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Abstract

This pape proposes a new mehoddogy for teging a core-based
sygem-on-chip (SOC), targeting the simultaneows redudion of test
areaoverhealand teg appication time. Teging of embeddécores
isachieved usng the transpaeng/ propettiesof surroundngcores.
At the core levd, testahility and transparency can be achieved by
reusng existing logic insde the core, and providing differert ver-
sions of the core having different area overhealsand transpaency
latendes At the chip levd, the technique anadyzesthe topdogy of
the SOC to sded the core verdgons that beg med the users de-
sired teg area overhea and teg application time objedives Ap-
plication of the method to example SOCs demonstrates the ability
to desgn highly tegable SOG with minimized teg¢ area overhead,
minimized test application time, or a desired trade-off between the
two. Sgnificant redudion in area overhea and tes apgication
time cgmpaedto an existing SOC teding techniqueis also demon-
strated.

1 Introduction

System-lewel integration is ewlving as a new paradigm in system
desgn, alowing an ertire sygem to be built on asingle chip, usng
pre-desgnead fundiond blocks cdled cores While SOC Is prov-
ing to bevery useful in meding aggressvetime-to-market, perfor-
mance ard cod requiremerts of todays eledronic produds, teg-
ing sud core-basel SOGs poses atwo-fold chdlenge Core-level
teding involves making ead core tegale - insating the neces-
sary design for testability (DFT) structures and generating test se-
quences. Typicdly, for hard and firm cores, testability is ensured,
ard precanputed ted sets provided by the core provider. For sdft
cores, testability can be addressed and test sets generated by the
user. When the cores are integrated into an SOC, chip-level testing
need to be addesse by the SOC desgne. The main difficulty
in chip-level teding is the problem of jugifying precanputed test
sequenceof acore embedde dee in the desgn from the chip in-
puts, and propagaing the ted responsgfrom the core outputs to
the chip outputs.

Core-level teding can be dore through auomatic teg pattern
geneation (ATPG) at the logic level and by employing a variety
of DFT techniques like full or partial scan, and built-in self-test
(BIST). At the chip level, anumber of DFT techriques have been
proposel [1]. In one existing DFT method, referred to as FSCAN-
BSCAN, ead core is macde tegable by full scan while chip-level
testability is obtained by isolating ead core usng bounday scan
[2]. This schene may have large area and delay overheads and
prohibitively large teq apgication times Receily, some work
has been dore to addess this problem [3]. Another existing DFT
method, utilizes a combination of full scan and test bus. In this
method an addel teg bus runs from the Pls of the sygemto its POs
and uses a series of multiplexers to isolate ead embeddd core,
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which is full scannedduring teging to provide sysem-level teda-
bility. In this case as well, the area and delay overheals can poten-
tialy be quite large. In addition, the test bus architedure is unable
to test the interconred that exists between cores.

In [4], aDFT method is deseibed to teg maao blocksinsde a
circuit with a heavy reliance on full/ partial scan and bounday scan
whos disad/antages have been stated above. Thoudh fundional
information of moduesis sametimes used to reduce ted overhead
by utili zing the concept of moduetranspaercy, the techriquesfor
introdudng transpaercy are ad hoc. In [5], a new techniqueisin-
troducel to make ead core transpaert. In the tes mode atrans-
paert core can propagéae tes daa from its inpus to outputs with-
out information loss During teging of the SOC the transpaercy
propaty of coresis useal to propagde precanputed core ted se-
quencsfrom the chip inpus to the core inpus, and tes responses
from the core outputs to the chip outputs. While succesBul in low-
ering the tes area and dday overhead compared to existing tech-
niquesthetechriquein [5] suffers from the drawbadk of relatively
large test appli cation times due to the potentiall y large transparency
laterncy of ead core (number of cycles needd to propagae test
data from inpus to outputs of the core). Also, fundiond descip-
tion of the cores are required to make them transpaent which may
not be availade for many cores induding legacy cores.

