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Abstract. We present a fast and memory efficient algorithm that generates a manifold triangular meshS with
or without boundary passing through a set of unorganized pointsP ‰ R3 with no other additional information.
Nothing is assumed about the geometry or topology of the sampled manifold model, except for its reasonable
smoothness. The speed of our algorithm is derived from a projection-based approach we use to determine the
incident faces on a point. Our algorithm has successfully reconstructed the surfaces of unorganized point clouds of
sizes varying from 10,000 to 100,000 in about 3–30 seconds on a 250 MHz, R10000 SGI Onyx2. Our technique
can be specialized for different kinds of input and applications. For example, our algorithm can be specialized to
handle data from height fields like terrain and range scan, even in the presence of noise. We have successfully
generated meshes for range scan data of size 900,000 points in less than 40 seconds.

1 Introduction

Surface reconstruction is a well studied problem in com-
puter graphics and computational geometry community and
has wide ranging applications. This problem can be loosely
stated as follows:Given a set of pointsP which are sam-
pled from a surface inR3, construct a surfaceS so that
the points ofP lie on S. A variation of thisinterpolatory
definition is whenS approximatesthe set of pointsP . In
this paper, we restrict ourselves to the “interpolatory” defi-
nition. We briefly discuss some of the challenges involved
in this problem.

A proper reconstruction of the surfaces is possible only
if the surfaces are “sufficiently” sampled. However, suffi-
ciency conditions like sampling theorems are fairly difficult
to formulate and as a result, most of the existing reconstruc-
tion algorithms, excepting [Att97, ABK98, ACDL00], ig-
nore this aspect of the problem. A common artifact when
the surface is not sufficiently sampled is the presence of
spurious surface boundaries in the model. Manual inter-
vention or additional information about the sampled surface
(for instance, that the surface is manifold without bound-
aries) are possible ways to eliminate these artifacts.

Sometimes the input data might contain additional in-
formation for easier reconstruction. For example, in data
from laser scanners that generate samples uniformly on a
sphere (or a cylinder), adjacent data points have a very high
probability of being adjacent to each other in the final mesh.
We refer to these data sets asorganized point clouds. This
information can be exploited by some algorithms, including
ours, to give quick results.

Another issue in surface reconstruction is the presence

of noise and outliers in the original data. The mode of data
acquisition has a direct impact on this. For example, range
scan data can be very noisy when the surface is not oriented
transverse to the scanning beam. Noisy data introduce high
frequency artifacts in the reconstructed surface (like micro-
facets) and this is a cause of concern for many algorithms.

Finally, the recent thrust in research to build augmented
reality and telepresence applications, where large data sets
have to be handled in real-time without significant latency,
has introduced an interesting variation of the surface recon-
struction problem. One of the main motivations for this
work is to develop an approach that handles bothorganized
andunorganizedpoint clouds very efficiently in time and
memory requirements.

1.1 Main Contributions

In this paper, we present a fast and efficient projection-
based algorithm for surface reconstruction from unorganized
point clouds. The main contributions of this paper include:

† Asymptotic Performance: Each iteration of our al-
gorithm advances the reconstructed surface boundary
by choosing one point on it and completes all the faces
incident on it in constant time. Even though the worst
case theoretical time complexity isO(n log n), in prac-
tice it exhibits linear time performance with a very
small constant of proportionality.

† Speed:Our algorithm takes about 3–30 seconds to re-
construct the mesh of data sets ranging from 10,000
to 100,000 unorganized points. We have also tested
our algorithm on an organized point cloud of size 6.5



million. After simplifying this data to around 900,000
points, it took us about 40 seconds to generate the
mesh on a 250 MHz, R10000 SGI Onyx2 with 16 GB
of main memory.

† Memory efficiency: Our algorithm has minimal mem-
ory overhead because it goes through a single pass of
all data points to generate the mesh. We do not main-
tain the computed triangles in our data structure be-
cause our method does not revisit them. Only the input
data has to be stored.

