 2,500 bp-

long plasmid known to carry the causal ermC gene together with a replication and mainte-

nance protein in strong linkage disequilibrium with ermC [30, 31].

For P. aeruginosa amikacin resistance, the third subgraph (minq = 2.21 × 10−6) represented

a 10,000 bp plasmid acquisition. Using the NCBI nucleotide database [32], most of the unitigs

in this subgraph mapped to the predicted prophage regions of an integrative and conjugative

plasmid, whose structure corresponds to a plasmid, pHS87b, recently described in the amika-

cin resistant P. aeruginosaHS87 strain [33]. S4 and S5 Figs provide more examples of MGEs

recovered by DBGWAS, and the Interpretation of significant unitigs (step 3) subsection of the

Methods section discusses SFF default value and tuning.

DBGWAS reports expected variants without prior knowledge

Although resistance determinants are not perfectly or exhaustively known for all species, some

resistance mechanisms are well described. This is the case of gyrA and parC alteration in fluo-

roquinolone resistance in P. aeruginosa [20], and of the alteration of two streptomycin targets:

the ribosomal protein S12 (coded by rpsL) and the 16S rRNA (coded by rrs) inM. tuberculosis

[34]. Here we verify the ability of bacterial GWAS methods to recover these known mecha-

nisms. We compared DBGWAS results to those obtained by applying the same association

model to a collection of known resistance genes and SNPs [7, 35] (see the Resistome-based

association studies subsection of the Methods section), and to two other recent k-mer-based

methods: pyseer [6, 36], and HAWK [13].

For P. aeruginosa levofloxacin resistance (Table 2), both DBGWAS and pyseer identified

the two expected known causal determinants reported by the prior resistome-based study:

gyrA and parC, while HAWK only reported gyrA. pyseer reported 224 k-mers, all mapping to

gyrA and parC, while the other methods reported less than 10 features (subgraphs or reassem-

bled k-mers), among which were several unknown, potentially new candidate markers.

ForM. tuberculosis streptomycin resistance (Table 3), the four methods reported the two

expected known causal determinants rpsL and rrs. However, while the resistome-based study

Table 2. Resistance determinants found by the four methods for P. aeruginosa levofloxacin resistance.

Legend resistome-based DBGWAS pyseer HAWK

Time (mem) 37m (7.2 GB) 21m (3.2 GB) 24h22m (14.5 GB) 39m (4.2 GB)

Nb reported 2 variants 5 subgraphs 224 k-mers 8 reassembled k-mers

Known
positive

gyrA (2.11 × 10−22) gyrA (7.21 × 10−29) gyrA (1.97 × 10−17) gyrA (2.82 × 10−14)

parC (1.83 × 10−5) parC (5.68 × 10−6) parC (5.68 × 10−9)

Unknown HK/RR (1.87 × 10−2) tnp (1.66 × 10−14)

tnp NC near tnp

topA

This table presents the annotation of the features identified by the tested methods with default parameters. The total number of reported features, as well as the

execution time and memory load (in Gigabytes) are given in the header. For k-mer-based methods, annotations were retrieved by mapping unitig/k-mer sequences to

the resistance and Uniprot databases (see Interpretation of significant unitigs (step 3) subsection of the Methods section), and completed when needed by Blast on NCBI

Nucleotide database. Green cells correspond to resistance determinants already described in the literature. Grey cells represent unknown determinants. Within each

category, annotations are ordered by increasing minimum p/q-values. p/q-values are reported only for the most significant annotations. For each method, the

annotation with the lowest p/q-values is underlined. ‘NC’ means noncoding region and ‘tnp’ transposase.

https://doi.org/10.1371/journal.pgen.1007758.t002
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and DBGWAS methods ranked the causal rpsL determinant first, pyseer and HAWK reported

their lowest p/q-values for the false positive katG determinant. katG and other false positives

caused by co-resistance were among the top-ranked features for all methods and this is a well

described phenomenon inM. tuberculosis species [34, 37].

Additional results for all antibiotics can be found in S6 and S7 Tables for resistome-based

association studies, and in S3 and S5 Tables for DBGWAS.

DBGWAS provides novel hypotheses

In addition to resistance markers, all three k-mer-based approaches reported several unknown

variants, not described in the context of resistance. Among them, in the context of streptomy-

cin resistance, a noncoding region between a transposase and a PPE-family protein was

Table 3. Resistance determinants found by the four methods forM. tuberculosis streptomycin resistance.

Legend resistome-based DBGWAS pyseer HAWK

Time (mem) 1h31m (2.1 GB) 42m (4.3 GB) 14h14m (102.4 GB) 3h01m (3.7 GB)

Nb reported 28 variants 24 subgraphs 85,011 k-mers 2,038 reassembled k-mers

Known
positive

rpsL (1.96 × 10−33) rpsL (3.70 × 10−31) rpsL (4.85 × 10−55) rpsL (5.72 × 10−47)

rrs (5.40 × 10−8) rrs (2.86 × 10−9) rrs (1.63 × 10−14) rrs (3.45 × 10−20)

Determinant described for other antibiotics katG (2.61 × 10−30) katG (1.06 × 10−28) katG (2.12 × 10−71) katG (1.44 × 10−57)

rpoB rpoB rpoB embB

gidB embB embB kasA

gyrA gyrA ubiA embC

embB gidB pncA gyrA

fabG1 promoter rpoC fabG1 promoter iniA

pncA fabG1 promoter gyrA embA

rpoC ubiA gidB embR

inhA ethA gidB

embA tsnR

embC rpoB

pncA

ethA

Unknown
(top list)

espG1 (1.20 × 10−3) NC near tnp/PE (1.13 × 10−19) NC near tnp/PPE (2.93 × 10−57)

rpsN Rv0270 tnp

NC near tnp/PPE Rv2665 Rv2825c/Rv2828c

rnj Rv2743c 13E12 repeat family protein

Rv2672 Rv2522c PPE

espA promoter NC near tnp/PPE CRISPR repeats, down Cas genes

Rv2456c promoter guaA mmpL14

whiB6 kdpD esxM

. . . . . . . . .