In this work, we propos a new DFT techrique for core-based
SOC testing that simultaneously targets reduction of areaoverhead
and test application time. It hastwo parts. Thefirst part consists of
core-level DFT and ted geneation to make eat core tedale and
transpaert, and geneate a precanputed ted set for the core. For
the core-level DFT, we use the low-cost high-level scan (HSCAN)
techrique [6]. Transpaercy of a core is acheved by reusng ex-
isting pahs in the core, induding HSCAN paths The core-level
DFT and transpaency method uses only structural information of
the core, in cortrad to fundiond information used in [5], which
may be harder to extrad for same cores Thistak needto be per-
formed by the core provider in cas of hard and firm cores and
the user in case of soft cores. During the core testability phase,
various versions of the same core are syrtheszed For ead ver-
sion, the following are spedfied: the appropriate DFT structures,
testability and transparency area overheals, transparency latency
for differert inpu/output pars, and the teg sequene for teging
eadt core. Note that this is a onetime cog incured by the core
provider or the use. The secoml pat conssts of chip-level DFT
and teg geneation which is to be performed by the use. For this,
we propo® a techrique that andyzes the given interconnetion of
various coresin the SOC the ted sd size of ead core, and the area
overheadtranspaercy latency chaaderistics of the availalle core
versions ard idertifies the mog sutable version of ead core such
that the desired test area overhead/test appli cation time trade-off is
acheved for the SOC Teding of ead embeddel core can be per-
formed by jugifying (propagaing) the ted sequencg(responses)
from (to) the chip inpus (outputs) using the transpaency mecha-
nism of the coresin the SOC.

The proposel techrique can be used to desgn an SOC with high
faut coverage suc tha: (i) the ted area overheal is minimized,
(i) the test applicaion time for testing the SOC is minimized, or
(iii) adesired trade-off is obtained between the test area overhead
and test applicdion time. Thistechniqueis suitable for testing the
SOC in a hierarchicd fashion. Even if sdt cores are usel in the
SOC sequetial teg patern geneaation subsequetto integrating
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Figure 2: An example core-based embedded system @ ()

Figure 4: HSCAN and transparency chains in the CPU core
all cores into a single design can be computationally prohibitive. 3 outline of the SOC Test Method
This problem does not arise in our method. Significant reduction in . ) . . .
the area overhead and test application time compared to an existingn this section, we describe our core-based testing method using an

SOC testing technique is demonstrated for two example SOCs.  €xample core-based embedded system that implements a barcode
scanning system. This embedded system consists of the follow-