2 Previous Work

In this section, we give a brief survey of existing reconstruc-
tion algorithms. We use the classification scheme of Mencl
et al. [MM98] to categorize the various methods based on
spatial subdivision, distance functions,andincremental sur-
face growing.

The common theme in spatial subdivision techniques
is that a bounding volume around the input data set is sub-
divided into disjoint cells. The goal of these algorithms is
to find cells related to the shape of the point set. The cell
selection scheme can besurface-basedor volume-based.

The surface-basedscheme proceeds by decomposing
the space into cells, finding the cells that are traversed by
the surface and finding the surface from the selected cells.
The approaches of [HDD+92, EM94, BBX97, Att97] fall
under this category. The differences in their methods lie in
the cell selection strategy. Thevolume-basedscheme de-
composes the space into cells, removes those cells that are
not in the volume bounded by the sampled surface and cre-
ates the surface from the selected cells. Most algorithms in
this category [Boi84, Vel95, ABK98] are based on Delau-
nay triangulation of the input points. The distance function
of a surface gives the shortest distance from any point to
the surface. The surface passes through the zeroes of this
distance function. This approach leads to approximating
instead of interpolatory surfaces [CL96, HDD+92].

The basic idea behind incremental surface reconstruc-
tion is to build-up the surface using surface-oriented prop-
erties of the input data points. The approach of Mencl
and Muller [MM98] use graph-based techniques to com-
plete the surface. Boissonnat’s surface contouring algo-
rithm [Boi84] starts with an edge and iteratively attaches
further triangles at boundary edges of the emerging surface
using a projection-based approach to generate manifolds
without boundaries. The Spiraling-Edge triangulation tech-
nique proposed by Crossno and Angel [CA97] is similar to
our algorithm. Differences include the fact that they make
several limiting assumptions about the data, including nor-
mal and neighborhood information for each point. Bernar-
dini et al. [BMR+99] describe a ball-pivoting algorithm to
grow the surface locally. Gopi et al. [GKS00] use localized
Delaunay triangulation to compute the final neighborhood

in the triangulation.

3 Algorithm Overview

The input to our algorithm is a set of unorganized points
with no additional information (like normals). The output
is a triangulated mesh which interpolates the input point set.
Our algorithm starts at a data point, and finds all its incident
triangles. Then each of its adjacent vertices in the boundary
of the triangulation is processed in a breadth-first fashion
to find their other incident triangles. Thus the boundary of
the completed triangulation propagates on the surface of the
point cloud till it processes all the data points. In the rest
of the paper, we refer to the point being processed as the
reference point, R.

There are three assumptions we make about the data
set. The sampling of the data islocally uniform, which
means that the distance ratio of the farthest and closest neigh-
bor of a sample in the given sampling of the object is less
than a constant value. The second assumption is to distin-
guish points from two close layers of the object. The closest
distance between a pointP in one layer and another layer
is at least„m, where„ is a constant andm is the shortest
distance betweenP and another point in its layer. The third
assumption is about the smoothness of the underlying ob-
ject. The normal deviation between the any two triangles
incident on a vertex is less than 90–. This assumption is
used to justify our choice of projection plane in section 4.1.

Our algorithm can be broadly divided into three stages:
bucketing, point pruning, and finally thetriangulation step.
Bucketing: In this stage, the data structure is initialized
with the input data. Our data structure is a depth pixel ar-
ray similar to thedexelstructure [Hoo86]. We maintain a
2D pixel array into which all data points are orthographi-
cally projected. The points mapped on to the same pixel
are sorted by their depth (z) values.
Point Pruning: This step is similar to clustering algorithms
used by other triangulation schemes [HDD+92]. We first
apply adistance criterionto prune down our search for can-
didate adjacent points in the spatial proximity ofR. It is
executed in two stages. In the first stage, the simplerL1
metric is used to define the proximity aroundR. We use
an axis-aligned box of appropriate dimensions centered at
R and find all the data points inside it. The major differ-
ence in our approach compared to other approaches is the
use ofdexellike data structure for this stage, by which we
limit this search to the pixels around the pixel whereR is
projected. The second stage of pruning uses the Euclidean
metric, which further rejects the points that lie outside a
sphere of influencecentered atR. The choice of the box
dimensions and the radius of the sphere are described in the
next section. The points chosen after the pruning using the
Euclidean metric are called thecandidate pointsof R, CR.
Visibility Criterion: Next, we estimate the tangent plane