This table presents the annotation of the features identified by the tested methods with default parameters. The total number of reported features, as well as the

execution time and memory load (in Gigabytes) are given in the header. For k-mer-based methods, annotations were retrieved by mapping unitig/k-mer sequences to

the resistance and Uniprot databases (see Interpretation of significant unitigs (step 3) subsection of the Methods section), and completed when needed by Blast on NCBI

Nucleotide database. Green cells correspond to resistance determinants already described in the literature, orange cells to resistance determinants described for

association with other antibiotics. The annotations not found by the resistome-based strategy are written in bold. Grey cells represent unknown determinants. Within

each category, annotations are ordered by increasing minimum p/q-values. p/q-values are reported only for the most significant annotations. For each method, the

annotation with the lowest p/q-values is underlined. ‘NC’ means noncoding region, ‘tnp’ transposase, ‘PE’ stands for PE-family protein and ‘PPE’ for PPE-family

protein.

https://doi.org/10.1371/journal.pgen.1007758.t003
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reported by the three methods but, as expected, not by the resistome-based approach, as only

resistance genes were included in this analysis. More generally, knowledge-based approaches

such as SNP-, gene- or resistome-based GWAS can be limited in the context of new marker

discovery, since any causal variant absent from the chosen reference would remain untested.

Besides being time-consuming, preparing such a list of genetic variants can be problematic for

bacterial species without extensive annotation or reference availability. Here we describe asso-

ciations identified by DBGWAS and which were never described in the antibiotic resistance

literature.

In our P. aeruginosa panel, the second subgraph obtained for amikacin resistance (minq =

1.37 × 10−6) gathered unitigs mapping to the 3’ region of a DEAD/DEAH box helicase, known

to be involved in stress tolerance in P. aeruginosa [38]. The unitig with the lowest q-value was

present in 13 of 47 resistant strains and in only 1 of 233 susceptible strains and represented a

C-C haplotype summarising two mutated positions: 2097 and 2103. This annotation was not

an artefact of the population structure, properly taken into account by the linear mixed model.

Indeed the 13 resistant strains corresponded to distinct clones belonging to two phylogroups,

one of them containing the susceptible strain. In P. aeruginosa levofloxacin resistance, the

third subgraph (minq = 1.87 × 10−2) represented a L650M amino-acid change in a hybrid sen-

sor histidine kinase/response regulator. Such two-components regulatory systems play impor-

tant roles in the adaptation of organisms to their environment, for instance in the regulation

of biofilm formation in P. aeruginosa [39], and as such may play a role in antibiotic resistance.

In S. aureus, polymorphisms within genes not known to be related to resistance were

identified for several antibiotics: purN (minq = 2.02 × 10−22) for fusidic acid, odhB (minq =

1.49 × 10−33) for gentamicin, ybaK andmqo1 (minq = 9.30 × 10−18, resp. 6.82 × 10−10) for tri-

methoprim. None of these genes have been associated with antibiotic resistance before, to the

best of our knowledge.

InM. tuberculosis, polymorphisms in two genes encoding proteins involved in cell wall and

cell processes, espG1 and espA, were found associated with streptomycin (seventh subgraph,

minq = 9.43 × 10−4) and XDR phenotype (third subgraph, minq = 9.58 × 10−36), respectively.

Again, these genes have never been reported in association with antibiotic resistance before.

Although experimental validation would be required to tell whether these hypotheses are

false positive (e.g., in linkage with causal variants) or actual resistance mechanisms not yet doc-

umented, DBGWAS is a valuable tool to screen for novel candidate markers. Moreover it pro-

vides a first level of variant description (SNPs in gene or promoter, MGE, etc) which can

directly drive the biological validation.

DBGWAS facilitates the interpretation of k-mer-based GWAS

Other k-mer-based approaches are as agnostic as DBGWAS and were also able to provide

novel hypotheses, but interpreting their output can prove more challenging than a SNP/gene-

based GWAS. In theM. tuberculosis streptomycin resistance experiment for example, they

reported several thousands of features, while DBGWAS reported only 24 annotated subgraphs

without missing any expected determinant (see Table 3). The thousands of k-mers generated

by HAWK and pyseer are of course also amenable to interpretation: to build our Table 3, we

mapped these k-mers to references and extracted annotated variants which showed at least

one hit. However, doing so required additional efforts and a working knowledge of the most

appropriate annotated references. In addition, k-mers which do not map to the chosen refer-

ence cannot be interpreted. By contrast, DBGWAS always returns a subgraph containing these

k-mers. Even when no annotation exists, the topology and colours of the subgraphs may hint

towards the nature of the causal variant.
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In addition to providing context for significant k-mers and guiding their interpretation as

SNPs or MGEs, DBGWAS clustering of close variants into a subgraph can describe hypervari-

able regions as single entities, and highlight highly associated haplotypes. As an example, the

top subgraph for rifampicin resistance (minq = 4.84 × 10−70) contained 36 significant unitigs,

distinguishing between susceptible (blue) and resistant (red) strains. Instead of a single point

mutation, this subgraph represented a polymorphic region known as the rifampicin resis-

tance-determining region (RRDR) of the rpoB gene. The unitig with the lowest q-value cov-

ered several mutant positions, defining a particular haplotype strongly associated with

rifampicin susceptibility. Where DBGWAS reported in this case only one subgraph, pyseer,

for instance, reported 470 k-mers with the rpoB annotation, and the resistome-based associa-

tion study reported in this case 4 distinct SNPs in rpoB (S6 Table). In another user-submitted

example, DBGWAS identified mosaic alleles of three pbp genes involved in beta-lactam resis-

tance of Streptococcus pneumoniae. Like in the RRDR example, it returned five subgraphs cor-

responding to the three genes—three subgraphs were annotated pbp2x and represented three

distinct polymorphic regions of the gene. Each subgraph summarised the polymorphism of

the gene, as opposed to one separate feature for each SNP.