2 Preliminaries ing cores: CPU, PREPROCESSOR, DISPLAY, RAM and ROM,
as shown in Figure 2. The PREPROCESSOR receives signals from
In this section, we briefly describe the register-transfer level (RTL) a video scanner (sign®lded, processes the barcode scanned, and
HSCAN methodology antllustrate its use as oumderlying core- if no errors are detected, writes the width of the black and white
level testing technique [6]. It utilizes existing paths between regis- bars in consecutive locations in the RAM. Subsequently, the CPU
ters, through mitiplexers (mux paths), toannect registers in par-  uses an embedded program in the ROM to convert the barcode in
allel scan chains from the circuit inputs to the circuit outputs. Con- the RAM to a cost. The DISPLAY then converts the binary coded
sider the example RTL circuit shown in Figure 1, which shows 16- decimal output of the CPU to a series of six seven-segment display
bit multiplexers and registers. Since a multiplexer path already ex- codes. The memory space is 4KB long, organized as 16 pages of
ists betweefREG1andREG2 in the HSCAN mode these registers 256 byte each, and all ports are memory-mapped.
can be connected in 16 parallel scan chains by using just two ex-  The internal structure of the CPU core is shown in Figure 3 [7].
tra logic gates, as shown in Figure 1(a). If the select-O path of an In the figure,PC represents the program counte¥AR represents
existing multiplexer needs to be chosen during testing then a con-the memory address register, direpresents the instruction reg-
figuration like Figure 1(b) can be used. If a direct connection ex- ister. To make the CPU testable, we use HSCAN to obtain the scan
ists between two registers, only an OR gate is required at the loadchain configuration shown in Figure 4(a). Each flip flop/register in
signal of the destination register. If no path exists between two reg- the circuit now belongs to one scan chain which can shiit in the
isters, or if there is a conflict with already created HSCAN paths, tests and shift out the responses.
then a scan path is created by adding a test multiplexer, as shownin Next, we need to make the CPU transparent. This means that
Figure 1(c). This multiplexer can be integrated with the destination each output of the core can be justified from at least one input or a
flip-flops to create a set of scan flip-flops to reduce test overheadscombination of inputs of the core, and each input of the core can be
further. Since it is a full scan technique, only combinational test propagated to one output or a combination of outputs of the core,
pattern generation is required which makes it suitable for tackling in a fixed number of cycles. First, we try to utilize the HSCAN
large designs like cores. chains for transparency. Some extra transparency logic may be re-
To achieve transparency in a core, the existing parallel paths quired, so that we can freeze values along the chain whenever re-
between registers as well as the ones introduced by HSCAN canquired. If HSCAN is not the underlying test methodology for the
be utilized to transfer data from theguts of the core to its outputs  core, we can use other techniques given in Section 4 to achieve
making the HSCAN scheme suitable for obtaining low-cost transparency. The transparency mechanism for the CPU is shown
transparency for each core. This is explained next. in Figure 4(b). Assume that the core outgddress(7 downto 0)
needs a symbolic value. If a is applied at the core-inpiRata,
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response can be scanned out through the primary outputs. Thus,
the test application time required for testing the DISPLAY alone
is 525x 9+3=4728 cycles. The last three cycles are required to
scan out the last test response. Since the DISPLAY core has 66 flip-
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rs flops and 20 internal inputs, an FSCAN-BSCAN approach would
T have needed (66 +2@)105 + (66 +20)- 1=9,115 cycles to do the
T | aimos diomeo same.
RJP e N ‘ The transparency latency through the CPU can be reduced at the
Intertupt Read Aidrees 2 expense of area overhead, by exploiting existing alternative con-
bl T nections in the CPU and some extra transparency logic. In this
Figure 5:Version 3of the CPU core case, outpuAddress(7 downto 03an be justified from the input
. ) Data, with some extra logic at the select line of multiplexXérin
then the core outputddress(7 downto Qyill get a after six clock Figure 3, in one cycle. AlsoAddress(11 downto &an be jus-

cycles. Whilea is being shifted from the core input to output, the  tified from Data in two cycles. This transparency logic is added
data in theStatus registeneeds to be frozen for a cycle so that the i addition to the HSCAN logic. Now, the CPU takes a total of
latency through the two parallel chains are balanced. This requiresthree cycles to transfer a test vector from its inpatta to output
some extra transparency logic. Subsequently, the value required ajaddress If this version (named/ersion 3 of the CPU is used in
the other core outpuddress(11 downto &an be applied at the  the chip, the test application time for testing the DISPLAY is now
core inputData. The required value appears in regis4R page 525x 4+3 = 2103 cycles only. The latency of the CPU core can
which is connected tdddress(11 downto B)after two clock cy- e further reduced by using one extra transparency multiplexer to
cles. Also, the HSCAN chains can be used to transfer the value form Version 3of the CPU as shown in Figure 5. In this configura-
at inputReseto outputReadin two cycles, and inpuinterruptto tion, both outputsAddress(7 downto ®ndAddress(11 downto 8)
outputWrite in two cycles. However, these single-bit chains are can be justified from inpubatain one cycle. The test application
not explicitly shown in Figure 4(b). If all the bits of the core output  time for testing the DISPLAY is now reduced to 523 +3=1,578

Addresseed to be justified simultaneously from infidta, then cycles. The results are summarized in the table in Figure 6. In the
some extra logic is required to freeze the values at output registerstable, the area overheads are for the extra transparency logic only.
MAR pageandMAR offset The numbers are obtained after technology mapping withum.8