at R, and projectR, CR, and the mesh boundary in their
vicinity on this tangent plane. The projected points ofCR

are thenordered by anglearoundR. Points inCR that are
occluded fromR by the mesh boundary in the projection
plane are removed.
Angle Criterion: This is an optional step, which tries to
remove “skinny” triangles atR, to improve the quality of
triangulation.
Triangulation : Finally, the remaining points inCR are then
connected in order aroundR to complete the triangulation.

4 Surface Reconstruction

In this section, we describe our approach to surface re-
construction in detail. The implicit function theorem of
smooth surfaces forms the basis of our approach. With-
out loss of generality, it states:“Given an implicit surface
S · f(x; y; z) = 0, and a pointP on it, such that the tan-
gent plane toS at P is parallel to the(x; y) plane, then
S in the neighborhood ofP can be considered as a height
functionf(x; y; h(x; y)) = 0, a local parameterization on
its tangent plane”. By a suitable rigid transformation of
the coordinate frame, any other point onS can be made to
satisfy the above theorem.

Our algorithm is a greedy method and works with two
parameters:„, which quantifies our definition oflocally
uniform sampling, andfi, which gives a upper bound on the
angle between consecutive neighbors of a point on a bound-
ary of the surface. Typically,fi is a large obtuse angle. In
our implementation, we have setfi to be 120–. In order
to improve the quality of triangulation, we can optionally
specify a minimum angle parameter,fl. It is not necessary
for the completion of our algorithm, though.
Terminology: We categorize the data points at any given
stage of our algorithm asfree, fringe, boundaryandcom-
pletedpoints. Thefreepoints are those which have no inci-
dent triangles. Thecompletedpoints have all their incident
triangles determined. Points that lie along the current sur-
face boundary are eitherfringeor boundarypoints.Bound-
ary points are those points which have been chosen as a
reference point but have some missing triangles due to the
maximum allowable angle parameterfi. Fringepoints have
not yet been chosen as a reference point.

We maintain two invariants during our algorithm’s ex-
ecution:
Invariant 1: No free, fringe or boundarypoint can be in
the interior of a triangle.
Invariant 2: At the end of each iteration, the point chosen
as the reference point becomes acompletedor aboundary
point. This is used later to prove claims about occluded
points (for visibility criterion).

Our algorithm starts with the bucketing step by ortho-
graphically projecting the data points onto thedexeldata
structure. The following steps are used to choose the right
set of points to be connected to the reference pointR.
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Figure 1: (a) Visibility test around R. The black points are
behindR’s boundary edges, the white points are occluded
by other edges, and the pointV is eliminated as R is behind
its boundary edges. (b) Completed mesh at R

4.1 Point Pruning

Pruning by Distance Criterion: Points far away from the
reference pointR are not likely to be adjacent to it. We
eliminate them by applying the distance criterion in two
stages. Initially, we employ the cheaperL1 metric to nar-
row down our search. It is performed by constructing an
axis-aligned box of suitable dimension aroundR and choos-
ing all thefree, fringe andboundarypoints inside the box.
By using ourdexelarray, this is a logarithmic time opera-
tion with small constant.

The dimension of the box is derived from„ as follows.
In a general case,R (a fringe point) already has a few in-
cident triangles. Letm be the minimum distance fromR
to its existing adjacent vertices. From our definition oflo-
cally uniform sampling, the farthest neighbor ofR can be
at most„m away. This gives an estimate on the dimension
of the box. WhenR has no incident triangles (for example,
at the very beginning), we find the closest point toR using
the dexelarray representation and findm. The minimum
distance between the points in the above box andR, refines
the previous estimate ofm.