Admittedly, some subgraphs output by DBGWAS are not readily interpretable: they are

neither coloured bubbles highlighting SNPs, nor long single-coloured paths denoting MGE

insertions. This was the case of several subgraphs produced for P. aeruginosa amikacin resis-

tance, and presented in S6 Fig. Genetic variants inserted in variable regions, for example, lead

to subgraphs with a high average degree, or to very large subgraphs. The fourth subgraph for

instance (minq = 2.21 × 10−6) contains a path of three red (positively-associated) nodes lying

in a noncoding region between variable accessory genes. Consequently, their neighbour uni-

tigs branch to various other unitigs, making the structure complex and hard to interpret. Com-

plex subgraphs also arise when several associated variants have overlapping neighbourhoods

(as defined in the Graph neighbourhoods subsection in the Methods section, and tuned with

the nh parameter) in at least one strain. This is the case for the subgraph with the smallest

minq which aggregates aac(60) acetyltransferase and the CML efflux pump.

The interpretation of such subgraphs is not straightforward. We often found it helpful to

tune the nh and SFF parameters to break large subgraphs into a set of smaller ones, as dis-

cussed in the discussed in the Methods section. For the aac(60) subgraph, where nearby vari-

ants are aggregated into a large subgraph, reducing the SFF value to 15 provided a much

smaller and easier-to-interpret subgraph focusing on the aac(60) mutation (Fig 3B). Otherwise,

we recommend to focus on the topology of the most significant unitigs and their close

neighbours.

DBGWAS is fast, memory-efficient, and scales to very large panels

To assess the scalability of DBGWAS to large datasets, we retrieved 5,000 genomes from

M. tuberculosis, 9,000 genomes from S. aureus and 2,500 genomes from P. aeruginosa, as

described in the Large panels subsection of the Methods section. We present in S9 Fig the run-

time and memory usage performances for these panels. All 180 runs took less than 5 days and

250 GB of RAM on 8 cores. Both the computational time and memory usage increase log-line-

arly with the panel size. Moreover, at equal panel size, DBGWAS performance also depends

on the genome complexity, requiring less computational resource for more clonal genomes

such asM. tuberculosis.

We also compared the computational performance of DBGWAS with pyseer and HAWK.

The benchmark was performed on 13 datasets, including one large dataset of 2,500 genomes

for each of the 3 species (see the Datasets subsection in the Methods section for details).
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Detailed results are presented in S2 Table. DBGWAS was the fastest tool in 11 out of 13 experi-

ments, always taking less than 2 hours. HAWK ran in less than 10 hours in 12 out of 13 experi-

ments, and was a little faster than DBGWAS on two of the large-scale datasets. pyseer took

from 13 to 53 hours on 9 experiments, and failed on the 4 others: one exceeded the disk space

limit of 1TB, three exceeded the runtime limit of five days. It was brought to our attention dur-

ing the reviewing process that piping the output of fsm-lite through gzip would decrease the

disk space usage. HAWK was more parsimonious in memory usage than DBGWAS on the

large scale panels. This can be explained by the fact that the 0.8.3-beta version of HAWK

which we are using does not take into account the population structure, and as such does not

have to compute an n × n covariance matrix, providing it a large gain in memory usage—and,

to a lesser extent, runtime—for large panels. On the other hand, disregarding the population

structure could also lead to spurious discoveries. HAWK v0.9.8-beta offers an adjustment but

failed to recover the known true positives, which is why we chose to present the results of the

0.8.3-beta version. DBGWAS and HAWK typically used one order of magnitude less memory

than pyseer. The most memory-consuming step for pyseer was the k-mer counting step relying

on fsm-lite.

Discussion

In this article we introduce an efficient method for bacterial GWAS. Our method is agnostic:

it considers all regions of the genomes and is able to identify potentially new causal variants

as different as SNPs in noncoding regions and MGE insertions/deletions. It performs as well

as the current SNP- and gene-based gold standard approaches for retrieving known determi-

nants, from genome pre-assemblies and without relying on annotations or reference

genomes.

DBGWAS exploits the genetic environment of the significant k-mers through their neigh-

bourhood in the cDBG, providing a valuable interpretation framework. Because it uses only

contig sequences as input, it allows GWAS on bacterial species for which the genomes are still

poorly annotated or lack a suitable reference genome. DBGWAS makes bacterial GWAS possi-

ble in two hours using a single-core computer (see S1 Table), outperforming other state-of-

the-art k-mer-based approaches.

Underlying our method, graph-based genome sequence representations such as DBGs,

extend the notion of the reference genome to cases where a single sequence stops being an

appropriate approximation [40, 41]. As demonstrated in this paper, they pave the way to

GWAS on highly plastic bacterial genomes and could also be useful for microbiomes [42] or

human tumours [13].

DBGWAS currently relies on the Benjamini-Hochberg procedure to control the FDR and

offers no advance exploiting the dependence among presence/absence patterns. An important

improvement would be to control the false discovery rate at the subgraph level instead of the

unitig level. DBGWAS could be extended to different statistical tasks by adapting its underly-

ing association model, to allow for continuous phenotypes or identify epistatic effects, for

instance. The interpretability of the extracted subgraphs could also be improved by training a

machine learning model to predict which types of event they represent [43]. This automated

labelling could guide users in their interpretation and allow them to search for specific events,

such as SNPs in core genes or rearrangements.

Several recent studies describe in silicomodels for defining a genomic antibiogram and

hopes are high that such technologies will complement the classic phenotypic methods [44].

Several studies have already demonstrated that in some cases, genomic antibiograms can be at

least as good as phenotypic ones [30, 45–47]. Contrary to our approach, these studies require
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extensive resistance marker databases. DBGWAS will surely contribute to the extension of

such databases or to the development of agnostic genomic antibiograms.

In conclusion, we demonstrate for three medically important bacterial species that resis-

tance markers can be detected rapidly with relative ease, using simple computer equipment.

Our integrated software and visualisation tools offer an intuitive variant representation, hence

will provide future users with an enhanced insight into genotype to phenotype correlations, in

all domains of microbiology, beyond that of antibiotic resistance. This will include complex

traits such as biofilm formation, epidemicity and virulence.