Next, we briefly describe our methodology of testing each em- cell library using an in-house synthesis tool.
bedded core, using transparency of the other cores in the SOC. We |n general, more expensive versions can be used for critical
demonstrate the importance of the transparency latency of a corecores whose transparency latency affects the test application time
in determining the test application time of a core under test, and of many other cores in the SOC.
that of the entire SOC. We show how the transparency latency can -
be traded off for area overhead to reduce the test application time.4 Making Cores Transparent
Consider the DISPLAY in the SOC of Figure 2, which needs a In this section, we explain the method we have developed to make
test sequence of 525 HSCAN vectors for achieving 100% test effi- cores transparent with some given transparency latency. At first,
ciency (105 full-scan vectors are required and the sequential depthif HSCAN is the underlying DFT methodology, we try to exploit
of the longest HSCAN chain is 4). To test the DISPLAY, its inputs the HSCAN chains to achieve transparency. If HSCAN is not
A andD need to be controlled and its outp@®-PORT lthrough the underlying test methodology or if transparency is not possible
PO-PORT6need to be observed. To control ingufrom the chip through the HSCAN chains or if any of the transparency latencies
inputs, the test vector needs to be propagated through the PREPROfor an input or output is not acceptable, we introduce extra logic
CESSOR from its inpulUM to its outputDB and then throughthe  into the circuit to create transparency paths.
CPU from its inputData to its outputAddress This path is shown First, we extract a register connectivity graph (RCG) which con-
with the help of a dashed line in Figure 2. Inditof the DIS- sists of input nodes, output nodes, and register nodes of the core.
PLAY can be controlled by propagating the desired vector through An edge is present between two nodes if a direct oltiplexer
the PREPROCESSOR from its inpNtJM to its outputDB. The path exists between them. Figure 7 shows the initial RCG of the
outputs of the DISPLAY can be observed directly as they are the CPU core. In the figure, the edges corresponding to the HSCAN
chip outputs. paths are darkened. In many RTL circuits, bit-slicing is common,

Suppose the PREPROCESSOR can transfer data from inputwhere a subset of bits (bit-slice) of a register is involved in an op-
NUM to outputDB in one cycle. The CPU takes a total of eight cy- eration (as source or destination register), instead of the complete
cles to transfer a test vector from its infata to outputAddress register. In such cases, the corresponding register node in the RCG
(six cycles to transfer a vector froDatato Address(7 downto Q) is marked as a split node. When different bit-slices of a regis-
and two cycles to transfer a vector frddatato Address(11downto  ter must receive data from different sources, the register node is
8)). Here, we have assumed that test data cannot be pipelinedtermed a C-split node. To control a desired value in a C-split node,
through a core. Thus, if two transparency paths in a core sharethe different bit-slices need to be controlled through different paths.
some logic between them, then data through one path can be propin Figure 7,ACCUMULATORis a C-split node. Similarly, if the
agated only after data has been completely propagated through thdanout of a node is split into different bit-slices going to different
other path. Hence, a test vector can be propagated from the chipdestinations, the node is marked as an O-split node.
input NUM to the core-inpuf in nine cycles, where we have as- From the RCG, we try to find transparency paths from inputs to
sumed that test data can flow through different cores simultane-outputs. To do this, we do a breadth-first search (BFS) from each
ously. In between, the test vector atinputan also be made ready. input node until we reach an output node. During this search, any-
A subsequent test vector for the DISPLAY can be made ready attime we reach an O-split node, the BFS is done from each of the
its inputs in another nine cycles. In the intermediate cycles, when nodes at the fanout edges of the O-split node, as all the fanout edges
the data at the inputs of the DISPLAY are not valid, the scan clock need to be used for propagating the data at the O-split node. At
of the DISPLAY needs to be frozen. During this period, the test first, we only use the HSCAN edges during this search. If we fail
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(7 downto 0) © -input node other existing paths in the RCG are used to obtain transparency. In
@ - register node the case of the CPU, transparency paths for all inputs and outputs
O - output node are achievable using HSCAN paths only. This gives riseetsion
1 of the CPU core (see Figure 6).
— HSCAN edges

MAR offset The transparency latency of a core can be reduced by adding ex-

tra logic and using existing non-HSCAN paths or by adding trans-
Adeinss parency multiplexers. Consider Figure 7. Let then-HSCAN
(7 downto 0) edges existing in the RCG be included in the BFS this time. Since
Figure 7: RCG of the CPU core an edge exists frorbata to Address(7 downto Qp transparency
o getat th try t th isti d . hq%ath can be found for outp#tddress(7 downto Op input Data
geta transparency path, we try to use other existing edges in theity 3 |atency of just one cycle. A transparency path exists from

RCG. For the CPU core, the BFS from infkatareaches nodkR. ; :
Then, different BFSs start along the two fanout edges. The search’A‘ddress(11 downto 8 input Data with a latency of two cycles