We call a sphere of radius„m centered atR as the
sphere of influence(SR) aroundR. The second stage of
pruning uses a stricterL2 metric and returns all points in-
side SR. These points are thecandidate points(CR) of
R. We would like to make an observation about the candi-
date point set. The radius ofSR is dependent onm, which
changes from one vertex to another. Therefore, it is possi-
ble that a vertexp might be in thesphere of influenceof R,
but not vice-versa. But this asymmetry does not affect the
topology of the reconstructed mesh.
Choice of Projection Plane: The triangulation aroundR
implicitly defines an ordering of its adjacent vertices around
R on a projection plane. We find this ordering directly by
projectingCR on a plane,PR. The choice ofPR dictates
the robustness of our algorithm. According to the implicit
function theorem, the best projection plane would be the



tangent plane atR. One can adopt more robust algorithms
like the one described in [HDD+92] or [ABK98]. An al-
ternate cheaper approach to compute the projection plane
normal is by averaging normals of existing triangles inci-
dent onR. Since we are interested only in the relative or-
dering of points aroundR, we use this latter approach in
our implementation. The ordering of thecandidatepoints
(CR) aroundR in this plane will be incorrect only if there is
a triangle incident onR with its normal deviating by more
than 90– from the projection plane normal. Our choice of
projection plane is justified by our assumption about the
smoothness of the underlying object.
Angle Ordering: A main step in our algorithm is to order
points inCR projected onPR by angle aroundR. We per-
form this ordering using the following fast and inexpensive
method. We define a new local coordinate system where the
reference pointR is the origin andPR is thexy-plane. All
points inCR are projected onPR in this coordinate system.
Let this set of projected candidate points beCp

R. The order-
ing aroundR is based on the angle (µ) between thex-axis
of the local coordinate system and the vector from origin to
the projected candidate point.

The setCp
R is partitioned by the quadrants in which

they lie. In each of these quadrants we order the points
based onsin2(µ). These ordered sets are finally merged.
We usesin2(µ) because it is almost linear within a quad-
rant and is inexpensive to compute. The actual angleµ in
the projection plane is computed using a look-up table and a
simple linear interpolation. We use the actual angle to iden-
tify holes, boundaries, and skinny triangles in the model.
Pruning by Visibility: We use the angle ordering ofCp

R to
efficiently perform the next stage of pruning based on visi-
bility in the planePR. It eliminates the points which poten-
tially form a self-intersecting mesh. We define aboundary
edgeas any edge with only one triangle incident on it. All
boundary edgesconnectfringeand/orboundary points. On
the other hand,internal edgesare the edges which connect
completedpoints with any other point. We projectR, CR,
and theirboundary edgeson the planePR. If the line of
sight fromR to a projected candidate vertex is obstructed
by any edge, then that point is an occluded point. The ex-
istence of visibility between these points in the plane is a
sufficient but not a necessary condition for the visibility be-
tween them in the object space. In the limit, when the lo-
cal surface approaches the tangent plane in a densely sam-
pled point cloud, it becomes a necessary condition as well.
We take a conservative approach and prune all the occluded
points inCR onPR.

Points occluded fromR are determined as follows.

1. All the points between consecutiveboundary edgesof
R (shown by the dotted-line wedge atR in Figure 1(a))
are removed as they cannot be visible fromR. They
are said to be in theinvisible region ofR. The black
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Figure 2: (a) Determining occluding edges (b) AngleXQY
is obtuse, soa < c. Further,f < d+a < d+c < d+c+e.
Therefore,jQU j < jUV j.

points in the figure are examples.

2. Similarly, points are removed which haveR in their in-
visible region (for example, pointV in the Figure 1(a)).
We denote the set of points fromCR remaining after
this step asCv

R.

3. Finally, we eliminate points that are occluded fromR
because of an existing edge in the mesh (for example,
the white point in Figure 1(a)).

A naive approach of considering all edges for occlu-
sion is very expensive. The following theorem limits our
search to very few edges. This theorem is true under the
assumption about the smoothness of the underlying object.