Methods

Encoding genomic variation with compacted DBGs

DBGs are directed graphs that efficiently represent all the information contained in a set of

sequences. Nodes represent all the unique k-mers (genome sequence substrings of length k)

extracted from the input sequences. Edges represent (k − 1)-exact-overlaps between k-mers:

an edge connects a node n1 to a node n2 if and only if the (k − 1)-length-suffix of n1 equals the

(k − 1)-length-prefix of n2 (Fig 1A).

These graphs can be compacted into cDBGs by merging linear paths (sequences of nodes

not linked to more than two other nodes) into a single node referred to as a unitig [48–50] (Fig

1C). Compaction yields a graph with locally optimal resolution: regions of the genome which

are conserved across individuals are represented by long unitigs, while regions which are

highly variable are fractioned into shorter unitigs (S1 Fig).

Representing strains by their unitig content (step 1)

cDBG construction. We build a single DBG from all genomes given as input using the

GATB C++ library [51]. We start from contigs rather than reads and, consequently, we do not

need to filter out low abundance k-mers, allowing for the exploration of any variation present

in the set of input genomes. We then compact the DBG using a graph traversal algorithm,

which identifies all linear paths in the DBG—each forming a unitig in the cDBG. During this

step, we also associate each k-mer index to its corresponding unitig index in the cDBG.

There is no general rule for choosing the ideal k-mer length as it depends on many factors,

including the assembly quality, complexity of the input genomes, or presence of repeats. High

values of k lead to haplotypes containing multiple SNPs instead of distinct single SNPs, if these

SNPs are separated by less than k bases. As k increases, the k-mer-defined haplotypes also

become more specific to a genome sub-population, leading to a loss of power to detect geno-

type to phenotype associations. Low values of k, on the other hand, produce highly connected

sets of non-specific k-mers. In particular, any repeated region with at least k bases may create a

cycle in the DBG (Fig 4). We use k = 31 by default, as it produced the best performance to

retrieve known markers of P. aeruginosa resistance to amikacin and levofloxacin (Fig 5). We

found DBGWAS results to be robust to small variations of k between 21 and 41. Similar graph

structures were generated whatever the tested value of k for the clonalM. tuberculosis species

(S7 Fig). More variability was observed for P. aeruginosa resistance to amikacin, which

involves more complex resistance mechanisms (S8 Fig).

Unitig presence across genomes. Each genome is represented by a vector of presence/

absence of each unitig in the cDBG. To do so, we query the unitig associated to each k-mer in

a given genome. This procedure is efficient because it relies on constant time operations.

Firstly, we use GATB’s Minimal Perfect Hash Function (MPHF) [52] to retrieve the index of a

given k-mer, and then we use the previously computed association between k-mer and unitig

indices to know which unitigs the given genome contains. Since these two operations take
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Fig 4. Effect of k on the graph topology. A cDBG was built from the P. aeruginosa gyrA gene sequences from several
strains. When k is small, k-mers are highly repeated, which generate numerous loops. As k increases, k-mer sequences
become more specific and the graph gets more linear. For large values of k, few k-mers are shared by all the strains, and
the linear path thickens into parallel paths belonging to variable strain populations.

https://doi.org/10.1371/journal.pgen.1007758.g004

Fig 5. Choice of k. True positive versus false positive curves for several values of k for both amikacin and levofloxacin resistance phenotypes.
True positives are unitigs mapping to genuine variants described in resistance databases for the studied drugs [7]. In both cases, the value of k
leading to the best AUC is k = 31.

https://doi.org/10.1371/journal.pgen.1007758.g005
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constant time, producing this vector representation for a genome takes linear time on the size

of the genome. It is important to note that the GATB’s MPHF can be successfully applied here

because we always use the same list of k-mers, i.e., after building the DBG, the set of k-mers is

fixed and not updated, and because we always query k-mers that are guaranteed to be in the

DBG (since we do not filter out any k-mer).

The unitig description on all the input genomes is stored into a matrix U:

Ui;j ¼
1; if the j‐th unitig is present in the i‐th input genome;

0; otherwise:

(

We then transform the matrix U into Z, which represents the minor allele description, in

terms of presence [5]: Z is identical to U except for columns with a mean larger than 0.5,

which are complemented: Zj = 1 − Uj for these columns.

We then restrict Z to its set of unique columns. If several unitigs have the same minor allele

presence pattern, then they will be represented by a single column. Keeping duplicates would

lead to performing the same statistical test several times. Finally, we filter out columns whose

average is below 0.01—the user can specify this threshold using the -maf option. We denote

the de-duplicated, filtered matrix of patterns by X.

Importantly, both k-mers and unitigs lead to the same set of distinct patterns across the

genomes. Indeed, every unitig represents (at least) one k-mer, and conversely every k-mer is

represented by one (single) unitig. When de-duplicated, the two representations therefore lead

to the same set of patterns to be tested for association with the phenotype.

Testing unitigs for association with the phenotype (step 2)

Human GWAS literature extensively discusses how testing procedures can result in spurious

associations if the effect of the population structure is not taken into account [53–55]. Popula-

tion structures can be strong in bacteria because of their clonality [5, 6, 56, 57]. An additional

performance analysis comparing several models for population structure, on both simulated

and real data, showed that correcting for population structure using LMMs is often preferable

to using a fixed effect correction or not correcting at all (S1 Appendix).

We thus rely on the bugwas method [5], which uses the linear mixed model (LMM) imple-

mented in the GEMMA library [58], to test for association with phenotypes while correcting

for the population structure. This method also offers the possibility to test for lineage effects,

by calculating p-values for association between the columns of the matrix representing the

population structure, and the phenotype [5]. DBGWAS optionally provides bugwas lineage

effect plots when the user specifies a phylogenetic tree using the -newick option. An example

of the generated figures is available at http://pbil.univ-lyon1.fr/datasets/DBGWAS_support/

full_dataset_visualization/.