! as before. Consequently, we haVersion 2of the CPU core.
fTrﬁmérl‘:esl‘?ﬁ edt%e te.”r?t'nadtes at o?tput ndbttl_iljress(llﬂow?to t8) de When non-HSCAqudgeg are used for transparency, the type of
e rom the right edge continues until we reach output node ; iod i ; : -
Address(7 downto OJThus, we have found a transparency path for transparency logic required is determined by analyzing the multi

. ; - - plexer tree or bus interconnect that created the edge in the RCG
propagating the input to the output with a latency of six cycles. We ; : : ;
delete this path and do a BFS for any remaining input whose trans-and adding the appropriate extra logic according to the data flow

parency path has not yet been found. If no paths are found, therieqwred. This is a straightforward mapping, as explained in Sec-

deleted paths are put back in the RCG and the BFS is repeated with
the aim of finding a transparency path by reusing edges from prior ;.
transparency paths. If transparency paths are still ound, then

a transparency path is created by adding extra logic. Any register
reachable from the input in one cycle (found from the BFS) is con-
nected to an output (or outputs if bit-widths mismatch) with a test
multiplexer. To keep the transparency paths disjoint, preference

is given to an output(s) which has not yet been used for provid- Note that input control signals to a core can be treated as data

'ﬂg transparency fo other core inputs. If any edge is used in more ;1< and if direct paths from control inputs to control registers are
than one trﬁnspaﬁeﬂcy path, tkk\]en_ it may not be possible to propas, g resent, the random logic in between can be simply bypassed
ggte_data throug the_ two paths in parallel. Finally, a solution is i "single-bit multiplexers during testing. The control registers
0 f_talr:jed w bere ?ac llnput can be proplagated to sgme OULPUL(S) inyay gimilarly connect to control outputs as shown inRreadand

a fixed number of cycles (transparency latency) in the testmode.  \yyite chain in Figure 4. Thus, expensive test generation techniques

Next, we try to find transparency paths so that each output of the ; ; ; i
core may be justified from some input of the core during the trans- are avoided during the evaluation of transparency for such signals.

parency mode. For this, we reverse all the edges in the RCG, andd Trading Off Area and Test Application Time

again do a BFS from each output node of the RCG. We select anyye next present a method to select the best core versions to pro-
output and continue the BFS until we reach an input node. For ex- duce a testable SOC for the following objectives:

ample, for the CPU, we first seletidress(7 downto Ojnd do a i) Given a test area overhead constrainkafells, the global test
BFS using only the HSCAN edges. When we reach a C-split node, g%,pncation time of the SOC is minimized. ’ g

the BFS is done from each of the nodes at the fanout edges (faningjj) Given a test application time constraintptycles, the overall

in the original RCG) of the C-split node since all the fanout edges test area overhead of the SOC is minimized.

need to be used for justifying the data at the C-split node. When ~\ne propose an iterative improvement technique, which can
two BFSs originating at the fanout nodes of a C-split node con- optain solutions for either of the design objectives by varying
verge at an O-split node, then they again it a single search.  the parameters of a cost function. At first, we create a core
Thus, the search branches into two different searches at the C'SF""connectivity graph (CCG) from the given SOC. In this graph,
nodeACCUMULATORand reconvergesto a single search atthe O- there are primary input (P1) nodes, primary output (PO) nodes,
split nodelR, eventually reaching the input noBata. If the trans- core input nodes and core output nodes. Edges are added between
parency path thus formed has split nodes, and if the parallel sub-inpyt-output pairs of a core according to the transparency paths
paths are not balanced at each fanin of a C-split node in the originaljn the versions of the core currently in use. The cost associated

RCG, for each fanin which does not fall on the longest subpath we yith an edge represents the transparency latency between the
add extra logic to freeze the data there. This balances the parallel;orresponding input-output pair.  An input node is split into

sub-paths, so that the data, which have arrived early at the fanin ofseparate nodes if its fanin is lgp i.e., if different bit-slices of

a C-split node, wait until the data at all the fanin edges are ready. the node receive data from different sources exclusively. Similar
Next, we repeat the procedure for the other output nodes. For thesplitting is done for output nodes also by considering the fanout