Theorem 4.1 Only theboundary edgesof the points in the
setCR can be possible occluding edges betweenR andCv

R.

Proof: From Invariant 1, it is easy to show that if an inter-
nal edge is occluding, there must be at least one boundary
edge which is also occluding. This eliminates all the in-
ternal edges from our consideration. Figure 2(a) shows an
example where boundary edges (likeUV or/andV W ) oc-
clude the pointQ from R, but its endpoints are not inCR.
Since these edges should be part of an existing triangle, like
UV W in the figure, one ofU , V or W (let us assumeU )
must have already been chosen as a reference point. We
have to prove that if any one of these points was an earlier
reference point, then it should have chosen eitherQ or R
(or both) as its neighbor(s). If it had chosenQ (resp.R) as
its neighbor, thenR (resp. Q) will lie on Q’s (resp. R’s)
invisible region, andQ would be eliminated fromCv

R.
In the Figure 2(b), let us choose one of the edges, say

UV, to complete our proof. LetX andY be the intersection
points of this edge with the projection ofSR. 6 XQY is
obtuse, because angle subtended by the diameter on the cir-
cumference is a right angle, and6 XQY is clearly greater
than that. Hence the distancec = jXY j is the longest edge
of the4XQY , which means thata < c andb < c. Hence



R

N

P

R

N

P

(a) (b)

NN

N

N N

N
N N

12

3

4

5 5

4

3

2 1

Figure 3: Pruning by Angle Criterion: (a) Ordering around
R and P; angles betweenN1N2, N3N4, andN4N5 are less
thanfl. (b) N3 trapped in4RP N4, andN4 trapped inside
4RN3N5

(d+a) < (d+ c) < (d+ c)+ e, and by triangle inequality,
jUQj = f < (d + a) < (d + c) + e = jUV j. Similarly
we can prove thatjV Qj < jV U j. This argument extends to
any edge that is placed similar toUV .

From our distance criterion, we claim that vertexQ
must be adjacent toU . With Q as its neighbor,U com-
pletes its triangulation by adding edgesQV andQW . This
implies thatR lies in the invisible region ofQ, and hence
cannot belong toCv

R as it will be eliminated by condition 2
above. Therefore,UV cannot be an occluding edge. 2

The rest of the points which are ordered by angle around
R can be triangulated as shown in Figure 1(b).
Pruning by Angle Criterion: The triangulation we get
from the previous step is a valid one. However, to im-
prove the quality of triangulation, this pruning step removes
points that could potentially form triangles with very small
angles (“skinny” triangles). This is not a necessary compo-
nent for the working of our algorithm. Since our algorithm
does not introduce additional (Steiner) points, it cannot al-
ways achieve the desired quality. It is a greedy approach,
which would eliminate sliver triangles whenever possible.

Consider the example in Figure 3, and the pointsN1
andN2. Let us assume that the angle atR of 4RN1N2 is
less thanfl (the minimum angle parameter). One of these
points can be removed to improve the triangulation. The
choice of the removable vertex is not arbitrary. For exam-
ple, if N2 is rejected, it gets trapped inside the triangle (in
the projection plane) formed byR, N1, and any one ofN3,
N4, or N5. This violates Invariant 1.

The following algorithm describes a way to avoid such
scenarios and to form a good triangulation whenever pos-
sible. Assume that we have to complete the triangulation
fromP toN5 aroundR in Figure 3, whereRP andRN5 are
consecutiveboundary edgesof R. First, we order the points
aroundP andR. In our example, this orderings would be
Ps = (N1; N2; N5; N4; N3), andRs = (N1; N2; N3; N4; N5),
respectively. LetPs[i] (Rs[i], respectively) be theith ele-
ment inPs (Rs, respectively). Without loss of generality,
we assumeRs[i] = Ni. The following pseudo-code finds

all possible adjacent points toP aroundR, without trapping
any other point inside the triangle.

for 1 • i • jPsj
Let Nj be the vertex inPs[i]
Mark Nj asconsidered
T (Nj) = fNk j k < j, Nk is not markedconsideredg
if (T (Nj) = ;)

thenNj can be an adjacent pointto P aroundR
elseNj cannot be an adjacent pointto P aroundR

The setsT (N1) andT (N2) are empty, and hence these
vertices can be adjacent neighbors.The setT (N5) hasN3
and N4, and hence cannot be an adjacent point. In gen-
eral,T (Nj) consists of precisely those vertices that will be
trapped ifNj were chosen as the adjacent point toP around
R.

