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a b s t r a c t

Background: The Perturbational Complexity Index (PCI) was recently introduced to assess the capacity of

thalamocortical circuits to engage in complex patterns of causal interactions. While showing high ac-

curacy in detecting consciousness in brain-injured patients, PCI depends on elaborate experimental

setups and offline processing, and has restricted applicability to other types of brain signals beyond

transcranial magnetic stimulation and high-density EEG (TMS/hd-EEG) recordings.

Objective: We aim to address these limitations by introducing PCIST, a fast method for estimating

perturbational complexity of any given brain response signal.

Methods: PCIST is based on dimensionality reduction and state transitions (ST) quantification of evoked

potentials. The index was validated on a large dataset of TMS/hd-EEG recordings obtained from 108

healthy subjects and 108 brain-injured patients, and tested on sparse intracranial recordings (SEEG) of 9

patients undergoing intracranial single-pulse electrical stimulation (SPES) during wakefulness and sleep.

Results: When calculated on TMS/hd-EEG potentials, PCIST performed with the same accuracy as the

original PCI, while improving on the previous method by being computed in less than a second and

requiring a simpler set-up. In SPES/SEEG signals, the index was able to quantify a systematic reduction of

intracranial complexity during sleep, confirming the occurrence of state-dependent changes in the

effective connectivity of thalamocortical circuits, as originally assessed through TMS/hd-EEG.

Conclusions: PCIST represents a fundamental advancement towards the implementation of a reliable and

fast clinical tool for the bedside assessment of consciousness as well as a general measure to explore the

neuronal mechanisms of loss/recovery of brain complexity across scales and models.

© 2019 Elsevier Inc. All rights reserved.

Introduction

Measures of brain complexity have recently begun tomove from

the realm of theoretical neuroscience [1e6] into the field of

experimental neurophysiology to study differences between global

brain states, from wakefulness to sleep and anesthesia [7e10].

Further, measures of brain complexity have been considered as
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useful paraclinical indices to assess consciousness at the bedside of

brain-injured patients [11e15]. In this spirit, a novel strategy based

on quantifying the global effects of direct cortical perturbationswas

recently introduced [16]. This approach is motivated by the general

theoretical principle that a brain's capacity for consciousness relies

on its ability to integrate information [5]. In this perspective, a

critical mechanism supporting the emergence of conscious expe-

rience is the ability of different neural elements to engage in

complex patterns of causal interactions such that the whole system

generates information over and above its parts.

Practically, in order to estimate the amount of causal, irreducible

information that a system can generate, a general procedure was

implemented based on two steps: (i) locally perturbing the system

in a controlled and reproducible way to trigger a cause-effect chain

and (ii) quantifying the spatiotemporal complexity of the ensuing

deterministic response to estimate information. The original

implementation of this perturb-and-measure approach [16]

involved (i) stimulating the brain with transcranial magnetic

stimulation (TMS) and (ii) computing the algorithmic (Lempel-Ziv)

complexity of the resulting patterns of activations at the level of

cortical sources derived from the inverse solution of high-density

electroencephalographic (hd-EEG) responses; this metric will be

henceforth referred to as Lempel-Ziv Perturbational Complexity

Index (PCILZ).

Albeit macroscopic and coarse, PCILZ provided maximum (100%)

accuracy in detecting consciousness in a large (n¼ 150) benchmark

population of subjects who could confirm the presence or absence

of conscious experience through immediate or delayed reports [17].

PCILZwas lower in all unresponsive subjects who did not report any

conscious experience upon awakening from NREM sleep or mid-

azolam, xenon, and propofol anesthesia, and was invariably higher

for subjects in which consciousness was present, including awake

controls, conscious brain-injured patients and subjects who were

disconnected and unresponsive during dreaming and ketamine

anesthesia but retrospectively reported having had vivid conscious

experiences upon awakening [17,18]. Once calibrated on the gold-

standard of subjective reports, PCILZ measurements performed at

the bedside of non-communicating subjects with brain injuries

offered high sensitivity (94%) in detecting minimally conscious

patients and allowed identifying a significant percentage (about

20%) of vegetative state/unresponsive wakefulness syndrome (VS/

UWS) cases with high brain complexity, who had a higher chance of

eventually recovering consciousness [17].