Formally, the LMM represents the distribution of the binarized phenotype Yi, given the j-th

minor allele pattern Xij and the population structure represented by a set of factorsW 2 Rn�p,

by:

Yi ¼ XijbþWT
i aþ εij; j ¼ 1; . . . ; p: ð1Þ

β is the fixed effect of the tested candidate on the phenotype, a � N ð0; s2
aÞ, s

2
a > 0 is the ran-

dom effect of the population structure, and εij �
iid
N ð0; s2Þ are the residuals with variance σ2 >

0.W is estimated from the Zmatrix, which includes duplicate columns representing both core

and accessory genome. More precisely, denoting Z = USV> the singular value decomposition

of Z, we useW = US.
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We testH0: β = 0 versusH1: β 6¼ 0 in Eq 1 for each pattern using a likelihood ratio proce-

dure producing p-values and maximum likelihood estimates b̂. To tackle the situation of mul-

tiple testing caused by the high number of tested patterns, we compute q-values, which are the

Benjamini-Hochberg transformed p-values controlling for false discovery rate (FDR) [59].

Interpretation of significant unitigs (step 3)

The LMM is used to identify de-duplicated minor allele presence patterns significantly associ-

ated with the phenotype at a chosen FDR level. While the testing step is done at the pattern

level, the interpretation of the selected features is done at the unitig level. As a result of the de-

duplication procedure, a given pattern may correspond to several distinct unitigs. To faithfully

interpret the results, all the unitigs corresponding to the significant patterns are retrieved and

are assigned the q-value of their pattern. We now show how the initial cDBG can be used in

the interpretation step.

Significance threshold. The interpretation step focuses on the unitigs with the lowest q-

values. These unitigs are indeed used to build the resulting annotated subgraphs. The unitig

selection can be either based on the FDR (q-value threshold) or on a number of presence/

absence patterns ordered by increasing q-values. Practically, this is done in DBGWAS using a

Significant Features Filter (SFF). For a selection based on a FDR threshold, the SFF value is set

between 0 and 1, while any integer value> 1 defines the number of patterns to consider.

In our experiments, we choose not to apply a fixed FDR threshold, even though DBGWAS

offers this option. Different datasets lead to different q-values, even by several orders of magni-

tude, and a single FDR threshold would lead to selecting a large number of unitigs generating

more than 1,000 subgraphs on some of them (e.g. S. aureus ciprofloxacin) as shown in S8

Table. Instead, we retain the 100 patterns with lowest q-values. Although arbitrary, this choice

is tractable for all datasets and provides satisfactory results in our experiments. It does not pro-

vide and explicit control of the FDR: only the q-value provides an estimation of the proportion

of false discoveries incurred when considering patterns below this value. Checking the q-values

of the selected unitigs is therefore essential to assess their significance. If the default SFF = 100

is not satisfactory, it is also possible to re-run the third step only, with a more suitable SFF

value.

Graph neighbourhoods. We define the neighbourhood of each significant unitig u

(defined by the SFF) as the set of unitigs whose shortest path to u has at most ne = 5 edges.

Users can modify the ne value using the -nh option. The objects returned by DBGWAS are the

connected components of the graph induced by the neighbourhoods of all significant unitigs

in the cDBG. As illustrated in Fig 6, nearby significant unitigs might belong to the same con-

nected component, so this process groups unitigs which are likely to be located closely in the

genomes. We refer to the connected components as subgraphs in the Results section.

The SFF value can be tuned to optimise the number and size of the output subgraphs. It has

no impact on subgraphs describing SNPs in core sequences (S2 Fig). On the other hand, when

significant unitigs map to different regions of a single MGE, such as a plasmid, several sub-

graphs are generated but can be gathered into a single subgraph by increasing the SFF thresh-

old (S4 Fig). When significant unitigs map to several distinct mobile regions, which can be

found in different contexts (transposon, integron, etc.) at the population level, the resulting

subgraph can become very large and highly branching: decreasing the SFF threshold allows to

select the few most significant unitigs, generating a subgraph focusing on the most relevant

region (S6 Fig). Reducing the graph complexity can also be done by decreasing the ne value,

using the -nh option.
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Representing metadata with coloured DBGs. The subgraphs are enriched with metadata

to make their interpretation easier. We use the node size to represent allele frequencies, i.e.,

the proportion of genomes containing the unitig sequence. We describe the effect β of each

unitig as estimated by the LMM using colours, in the spirit of the coloured DBGs [19]. Colours

are continuously interpolated between red for unitigs with a strong positive effect and blue for

those with a strong negative effect.

Annotating the subgraphs. DBGWAS can optionally integrate an automated annotation

step using the Blast suite [60] (version 2.6.0+) on local user-defined protein (-pt-db option)

or nucleic acid (-nt-db option) sequence databases. We annotate the subgraphs of interest by

blasting each unitig sequence to the available databases. Users can then easily retrieve the

annotations which are the most supported by the nodes in the subgraph, or with the lowest E-

value. Importantly, DBGWAS works with any nucleotide or protein Fasta files as annotation

databases straight away. However, users can customize the annotation databases by changing

the Fasta sequences headers to make DBGWAS results more interpretable. A common exam-

ple is compacting the annotation in the summary page by using abbreviations or gene class

names, and expanding them to full names in the subgraph page. Other custom fields can also

be included in the annotation table by adding specific tags to the headers. A detailed explana-

tion on how to customize annotation databases for DBGWAS can be found in https://gitlab.

com/leoisl/dbgwas/wikis/Customizing-annotation-databases. We also provide on the

DBGWAS website a resistance determinant database built by merging the ResFinder, MEGA-

Res, and ARG-ANNOT databases [61–63], and a subset of UniProt restricted to bacterial pro-

teins [24]. Subgraphs discussed in the Results section were annotated using these databases.

Fig 6. Subgraphs induced by the neighbourhood of significantly associated unitigs. In this example, a neighbourhood
of size ne = 2 was used: any unitig distant up to 2 edges from a significant unitig is retrieved to define its neighbourhood.
Neighbourhoods are merged if they share at least one node, e.g. the neighbourhoods ofU1 andU2 are merged because
they shareN6, and will be represented in a single subgraph.

https://doi.org/10.1371/journal.pgen.1007758.g006
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Interactive visualisation. DBGWAS produces an interactive view of the enriched and

annotated subgraphs, allowing the user to explore the graph topology together with informa-

tion on each node: allele and phenotype frequencies, q-value, estimated effect, and annotation.