Continuing with our example, from the set of possi-
ble adjacent pointsfN1; N2; N3g, we can choose any ver-
tex. Let us chooseN3 and thus form the triangleRP N3.
Now the same algorithm is applied atN3 aroundR, and the
pointsN4 andN5 are ordered aroundN3. It can be seen
that the pointN4 cannot be removed, as it will be inside the
triangleRN3N5. Hence, we cannot eliminate the skinny
triangleRN3N4. It is important to note that even if we had
chosenN1 or N2 instead ofN3 as a neighbor ofP around
R, we would have ended up in the same situation.

4.2 Triangulation
The remaining points fromCR after the various pruning
steps are the final adjacent points and are connected in or-
der aroundR to complete the triangulation in the object
space. If consecutive adjacent points subtend more thanfi
(maximum allowable angle parameter) atR in the object
space, then they are not connected to form a triangle. This
maximum angle describes the characteristics of the holes in
the model, andR is considered as aboundarypoint. All the
free points inCR are labeled asfringe points and are ap-
pended in order at the end of the queue. The next reference
pointR is dequeued from this queue.

5 Triangulating Terrain Data

Typically, devices used for data acquisition generate sam-
ples in some order. In our algorithm, we can make use of
this order and the characteristics of the device to handle
noise. We have applied our method on a massive data set of
a room (Figure 4) acquired by a laser range scanner. This
is a common Center-Of-Projection device which returns a
dense sampling as a spherical depth map ((µ, `) map) of
the environment around itself. With adjacent samples of
this high density sampling being less than an inch apart, the
noise in the samples is nearly two inches. The micro-facets
(Figure 5) hence formed, irrepairably affects our projection
plane selection, and hence the robustness.



We make use of the organization of the data set to
solve this problem. In a spherical coordinate system, the
surface is a height-field with respect to a unique (µ, `) pro-
jection plane. Since the perturbations in the data set due
to noise are usually orthogonal to the projection plane, our
algorithm is not affected by it.

Traditional 3D reconstruction algorithms are not well-
suited to handle terrain data. So specialized algorithms
[GH95] have been developed to exploit the simplicity of the
input. However, in our algorithm, terrains are a special case
that has a fixed projection plane. Further, in this case, we
gain performance by avoiding the estimation of projection
plane at each point.
Specializing our algorithm: The 2Ddexel arrayis consid-
ered as the(µ; `) projection plane with only one data point
at eachdexel. The neighbors of a point in the final trian-
gulation can only be from its adjacentdexels. Hence the
pruning-L1-metric step is made to choose only the points
from the adjacentdexelsof R. The radius ofSR is set to
a slightly higher value than the noise in the system. As
all the points inCR are visible fromR, visibility and an-
gle checks are skipped. With these changes, it takes less
than seven seconds to reconstruct a data set of size around
900,000 points. Essentially, we can think of our approach as
a parameterized algorithm where fixing certain parameters
results in specialized and efficient algorithms for different
classes of inputs.

6 Performance and Results

The complexity of our algorithm is input sensitive,i.e. time
spent is proportional to the model complexity. This can be
seen from the results shown in Table 1. The bunny model,
which has fewer points than the skidoo model, takes more
time for reconstruction, due to its complexity. Similarly,
the mannequin model due to its high curvature variations
and regions of changing sampling density, takes almost the
same time as that of the club model. For the same reason,
we are able to handle massive data sets of size in the order
of millions of points in a few seconds, as we are making use
of height field data properties.