While PCILZ performs with unprecedented accuracy, it also has

practical drawbacks and limitations. First, PCILZ can only be

computed on spatiotemporal matrices of cortical activations that

are obtained after an intensive processing of TMS/hd-EEG data,

including forward modeling [19], source estimation [20] and

permutation-based statistics at the single-trial level. All these steps

imply a complicated and lengthy off-line analysis pipeline that

hinders the dissemination of the method and its application as a

routine clinical bedside tool. Clearly, the possibility of estimating

perturbational complexity directly at the level of EEG sensors may

have critical advantages: not only it would render the analysis

process faster (ideally, on-line), easier to standardize and immune

to the technical caveats of source modeling, but it would also allow

the use of simplified and cheaper set-ups (i.e. not requiring hd-EEG

and subject-specific MRI scans).

A second important drawback of PCILZ is its limited application

to signals other than TMS/hd-EEG evoked potentials. Intracranial

single-pulse electrical stimulation (SPES) combined with local field

potential (LFP) recordings in human [21,22] and animal models

[23e26], as well as intra and extracellular responses recorded from

cortical slices [27,28], offer an unprecedented range of opportu-

nities to validate and interpret TMS-EEG results and to elucidate the

relationships between neuronal dynamics, network complexity

and consciousness [29]. However, because PCILZ relies on EEG

source estimation, its extension to other types of recordings, such

as sparse matrices of intracranial stereo EEG (SEEG) recordings and

in vivo/in vitro LFP, is not straightforward.

Here we address these limitations and propose a novel measure

of perturbational complexity that bears conceptual similarities

with PCILZ but is much faster to compute and in principle gener-

alizable to any type of evoked brain signal. Conceptually, we started

from the notion that the binary sequences of activation and de-

activations which are compressed by PCILZ can be considered as

sequences of transitions between different states: a “response

state” and a “non-response” or “baseline state” [30]. Thus, one

should expect to find high values of perturbational complexity in

systems that react to the initial perturbation by exhibiting multiple

and irreducible patterns of transitions between response and non-

response states.

Following this intuition, we developed PCIST, an index that

combines dimensionality reduction and a novel metric of recur-

rence quantification analysis (RQA) to empirically quantify

perturbational complexity as the overall number of non-

redundant state transitions (ST) caused by the perturbation. In

this paper, we specifically aimed at (i) validating PCIST as a practical

tool for detecting consciousness at the bedside, and (ii) demon-

strating its generalizability from transcranial (TMS/EEG) to intra-

cranial (SPES/SEEG) stimulation and recordings. Hence, we first

tested PCIST on a large dataset encompassing 719 TMS/hd-EEG

sessions recorded from healthy subjects during wakefulness,

non-rapid eye movement (NREM) sleep and anesthesia as well as

brain-injured patients with disorders of consciousness (DOC). To

the second aim, we tested PCIST ability to capture state-dependent

changes in brain complexity on 84 SEEG recordings obtained in

epileptic patients undergoing intracranial single-pulse electrical

stimulation (SPES) for pre-surgical evaluation during both wake-

fulness and sleep.

Material and methods

Participants

Healthy subjects

The benchmark dataset consisted of 382 TMS/hd-EEG sessions

reported in previous works [16,17,31]. Data were recorded from 108

healthy subjects (female, n¼ 63; age range¼ 18e80 years) in two

conditions (see Fig. S1, panel A for further information about the

number of sessions and subjects for each protocol): (1) while they

were unresponsive and did not provide any subjective report upon

awakening (NREM sleep, n¼ 19; midazolam sedation at anesthetic

concentrations, n¼ 6; anesthesia with xenon, n¼ 6; anesthesia

with propofol, n¼ 6) and (2) while they were awake and able to

provide an immediate subjective report (n¼ 103, including 32

subjects also recorded in the previously described unresponsive

conditions). Protocols and informed consents were approved by the

local ethical committees [16,17,31].