CPU, we delete the transparency path and do BF®\éliress(11  pits. The CCG of the barcode system in Figure 2 is shown in

downto 8) Since we cannot find a path, we put back the deleted Figure 9 where the minimum area versiMe(sion 3 of each core

path and try again. This time we succeed. Thus, the transparencyis used. We do not consider the memory cores in this discussion,

paths of the two outputs are not disjoint, but rather reuse common as most memory cores use BIST [8].

edges MAR IR) and (R, Data). When the same edge(s) in the e

RCG has to be reused in multiple transparency paths, we transfer2-1 Identification of test paths for a core

data through them in a sequential manner. We next discuss how to identify the justification and propagation
If transparency paths are not found using HSCAN edges, then paths for each core such that the test application time needed for the

——  Other existing edges

Further reduction in transparency latency can be obtained by in-
ducing transparency rtiplexers. This isdone one at a time for
each input/output pair with a transparency latency greater than one.
Figure 5 shows a transparency multiplexer (shaded) added to re-
duce the latency dbata — Address(11 downto 8 one, leading

to Version 3of the CPU. The trade-offs for different core versions
for the other two cores in Figure 2 are shown in Figure 8.
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core is minimized. Let us take the DISPLAY core first. We have to
control its inputsA(7 downto 0) A(11 downto 8andD. We find

out all possible shortest paths from the chip input&\(@ downto

0) and choose the one with lowest cost (which takes the least num-
ber of clock cycles). Any shortest path algorithm like Dijkstra’s
algorithm can be used for this purpose. Here, only one path is pos-
sible NUM — DB — Data— Address(7 downto 0): A(7 downto

0)) which is highlighted in Figure 9. We mark this path and reserve
the edges for the cycles in which they will be used. Hence, edge
(NUM, DB) in the PREPROCESSOR is reserved from cycle 0 to 5
edge Data, Address(7 downto D)s reserved from cycle 5 to 11,
and so on. If there is no path possible, we add a system-level tes
multiplexer to ®nnect the input of the core directly to a PI. Next,
we try to find the shortest path from any chip PIA¢11 downto

8). The shortest path algorithm is modified so that if any marked

edge is reused, then the cost is automatically modified so that the
edge is not reused in the reserved cycles. Here, part of the previ-

ous path needs to be reused. Therefore, the édgé/( DB) can
only be utilized from cycle 6 onwards, the edd@ata, Address(7
downto 0) can only be used from cycle 12 onwards, and so on.

The minimum-cost path is again chosen among all possible paths

and test multiplexers are added dcessary. Similarly, the path for
controlling inputD can be found.
Next, we try to find the paths for observing the core outputs at

17-5=12.ATAT gives a notion of the improvement in the global
test application time if a core is replaced with another version. The
area overhead increas®A, for this replacementis 17 cells. For
each core, the cost of replacing it with another version is calculated
asC=wy x ATAT+ws, x AA, wherew; andw, are weights that can

be adjusted according to the problem solved.

Next, suppose we are trying to meet objective (i) as specified
before. We setv; to 1 andw, to 0 and improve the existing solu-
tion by replacing the core that has the high@salue with its next
expensive version. We repeat this until the test overhead reaches
the preset maximum or the test overhead becomes higher than the
overhead of a system-level test multiplexer. In the latter case, we
choose the core which contributes the most to the global test ap-
plication time, examine the time it takes to get an input vector to
each of its inputs from the Pls (observe an output vector at each of
its outputs at the POs) and place the system-level multiplexer on
the input or output that is the mostitaral. This process is stopped
once the test overhead reaches the user-defined maximum allow-
able test overhead.

If we are trying to meet objective (ii) stated before, wewgto
0 andw;, to 1 and choose the core with the minim@nhat has a
non-zerdATAT value. This means that we replace the core which
is the least expensive to replace but ensure that it will have some
effect in reducing the global test application time. The global test
application time is again calculated and the process repeated un-
til the preset test application time limit is met. Once again, if the
test overhead becomes higher than the overhead of a system-level
test multiplexer, we place an extra test multiplexer as before. Thus,
in the worst case, the solution will degenerate into a test bus like
system in which core inputs are controllable from the Pls and core
outputs observable at the POs. Note that this system will have the

tminimum possible test application time.