The view is built using HTML, CSS, and several Javascript libraries, the main one being Cytos-

cape.js [64]. Results can be shared and visualised in a web browser. As a large number of com-

ponents can be produced in one run of DBGWAS, we provide a summary page allowing users

to preview and filter the subgraphs. Filtering can be based upon the minimum q-value of all

unitigs in the component (minq), or based on the annotations. A complete description of the

DBGWAS interactive interface is available in https://gitlab.com/leoisl/dbgwas/wikis/

DBGWAS-web-based-interactive-visualization.

Re-running from step 2 or step 3. It is possible to re-run a part of the analysis if a first run

with the default values was unsatisfactory. The -skip1 option allows to re-run from the sec-

ond step, for instance to compute the lineage effects (adding the -newick option). It is also

possible to re-run only the third step by using the -skip2 option, for instance when the

default SFF and nh values generated highly connected graphs, or if the annotation was

incomplete.

Datasets

We used in our experiments genome sequences from three bacterial species with various

degrees of genome plasticity, from more clonal to more plastic:M. tuberculosis, S. aureus, and

P. aeruginosa. We also built large datasets with random phenotypes for these 3 species, and

used them only for time performance and memory usage assessment. All panels are summa-

rised in Table 4.

TB panel. M. tuberculosis (TB) is a human pathogen causing 1.7 million deaths each year

[66]. This species is known for its apparent absence of horizontal gene transfer (HGT) and,

accordingly, most of the reported resistance determinants are chromosomal mutations [67] in

core genes or gene promoters. Intergenic regions are also described to be instrumental in mul-

tidrug-resistance (MDR) and extensively drug-resistant (XDR) phenotypes [9]. We use the

PATRIC AMR phenotype data, as well as genome assemblies from their resource [35, 68]. We

thus gather a total of 1302 genomes after filtering based on genome length. Phenotype data

include isoniazid, rifampicin, streptomycin, ethambutol, ofloxacin, kanamycin and ethion-

amide resistance status. Except for the last three drugs, phenotype data are available for more

than a thousand genomes. We reconstruct MDR and XDR phenotypes based on the WHO

definition [66]. XDR phenotype could only be defined for 689/1302 strains as it required data

for at least 4 drugs. Information on how phenotype data and genome assemblies were obtained

is available on the PATRIC website.

SA panel. S. aureus is a human pathogen causing life-threatening infections. It is subject

to HGT and many plasmids, mobile elements, and phage sequences have been described in its

genome. However, this does not affect the species’ genome size, which is always close to 3 Mbp

[69]. Most antibiotic resistance mechanisms are well determined by known variants, as shown

in a previous study [30]. This study obtained an overall sensitivity of 97% for predicting 12

phenotypes from rules based on antibiotic marker mapping. We use this study panel of 992

strains obtained by merging their derivation and validation sets.

PA panel. P. aeruginosa is a ubiquitous bacterial species responsible for various types of

infections. It is highly adaptable thanks to its ability to exchange genetic material within and

between species [70]. The species accessory genome is particularly important both in terms of

size and diversity, and carries more than half of the genetic determinants already described to

confer resistance to antimicrobial drugs [7, 65, 71]. We use a panel of 282 strains, gathered
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from two collections which mostly include clinical strains: the bioMérieux collection [65]

(n = 219) and the Pirnay collection [72] (n = 63). Genome assemblies and categorical pheno-

types for 9 antibiotics are available [7]. Binarised phenotypes of amikacin resistance are avail-

able on the DBGWAS project page as an example for users.

Phenotype binarisation. Most available phenotypes are categorical, with S, I and R levels,

respectively, for susceptible, intermediary, and resistant. We binarise them by assigning a zero

value to susceptible strains (S) and one to others (I and R).

Large panels. We built large panels for the three species, in order to analyse the computa-

tional performance at a comprehensive scale. To do so, we gathered all genome assemblies of

M. tuberculosis (5,504), S. aureus (9,331), and P. aeruginosa (2,802) available on the NCBI

RefSeq bacterial genome repository [11], and removed poor quality genomes. For each panel,

Table 4. Microbial panels.

Species Genome plasticity Range of genome length Panel name Source Phenotype Number of available genomes

M. tuberculosis very low 4.4 Mbp TB [35] rifampicin 1,197

isoniazid 1,287

ethambutol 1,041

streptomycin 1,166

kanamycin 671

ofloxacin 696

ethionamide 420

MDR 1,211

XDR 689

Large TB [11] random 5,000

S. aureus low 2.7-3.1 Mbp SA [30] methicillin 501

ciprofloxacin 991

erythromycin 991

penicillin 991

tetracycline 991

fusidic acid 991

trimethoprim 323

gentamicin 991

rifampin 991

mupirocin 490

vancomycin 501

Large SA [11] random 9,000

P. aeruginosa high 5.8-7.6 Mbp PA [65] amikacin 280

levofloxacin 117

meropenem 280

piperacillin 280

colistin 164

polymyxin B 117

chloramphenicol 103

cefepime 280

fosfomycin 113

Large PA [11] random 2,500

We selected 3 bacterial species with distinct levels of genome plasticity, and with antibiotic resistance phenotypes available for several drugs. For each species, we also

created large datasets by computing random phenotypes for all available genome assemblies from NCBI RefSeq.

https://doi.org/10.1371/journal.pgen.1007758.t004
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we generated random binary phenotypes. For a detailed time and memory assessment, we

built several sub-panels from these three large panels at size points of 100, 250, 500, 1,000,

2,500, 5,000 and 9,000 genomes. To build these sub-panels, we sampled genomes uniformly

from the panels. To take into account the variability among subsamplings, each sub-panel was

randomly built 10 times.

Resistome-based association studies

We benchmarked DBGWAS against a targeted approach to ensure its ability to retrieve all

expected resistance determinants. We thus performed association studies under the same

model, using as input a collection of known causal resistance SNPs and genes, defining the

resistome.

In this validation study, we used bugwas with the same phenotypes and population struc-

ture matrixW, so the resistome-based analyses and DBGWAS only differ by their input vari-

ant matrix (unitigs versus SNPs or genes presence/absence).