Brain-injured patients

TMS/hd-EEG data were also obtained in a population of 108

brain-injured patients (95 reported in a previous work [17]) with

newly acquired data recorded following the same previously re-

ported protocol [17], totalizing 337 TMS/hd-EEG sessions (Fig. S1,

panel B). Sixteen brain-injured patients were conscious and

encompassed 5 individuals affected by locked-in syndrome (LIS)

and 11 individuals who emerged from minimally conscious state

(EMCS) by recovering functional communication and/or functional

use of objects after a previous DOC. The remaining 92 brain-injured
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patients had a severe DOC and were repeatedly evaluated with the

Coma Recovery Scale-Revised (CRS-R) for a period of 1 week (4

times, every other day). Patients showing only reflexive behavior

across all evaluations were considered as being unresponsive

(UnresponsiveWakefulness Syndrome, UWS, 43 patients), whereas

patients showing signs of nonreflexive behaviors in at least one

evaluation were considered as minimally conscious (Minimally

Conscious State, MCS, 49 patients). Protocols and informed con-

sents were approved by the local ethical committees [17] and

written informed consent was obtained fromhealthy subjects, from

communicative patients, and from legal surrogates of DOC patients.

Epileptic patients

Data included in the present study derived from a dataset

collected during the pre-surgical evaluation of nine (eight previ-

ously reported [22]) neurosurgical patients with a history of drug-

resistant, focal epilepsy. All subjects were candidates for surgical

removal of the epileptic focus. During the pre-surgical evaluation

all patients underwent individual investigation with SPES and

simultaneous SEEG recordings for mapping eloquent areas and for

precisely identifying the epileptogenic cortical network [32e35].

The investigated hemisphere, the duration of implantation and the

location and number of stimulation sites were determined based

on the non-invasive clinical assessment. The stimulation, recording

and data treatment procedures were approved by the local ethical

committee [22]. All patients provided written informed consent.

TMS/hd-EEG measurements and data analysis

Specific protocols for acquiring and analyzing TMS/hd-EEG po-

tentials were described in Refs. [16,17]. In brief, data were recorded

with a 60-channel TMS-compatible EEG amplifier and MRI-guided

TMS pulses were delivered with a focal biphasic stimulator. A noise

masking sound tailored to the specific coil was played through

inserted earphones and titrated by subjects within safety limits

(<85 dB). In each subject, multiple sessions of ~200 stimuli were

collected with TMS targeted to different areas at different in-

tensities accordingly to the specific protocol. EEG responses to TMS

were visually inspected to reject single trials and channels with bad

signal quality. Independent component analysis was applied to

remove residual artifactual components resulting from eye move-

ments andmuscle activations. Bad channels were then interpolated

using spherical interpolation and data were bandpass filtered

(0.1e45Hz), downsampled to 725 Hz, segmented between �400

and 400ms, re-referenced to the average, baseline corrected (�400

to �5ms) and averaged across trials.

Intracranial measurements and data analysis

The procedures for SEEG data acquisition and analysis are

described in Ref. [22]. Briefly, intracranial activity was recorded at

1000 Hz using a 192-channel recording system (Nihon-Kohden

Neurofax-110) during electrical stimulation applied through one

pair of adjacent contacts at different locations. SPES/SEEG sessions

were obtained from all nine patients both during wakefulness and

NREM sleep, resulting in a total of 84 sessions (see Table S1 and

Fig. S2 for contact locations). The location of the bipolar contacts

was assessed by post-implantation tomographic imaging (CT)