No. of No. of Init. Time Rec. Time
Model points Tris (in secs) (in secs)
Club 16864 33660 0.2758 3.9644

Bunny 34834 69497 0.5961 9.1809
Foot 20021 39919 0.3802 5.2725

Skidoo 37974 75461 0.6680 8.536
Mannequin 12772 25349 0.2405 3.9289

Phone 83034 165730 1.5634 26.597
Table 1: Performance of our algorithm: See Color Plate 1

Our algorithm is a single pass algorithm, and does not
need to revisit the triangles once they are formed. We do
not produce any higher dimensional simplices (like tetrahe-

Figure 4: Organized, noisy, massive range data set with
6.48 million points, 143858 points retained, 267131 trian-
gles, 88.5 seconds to reconstruct.

dra [Boi84]) that require their removal to make the model
a valid manifold. We also do not change the triangulation
once they are completed. Hence our algorithm need not
store the constructed triangles in the main memory. Only
those triangles which are incident onfringe andboundary
points are retained, as they are used for visibility pruning.
This results in reduced memory requirement and hence we
are able to handle massive models with millions of data
points.

No.of No. of Init. Time⁄ Rec. Time Rec. Time
points Triangles (in secs) 1 (in secs) 2 (in secs)
143858 267131 82.508 5.998 1.020
883577 1707468 88.554 38.782 6.913

Table 2: Room data set: Reconstruction Time 2: without
visibility and angle criteria check. (⁄: Includes the reading
time of the original data set – 6479713 pts.)

Table 1 shows the time taken by our algorithm on var-
ious point clouds. The initialization time in the table in-
cludes the time taken to read in the model and initializing
the data structure. All the timing measurements in this pa-
per were made on a 250 MHz, R10000 SGI Onyx2 with 16
GB of main memory. Table 2 shows the timing of our al-
gorithm on the laser data. The initialization time includes
the time to read in the original model of around 6.5 mil-
lion points, filling up the data structure and eliminating the
points. The two entries in the table show the timings for
two different sizes of thedexel array: 400£ 600 and 1000
£ 1500.
Robustness of our algorithm: We avoid most of the ro-
bustness problems faced by purely geometric methods (like
noise and degenerate situations) by our partially combina-
torial approach. In our algorithm, we face robustness prob-
lems in the projection plane evaluation especially in sharp
curvature variations in the object.

To test the robustness of our approach to perturba-
tions in the estimated tangent plane atR, we used one of



Figure 5: Microfacets showing the noise even on the planar
floor of the room.

just three projection planes –(X; Y ), (Y; Z), and(Z; X),
whichever was close to the actual estimate. We were able
to triangulate many models including the bunny model sat-
isfactorily. The execution time with this approach is much
less than the times listed in the Table 1 because we do not
need to explicitly transform the vicinity ofR to its tangent
plane. But the disadvantage of this approach is that it has
a few favorable orientations of the model in the coordinate
frame, and different orientations gave different results.
Limitations of our approach: Any projection-based ap-
proach gives different triangulation for different starting points.
Our approach also suffers from the same limitation. But
once the seed point is fixed, the triangulation is same for
any transformation of the model. The second limitation is
also common to most surface reconstruction algorithms –
sharp curvature variations. If the faces incident on a ver-
tex do not satisfy our criterion of surface smoothness, then
our algorithm might produce incorrect triangulations. For
under-sampled and extremely non-uniformed models, our
algorithm produces spurious model boundaries.

7 Conclusion

We have presented a new projection-based surface recon-
struction algorithm from unorganized point clouds. The key
features of our method are speed and memory efficiency.
Further, it is a single pass algorithm and can make use of
the characteristics of the data acquisition phase to handle
noisy data. We have demonstrated the application of our
algorithm on various data sets, including a massive, noisy
range scan model of a room. We have successfully gen-
erated valid, non-self-intersecting, orientable manifold sur-
face meshes for point clouds of size a few hundred thousand
in a matter of tens of seconds. By fixing certain parameters
in our algorithm, we obtain highly specialized and efficient
methods for various input classes. We believe that such a
versatility and performance without any manual interven-
tion is a big win for our algorithm.
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