For P. aeruginosa resistome, we use a variant matrix previously described [7], which

includes presence/absence of known resistance gene variants, as well as the SNPs called against

these reference gene variants. ForM. tuberculosis resistome, we built the variant matrix using

the same approach as for P. aeruginosa [7]: we called the SNPs from a list of 32 known resis-

tance genes and promoters [34, 67, 73]. The time and memory usage required for the complete

analysis (from the mapping of the resistance genes and positions on the genome assemblies to

the association study) are provided in Tables 2 and 3.

We sort the annotated features by q-values. S6 and S7 Tables summarise all top variants

using their q-value ranks, while Tables 2 and 3 report the annotations of all variants with a q-

value< 0.05 for P. aeruginosa levofloxacin andM. tuberculosis streptomycin resistance,

respectively.

k-mer-based GWAS

pyseer. We installed pyseer [6, 36] commit ID d17602500a4530b0e68a679ed675
fdb12942f56f (9 commits ahead of pyseer v1.1.1). pyseer pipeline is composed of four

steps: 1) k-mer counting; 2) population structure estimation; 3) running pyseer; 4) down-

stream analysis. To use the correct parameters, we followed the pyseer tutorial (https://pyseer.

readthedocs.io/en/master/tutorial.html). For k-mer counting, we used fsm-lite (https://github.

com/nvalimak/fsm-lite), filtering out all k-mers with a minor allele frequency smaller than 1%.

For population structure estimation, we used Mash v2.0 [74]. To run pyseer, we used 8 cores

and a LRT p-value threshold of 0.05. Downstream analysis involved getting the k-mers

which exceeded the significance threshold (which can be found using the scripts/
count_patterns.py script), sorting them by LRT p-value, blasting them against the two

databases presented in the Interpretation of significant unitigs (step 3) subsection, and keeping

the best hit for each k-mer. For reproducibility purposes, the scripts we used to run pyseer can

be found at https://gitlab.com/leoisl/DBGWAS_support/tree/master/scripts/pySEER.

HAWK. We firstly ran HAWK [13] v0.9.8-beta, as it allows correcting for population

structure. Unfortunately, it was unable to find the known causal variants reported for P. aeru-

ginosa levofloxacin andM. tuberculosis streptomycin resistances by other methods (see Tables

2 and 3). We therefore kept in our benchmarks an earlier version, HAWK v0.8.3-beta, which

presented better qualitative performance for these two evaluated panels. HAWK pipeline is

composed of five steps: 1) k-mer counting with a modified version of jellyfish [75]; 2) running

HAWK; 3) assembling significant k-mers with ABYSS [76]; 4) getting statistics on the assem-

bled sequences; 5) downstream analysis. The first four steps were performed as described in
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HAWK’s github page. However, in the first step, we had to remove the lower-count cutoff in

jellyfish dump (parameter -L), since we are working with contigs and not reads. The last
step was performed similarly as the one described for pyseer. For reproducibility purposes, the

scripts we used to run HAWK v0.8.3-beta can be found at https://gitlab.com/leoisl/DBGWAS_

support/tree/master/scripts/HAWK_0_8_3_beta.

Supporting information

S1 Fig. Alignment to a reference (when possible), cDBG, and k-mers obtained for similar

(A) and very polymorphic genomes (B). In the first case, the 3 loci represented as polymor-

phic in the alignment lead to 3 bubble patterns in the cDBG, and numerous redundant k-

mers. In the second case, genomes are so polymorphic that an alignment is not possible. The

cDBG summarizes well the common regions and the links between them, while the collection

of unique k-mers still contains redundancy.

(PDF)

S2 Fig. Effect of SFF on the top subgraphs generated for S. aureus ciprofloxacin resistance.

Annotation of the first subgraphs is strictly conserved (red for parC, green for gyrA, yellow for

norA promoter region, blue for noncoding between glmM and fmtB and violet for transposase

flanking regions).

(PDF)

S3 Fig. Effect of SFF on the top subgraphs generated for S. aureusmethicillin resistance.

Only one subgraph, containing themecA gene (highlighted in red) is generated for lower SFF

values. Then several regions of the SCCmec cassette appear for SFF = 70, and are aggregated

into a single subgraph for SFF� 150. Green subgraphs do not concern themecAMGE.

(PDF)

S4 Fig. Effect of SFF on the top subgraphs generated for S. aureus penicillin resistance.

Green subgraphs do not concern the blaZMGE. Annotations are ordered by number of nodes

carrying it. Yellow, orange and pink highlight blaZ, blaR1 and blaI, respectively.

(PDF)

S5 Fig. Effect of SFF on the top subgraphs generated for S. aureus erythromycin resistance.

Only one subgraph, describing the ermC and its plasmid is outputted when SFF< 200. Green

subgraphs do not concern the ermCMGE.

(PDF)

S6 Fig. Effect of SFF on the top subgraphs generated for P. aeruginosa amikacin resistance.

Nodes corresponding to aac(6’) gene are shown in a blue frame. When the SFF parameter

increases, these nodes aggregate to others genes found at least once close to aac(6’). The anno-

tation of the following subgraphs are well conserved (same color legend as in S8 Fig).

(PDF)

S7 Fig. Effect of k on the four first subgraphs obtained for TB rifampicin resistance.With a

k value varying between 21 and 41, the first 3 subgraphs always have the same ordering, shape

and annotation, as well as comparable q-values, although smaller q-values are observed for

lower values of k. The number of significant unitigs per subgraph is also well conserved. The

fourth top-rated subgraphs are not always the same: the gyrAmutation appears at a lower rank

when k is smaller.

(PDF)
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S8 Fig. Effect of k on the five first subgraphs obtained for P. aeruginosa amikacin resis-

tance.When k varies, the plasmid (yellow) and the mercury reductase and transposase (blue)

remain among the five top-rated subgraphs. However, k has an effect on the aggregation of

subgraphs corresponding to different genetic events: the mutation on aac(6’) gene (blue

frame) always appears in the first subgraph but is merged with the large mercury reductase

and transposase subgraph for k = 27, 39 and 41. The order of the subgraphs also varies with k:

up to four ranks for some subgraphs, and others leave the top-5 list.