scans and Freesurfer reconstruction [36] of the individual brains

confirmed using the Destrieux ATLAS [37]. The analysis was per-

formed only in those recordings in which the stimulating bipolar

contacts (i) pertained to the same cortical anatomical structure,

(ii) were far from the epileptogenic zone and/or cortical lesions,

(iii) did not evoke epileptic responses either in wakefulness or

NREM, and without alterations of the cortical tissue [38], (iv) did

not elicit muscle twitches, sensations or evident motor/cognitive

effects, (v) occurred during a period of wakefulness or N3 sleep

(without disrupting sleep depth). We further excluded from

analysis contacts located in the epileptogenic zone and/or in

cortical lesions, as well as those showing epileptiform activity as

assessed by visual inspection (remaining contacts averaged

69.31± 15.31). Trials showing pathological activity [38] were

detected by visual inspection and excluded from the analysis and

SPES-evoked responses were computed by averaging the

remaining trials. Data were referenced to a contact located

entirely in the white matter, subjected to linear detrend and

bandpass filtering (0.5e300 Hz) and bipolar montages were

calculated by subtracting the signals from adjacent contacts of the

same depth-electrode [39,40]. Stimulation artifact was reduced by

applying a Tukey-windowed median filtering [41] between �5

and 5ms. Data were segmented between �300 and 600ms and

the SEEG magnitude at each electrode was computed as a z-score

relative to its baseline.

Perturbational complexity index based on state transitions (PCIST)

In its original formulation [16], perturbational complexity was

calculated by binarizing TMS-evoked potentials (TEPs) at the esti-

mated cortical source level using a fixed threshold derived from

non-parametric statistics with respect to the baseline (pre-stim-

ulus) and subsequently compressing the binary spatiotemporal

patterns with the Lempel-Ziv algorithm. An underlying assumption

of this strategy is that complex activations engaged by the pertur-

bation appear on the evoked signals as patterns of oscillations

around a fixed amplitude scale. Although proven successful when

applied at the source level, this approach was less sensitive in

detecting complexity when calculated directly at the EEG-scalp

level, where fast oscillations are more likely to appear on top of

larger and slower envelopes as result of increased volume con-

duction and signal mixing (Fig. S3). Furthermore, complex neuronal

oscillations occurring in amplitude scales that are not determined

by a fixed threshold can also be observed in microscopic and

mesoscopic recordings due to cross-frequency couplings [42e46],

and a binarized measure applied to such scales would have limited

applicability to detect complex physiological activations.

Aiming at a general index of perturbational complexity that can

be fast and efficiently calculated directly at the EEG-sensors level,

we here took a non-binary approach and quantified the spatio-

temporal complexity of evoked potentials by exploring multiple

amplitude fluctuations present in principal components of the

response. Starting from trial-averaged signals recorded in response

to a perturbation, singular value decomposition was performed in

order to effectively reduce the dimension of the data (Fig. 1A). The

principal components were selected so as to account for at least

99% of the response strengthmeasured in terms of the squaremean

field power and components with low signal-to-noise ratio were

further removed.

The complexity of each resulting principal component was then

evaluated using a method derived from RQA [30,47,48] by quanti-

fying what we call state transitions. More specifically, distance

matrices, defined by the voltage-amplitude distances between all

time-points of the signal, were calculated separately for pre-

stimulus and post-stimulus samples (Fig. 1B). Next, these distance

matrices were thresholded at a given scale ε (Fig. 1C), yielding

corresponding transition matrices (Fig. 1D), i.e. contour plots that

depicts the temporal transitions between states e roughly, the ups

and downs in the signal e, for both the baseline and the response.

By varying the threshold ε and comparing the average number of

state transitions (NST) in the matrices of the response with that of

the baseline, we looked for the scales at which the state transitions
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in the signal's responsewere over and above the transitions present

in the baseline activity. In this way, the complexity of the nth

component (DNSTn) was defined as the maximized weighted dif-

ference of NST between response (NSTn
res) and baseline (NSTn

base)

signals:

DNSTn ¼ TR

h

NSTresn

�

ε
*
n

�

� k� NSTbasen

�

ε
*
n

�

i

(1)

Where εn
* is the threshold value which maximizes the weighted

difference of NST (red dot in Fig. 1E) and TR is the number of

samples in the response, a normalizing factor that yields a quantity

that is extensive with the length of the signal's response and largely

independent of the sampling rate (Fig. S4). The parameter k was

introduced to control the relative weight between pre and post-

stimulus state transitions.

Finally, PCIST was defined as the sum of these maximized sig-

nificant state transitions (DNSTn) across all selected principal

components (n¼ 1 … NC) of the evoked signal:

PCIST ¼
X

NC

n¼1

DNSTn (2)

An intuitive way to look at the metric is as the product between

the number of principal components surviving dimensionality

reduction (NC) and the average number of state transitions across

components (DNST), i.e. PCIST ¼ NC � DNST. The former quantity

can be regarded as a measure of the spatial differentiation of the

brain's response to the perturbation, while the latter corresponds to

the average temporal complexity present in the individual principal

components as measured by the quantification of state transitions.

As such, PCIST captures the spatiotemporal complexity of a brain

response as the joint presence of spatial differentiation (NC) and

temporal complexity (DNST) (Fig. S5).

By its definition, PCIST is high when there are multiple linearly

independent components in a spatially distributed response

(spatial differentiation), each one of them contributing with sig-

nificant amounts of state transitions (temporal complexity).

Conversely, PCIST is expected to be low either if the perturbation

evokes a strongly correlated response across different spatial re-

cordings or if the independent components carry few temporal

transitions in the response as compared to the baseline (see Sup-

plementary Material for a detailed definition of the measure,

including computational steps and parameter choice). Code for

computing PCIST is available at github.com/renzocom/PCIst.

Statistical analysis

Data are presented as mean± standard deviation (SD), and p-

values less than 0.01 were considered significant. Wilcoxon-

ranksum test was used for evaluating the discrimination between

conscious and unconscious conditions. The classification power of

discriminating different levels of consciousness was quantified by

the area under the receiver operating characteristic (ROC) curve

(AUC).

Fig. 1. Calculating the Perturbational complexity index based on state transitions

(PCIST) from TMS/hd-EEG evoked potentials (TEP). PCIST is calculated by performing

five steps: A) TEPs (butterfly plot, top) are decomposed in Nc principal components

(PC) based on the singular value decomposition of the response to the perturbation. B)

For each single component (PCn, highlighted) amplitude distances are calculated be-

tween every baseline samples (black trace in A) and between every response sample

(blue trace in A), resulting in a baseline and a response distance matrix, respectively. C)

These matrices are then thresholded at several scales. Two scale values are depicted in

the figure: a lower threshold (ε0) and a higher threshold (ε*). D) At each scale, the

corresponding transition matrices are computed for both baseline and response. These

matrices are used to calculate the average number of state transitions (NST) in the

baseline NSTbase and in the response NSTres. E) The complexity of the selected

component is defined as the maximum weighted difference between the number of

state transitions in the response and in the baseline (DNSTn). The final measure PCIST is

calculated by summing the DNSTn values across all Nc principal components. (For

interpretation of the references to colour in this figure legend, the reader is referred to

the Web version of this article.)
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Results and discussion

PCIST is reliable and fast in benchmark conditions

PCIST was calculated on a benchmark of 382 TEPs obtained in a

group of 108 healthy subjects during conscious (alert wakeful-

ness) and unconscious (NREM sleep and anesthesia) conditions

(Fig. 2A, see also Figs. S1eA for individual PCIST values). The

wakefulness group presented significantly higher and more vari-

able PCIST values (mean ± SD, 47.89± 12.65) than the NREM sleep/

anesthesia group (14.19± 5.26, P¼ 4.7� 10�40). In terms of clas-

sification performance between conscious and unconscious con-

ditions, PCIST showed a high classification power that was

equivalent to the performance of the original version of PCI in this

same dataset [17] (AUC for PCIST¼ 0.998, AUC for PCILZ¼ 0.995).