(PDF)

S9 Fig. Large scale analysis on computational resources usage. This figure describes how

DBGWAS scales in terms of time and memory usage for large datasets, containing up to 9,000

genomes. The large panels used here are described in the Large panels subsection of the Meth-

ods section. To understand better DBGWAS performance behaviour, we present performance

curves for each panel at size points of 100, 250, 500, 1,000, 2,500, 5,000 and 9,000 genomes.

The executions were done in a cluster, instead of a single machine, and used 8 cores each. In

order to reduce subsampling and machine heterogeneity problems, each sub-panel was ran-

domly built 10 times and we present the time and memory usage for all these executions.

Although these two measures not only depends on the number of input genomes but also on

their length and complexity, this figure allows estimations of the computational resources

usage on small and large panels with different genome plasticities.

(PDF)

S1 Table. DBGWAS time and maximal memory load on a single core. All runs presented in

this table were executed with the default parameters, without optional steps (lineage effect anal-

ysis nor annotation of subgraphs), on a single Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz

core. The datasets are described in the Datasets subsection of the Methods section. DBGWAS

ran in less than 2,5 hours for all experiments in our benchmark. The maximummemory load

(given between parenthesis in the Runtime column) was 11 GB of RAM. The panel size and

genome length (given between parenthesis in the Panel column) did not drive alone the run-

ning performances; the genome complexity played an important role as well. To view the gain

in performance of DBGWAS when running on multiple (8) cores, see S2 Table.

(PDF)

S2 Table. Benchmarking DBGWAS, pyseer and HAWK: Comparison of time and maximal

memory load. The total execution time is presented with the maximal memory consumption

in parenthesis, in order of GBs. For pyseer and HAWK, the time and memory for each step

is also detailed. All tools were ran on a same machine with 8 Intel(R) Xeon(R) CPU E5-2620

v3 @ 2.40GHz cores, 315 GB of RAM and 1 TB of disk space. Each execution used all the 8

available cores. The datasets are described in the Datasets subsection of the Methods section.

However, for the three large panels (Large TB, Large SA, and Large PA), here we just chose a

random 2,500-genome sub-panel. Moreover, DBGWAS was ran with the default parameters,

without optional steps (lineage effect analysis nor annotation of subgraphs). The parameters

for pyseer and HAWK were the ones described in the k-mer-based GWAS subsection of the

Methods section. We did not consider the time and memory consumed in the last step for

these two tools (downstream analysis). The runs taking more than 5 days to finish were inter-

rupted and are shown as Timeout. The runs that exceeded 1 TB of disk space were interrupted

and are shown as DQE (Disk Quota Exceeded).

(PDF)

S3 Table. DBGWAS results forM. tuberculosis resistance to antibiotics. For each antibiotic,

top subgraphs were reported with their rank, the q-value of the unitig with the lowest q-value
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(minq), the corresponding estimated effect (estimated β of the linear model) and the number

of susceptible (resp. resistant) strains harbouring this unitig (count per phenotype). The type

of event represented by the subgraph, its annotation and some comments and references on

this annotation were also provided. Comments were coloured if the annotation was previously

described in antibiotic resistance literature: in green if this description concerned the tested

antibiotic, in orange otherwise.

(XLS)

S4 Table. DBGWAS results for S. aureus resistance to antibiotics. For each antibiotic, top

subgraphs were reported with their rank, the q-value of the unitig with the lowest q-value

(minq), the corresponding estimated effect (estimated β of the linear model) and the number

of susceptible (resp. resistant) strains harbouring this unitig (count per phenotype). The type

of event represented by the subgraph, its annotation and some comments and references on

this annotation were also provided. Comments were coloured if the annotation was previously

described in antibiotic resistance literature: in green if this description concerned the tested

antibiotic, in orange otherwise.

(XLS)

S5 Table. DBGWAS results for P. aeruginosa resistance to antibiotics. For each antibiotic,

top subgraphs were reported with their rank, the q-value of the unitig with the lowest q-value

(minq), the corresponding estimated effect (estimated β of the linear model) and the number

of susceptible (resp. resistant) strains harbouring this unitig (count per phenotype). The type

of event represented by the subgraph, its annotation and some comments and references on

this annotation were also provided. Comments were coloured if the annotation was previously

described in antibiotic resistance literature: in green if this description concerned the tested

antibiotic, in orange otherwise.

(XLS)

S6 Table. Resistome-based association study results forM. tuberculosis resistance to antibi-

otics. For each antibiotic, the 10 first features most associated to the phenotype were reported,

with their rank, q-value, and estimated effect (estimated β of the linear model). The type of tar-

geted variant, with its gene annotation were also provided. Comments were coloured if the

annotation was previously described in antibiotic resistance literature: in green if this descrip-

tion concerned the tested antibiotic, in orange otherwise. The last column presents the corre-

sponding subgraphs found by DBGWAS, with their rank and minq.

(XLS)

S7 Table. Resistome-based association study results for P. aeruginosa resistance to antibi-

otics. For each antibiotic, the 10 first features most associated to the phenotype were reported,

with their rank, q-value, and estimated effect (estimated β of the linear model). The type of tar-

geted variant, with its gene annotation were also provided. Comments were coloured if the

annotation was previously described in antibiotic resistance literature: in green if this descrip-

tion concerned the tested antibiotic, in orange otherwise. The last column presents the corre-

sponding subgraphs found by DBGWAS, with their minq.

(XLS)

S8 Table. Number of subgraphs generated using different significance thresholds. This

table shows the number of subgraphs generated when defining the significant unitigs as the

ones with the 100 lowest q-values (default SFF = 100, ‘top 100’) or when using a 5% false dis-

covery rate (FDR) threshold (SFF = 0.05, ‘5% FDR’). Different datasets lead to different q-val-

ues, even by several orders of magnitude. For instance, a single FDR threshold leads to
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selecting a large number of unitigs generating several hundreds subgraphs for SA (S. aureus)

panel.

(PDF)

S1 Appendix. Evaluation of association models.

(PDF)
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