Indeed, when values for each TMS/hd-EEG session were

compared, we found a significant linear correlation between the

metrics (r¼ 0.82, p < 10�95, Fig. 2B). This high accuracy of PCIST in

assessing consciousness was found to be stable across parameters

values and robust to variations in the benchmark population (see

Fig. S6). Further, in line with the general principles behind

perturbational complexity, both the spatial differentiation and the

temporal complexity of the TMS/EEG response were necessary to

achieve this performance (Fig. S5).

Finally, because PCIST estimates perturbational complexity

without employing source localization and surrogate techniques,

PCIST computation was approximately 380 times faster than with

PCILZ. While for a single session PCILZ took about 300 seconds to

compute (270s± 99), PCIST could be calculated in less than one

second (0.71± 0.20, p< 10�127) (Fig. 2C).

PCIST allows a simple and fast set-up at the bedside of patients

We next tested the performance of PCIST in brain-injured pa-

tients. First, an empirical threshold for discriminating conscious-

ness from unconsciousness was extracted from all PCIST values of

the benchmark population using a linear classifier [49]. This

empirical cutoff was then applied to PCIST values obtained from a

group of 108 brain-injured patients who had recovered from coma

and evolved toward various clinical conditions. Following the pre-

vious approach [17], we classified each patient using his maximum

PCIST value obtained across all recorded sessions. This approach is

aimed at assessing the patient's best capacity for consciousness and

parallels the diagnostic use of the best behavioral (CRS-R) score.

The sensitivity of PCIST in detecting signs of consciousness in

brain-injured patients was comparable to PCILZ [17] (Fig. 3A, top):

PCIST made no erroneous classifications on conscious (LIS/EMCS)

patients and achieved 91.9% sensitivity among minimally conscious

Fig. 2. PCIST discriminates between consciousness and unconsciousness in healthy individuals and is faster than PCILZ. (A) Histogram of PCIST values (left) for all 382 TMS

sessions obtained from healthy individuals in the conscious (red) and unconscious (grey) conditions, with the corresponding ROC curve of the distributions (right). (B) Correlation

between PCIST and PCILZ values in the benchmark dataset for conscious (red) and unconscious (grey) conditions (r¼ 0.82, p< 10�95). (C) Mean computation time per TMS/hd-EEG

session for PCIST (red) and PCILZ (blue) calculated on the benchmark dataset. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web

version of this article.)

Fig. 3. PCIST's ability to detect consciousness in brain-injured patients is preserved in simpler EEG set-ups. Number and percentages of patients classified as high (PCIST�) and

low (PCIST<) complexity with respect to the corresponding classification cutoffs obtained from the benchmark dataset are shown for EEG setups of 60 (top), 19 (middle) and 8

(bottom) channels. (A) PCIST’ sensitivity in detecting signs of consciousness in conscious (EMCS/LIS) and minimally conscious (MCS) patients. (B) Contingency tables for the

stratification of UWS patients in low complexity (PCI<) and high complexity (PCI�) subgroups accordingly to PCILZ and PCIST.
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individuals, correctly detecting signs of consciousness in 45 from

49 MCS patients (see Figs. S1eB for individual PCIST values). Cross-

validation analysis confirmed the effectiveness in classifying

healthy subjects and brain-injured patients with a fixed threshold

extracted from the benchmark population (see Fig. S7 for compu-

tational details on the classifier used to obtain the empirical

threshold and its cross-validated performance on healthy in-

dividuals and patients).

From a practical perspective, the potential of PCI to be employed

as an index of consciousness in a clinical setting is significantly

limited by the use of hd-EEG, which, besides entailing more

expensive hardware, involves a cumbersome and lengthy

preparation. While PCILZ necessarily demands hd-EEG systems so

as to accurately perform source localization, PCIST can in principle

be calculated on a reduced number of channels. We thus compared

the performance of the index on the original hd-EEG system (60

channels) to reduced setups containing 19 and 8 electrodes (see

Supplementary Material for further details). Notably the perfor-

mance of the index diminished only slightly with the use of the

standard 10e20 EEG system (19 channels), yielding sensitivities of

100% and 89.8% (44/49) for EMCS/LIS andMCS respectively (Fig. 3A,

middle). Finally, the simpler 8-channels setup resulted in reduced

sensitivity scores on both EMCS/LIS (94%) and MCS (84%) patients

(Fig. 3A, bottom). An equivalent performance in discriminating

Fig. 4. PCIST is able to quantify the spatiotemporal complexity of stereotactic EEG responses to SPES. SPES-evoked responses in the SEEG and principal component space are

shown for a representative subject during stimulation delivered on the Superior Frontal Gyrus (panels A, B, C) and on the Superior Frontal Sulcus (panels D, E, F). Panels A and D

depict the positions of the stimulating contact (yellow) and remaining SEEG contacts (blue) over a brain surface reconstructed from the individual's brain. The correspondent SPES/

SEEG-evoked responses are shown in the respective middle panels (B and E) as the superposition of the averaged SPES-evoked potentials recorded from all SEEG contacts during

wakefulness (red traces) and NREM sleep (grey traces). Lower panels (C and F) depict the correspondent PCIST values and the normalized SPES-evoked responses decomposed in

principal components after dimensionality reduction. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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conscious from unconscious conditions using simpler set-ups was

also observed in the benchmark dataset (see Figs. S4eC and Fig. S8).

In UWS patients, brain-based measures that do not require sub-

ject's interaction with the external environment can be useful to

detect a covert capacity for consciousness. In a previous study, PCILZ

detected conscious-like complexity in 20.9% (9/43) of UWS patients,

who also had a higher chance of recovery at 6 months [17]. Here, we

evaluated whether these patients could also be identified by PCIST.

The new index calculated on both high-density and standard 10e20

EEG setups detected all (n¼ 9) the patients with high PCILZ, whereas

more than 82% of patients classified as low-complexity by PCILZwere

also below threshold for PCIST (hd-EEG: 88.2%, 10e20 setup: 82.3%,

Fig. 5. PCIST values in SPES-evoked potentials are invariably lower during NREM sleep as compared to wakefulness. Panels AeI: PCIST calculated in nine subjects during

wakefulness (W) and NREM sleep are shown separately for each individual subject. SEEG (blue) and SPES contacts (yellow) are depicted over brain surfaces reconstructed from the

individual's brain (left). Numbers and arrows indicate the stimulation sites and the correspondent PCIST values (red traces, right). Panel J: shown are the percentage losses of

complexity across all subjects and stimulation sites (left) and boxplots of PCIST values (right) at the group level for wakefulness (red box) and NREM sleep (grey box). Red asterisks

indicate significant comparison (p¼ 1.4� 10�7). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 3B-top andmiddle). The simpler 8-channels setup detected 8 out

of 9 (88.9%) high-complexity patients and 29 out of 34 (85.3%) low-

complexity patients (Fig. 3B, bottom).

Taken together, these results show that PCIST calculation can

afford an accurate, reliable and fast estimation of perturbational

complexity at the sensor level even on reduced EEG set-ups.

Combined with future optimizations of TMS-EEG hardware, this

may allow the implementation of a practical method to be applied

in real-time in the context of routine clinical setting.

PCIST reveals consistent changes of spatiotemporal complexity in

intracranial recordings

Beside its practical applications, the estimation of perturba-

tional complexity using different recording and stimulation pro-

tocols may allow for the exploration of the brain's causal structure

across different scales, thus validating and extending the results of

macroscopic TMS/EEG measurements, towards mesoscopic LFP

and, in principle, microscopic multisite electrophysiological/optical

responses. The development of PCIST allowed a first exploration of

this possibility by estimating perturbational complexity on sparse

intracranial SPES-evoked potentials. Specifically, we tested

whether the state-dependent changes in complexity revealed at

the macroscale by TMS/EEG could be reproduced at the mesoscale

by intracranial electrical stimulation combined with SEEG re-

cordings collected during wakefulness and sleep.

During wakefulness, the composite set of waves elicited by SPES

resulted in a large number of components characterized by recurrent

waves of activity lasting up to 600ms in the principal components

space, yielding high PCIST values (Fig. 4AeC). On the other hand,

during NREM sleep, when SPES evoked a stereotypical wave, a small

number of components were enough to span most of the response

(Fig. 4DeF). In addition, the few components that survived dimen-

sionality reduction in NREM sleep showed fewer state transitions

than the ones in wakefulness and accounted for a reduced PCIST

value. These findings were reproducible across stimulation sites and

consistent at the population level (Fig. 5). PCIST during NREM sleep

was lower than in wakefulness for each one of the 42 different

stimulation sites (Fig. 5AeI). Overall, compared to wakefulness, PCIST

was reduced during NREM sleep on average by 47.2% (Fig. 5J) and

significant at the group level (p¼ 1.4� 10�7).

A key advantage of SPES over TMS is that the former is not

associated with concurrent auditory and/or somatosensory stimu-

lation [50]. The extent of the actual contribution of sensory co-

stimulation to TEPs can be effectively minimized [51] but de-

pends on many factors, such as coil type and effectiveness of noise

masking, and is currently a matter of debate [51e54]. Hence,

replicating fundamental TMS-EEG results using SPES-sEEG repre-

sents an important methodological step. Similarly to TMS, SPES

elicited complex responses characterized by recurrent waves of

activity both at short and long latencies in wakefulness and a ste-

reotypical large-amplitude slow wave during NREM sleep (Figs. 4

and 5). In this respect, the present intracranial results provide a

definite confirmation of the fundamental interpretation of pertur-

bational complexity originally derived through TEPs, as a genuine

index of state-dependent changes in intracortical interactions [55].

Furthermore, since with SPES/SEEG one can activate and record

from smaller populations of neurons throughout the brain, which

are not otherwise accessible to TMS/EEG, it would be important to

explore regional differences in brain complexity. In this regard, the

observed within-subject differences in the absolute values of PCIST

in the SPES/SEEG recordings (Fig. 5) may reflect the presence of

local anatomo-functional differences in the specific network

engaged by the stimulation. Future analysis on larger datasets [56]

as well as measurements in which SPES/SEEG is combined with

whole brain macroscale recordings [57,58] may refine our under-

standing of the role of local nodes and circuits in the in the emer-

gence of complex cortico-cortical interactions.

Most important, the application of PCIST across different brain

scales may allow for the exploration of the neuronal mechanisms of

global brain state changes. Indeed, the mesoscale assessment of

perturbational complexity is in an ideal position to link microscale

explorations at the bench to the macroscale measurements per-

formed at the bedside of brain-injured patients. Connecting these

levels is important as experiments in cortical slices [27], sleeping

subjects and brain-injured patients [31] suggest that loss of brain

complexity is linked to the tendency of neurons to enter a silent

period upon an initial activation (OFF-period).

In the future, PCIST measurements applied to multiscale data

including neuronal recordings could be used to inform experi-

mental and computational models [59] aimed at devising novel

interventions to restore complexity and thus consciousness

following brain injury.

Conclusion

In this paper we have introduced, validated and tested PCIST, a

method of estimating perturbational complexity based on dimen-

sionality reduction and state-transitions quantification. The novel

index may provide a reliable, fast and potentially online option for

the assessment of consciousness in the clinical setting, achievable

evenwith standard EEG systems. Furthermore, PCIST could also serve

as a general translational tool for exploring the mechanisms of loss

and recovery of brain complexity across species, scales, and models.
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