The proposed methodology requires that each core can be
clocked independently of the other cores as sometimes test data
needs to be frozen at certain points while it keeps on flowing at
other points. This is done by freezing the clock of the core when
necessary with the help of clock gating circuitry. During the test
mode, these control signals as well as the transparency mode con-
trol signals likeT2and T3 in Figure 6 are provided by a test con-
troller which is added to the chip. This usually consists of a small
finite-state machine.

6 Experimental Results
We applied the proposed SOC testing methodology to two example

the POs of the chip. This process is very similar to the method core-hased systems. The first example, System 1, is the barcode
of flndlng paths to Inp_u_ts which is described above. For the DIS- embedded system shown in Figure 2. System 2 consists of a graph_
PLAY, all paths are trivially found as they connect to POs of the jcg processor core [9], a GCD core [10], and a X25 protocol core
chip. Again, test multiplexers are added to increase observability if 11]. Each core used in the systems has HSCAN DFT, and hence
necessary. This process is repeated for every core in the system. Ii¢an be treated as a full-scan circuit and tested using combinational
Figure 9, the outpuAddres®f the PREPROCESSOR is connected  ATPG tools. The area numbers represent number of cells, and are
to a PO with a system-level test multiplexer since there is no way optained after synthesizing and technology mapping different ver-
of observing it by existing paths through the cores. sions of the cores and systems with an in-house synthesis tool. The
Once a test solution is found, the global test application time and fault coverage numbers are obtained by fault simulating the logic-
area overheads for the system are calculated. If it does not meet th@evel implementation of the system with the system-level test set
constraints that the user has set, then a different design point whichysing a commercial combinational ATPG tool.
provides the most improvement needs to be obtained. The graph shown in Figure 10 demonstrates the chip-level
v i ; trade-off between the area overhead and the chip test application
2.2 Iteratlveilmprovement for core selection . time for 18 design points of System 1 which are obtained by
Next, we outline the procedure to select the most suitable core to different combinations of the core versions. Design point 1 (18)
be replaced by the next higher overhead version. First, all core corresponds to the SOC consisting of a minimum area (minimum
versions are ordered in terms of the area overhead from lowest up-latency) version of each core. Details of some of the design points
wards. Then a test application time improvement number is calcu- (1, 17, 18) are given in Table 1, with Columns 2, 3, 4, and 5
lated for each core. To do this, the test solution is examined and showing the area overhead, test application time, fault coverage,
the number of times each edge in a core is used is counted. Therand test efficiency, respectively. The first two rows, representing
this number is multiplied by the latency of the edge and is summed design points 1 and 18, show that about 4.5 times reduction in
over all edges of the core. For example, the edgéNl, DB) in the test application time can be achieved with about two times in-
PREPROCESSOR is used twice to test the DISPLAY and once to crease in the test area overhead. The table also shows that selecting

test the CPU. lIts latency is five. The ed#IM, Addres$is never . . i
used. The edgdResetEod in the PREPROCESSOR is used once Table 1: Design space exploration for System 1

to test the CPU. lIts latency is two. Hence, the initial latency num- || Circuit description A.Ov. | TApp. | FCov. | TEff.
ber for the PREPROCESSOR isx®H+0x 2+1x 2=17. Now (cells) | (cycles)| (%) | (%)
if we replace the PREPROCESSOR with the next area-expensive| Each core has min. Area (1) 156 | 17,387 | 984 | 99.8
version, the latency number changes te B+0x 2+1x 2 =5. Each core has min. latency (18) 325 3,818 98.4 | 99.8
Thus, the latency improveme®T AT, in the PREPROCESSORis Min. chip TApp. (17) 307 3,806 98.4 | 99.8




Table 2: Area overheads
Orig. Core-level DFT Chip-level DFT Core + Chip-level DFT
Circuit FSCAN] HSCAN || BSCAN SOCET FSCAN-BSCAN] SOCET
Area Ovhd. Ovhd. Ovhd. Circuit Ovhd. Ovhd. Ovhd.
(cells) (%) (%) (%) type (%) (%) (%)
System 1| 8014 18.8 10.1 5.2 Min. Area 2.0 24.0 12.1
Min. TApp. | 3.8 24.0 13.9
System 2| 5540 15.6 10.3 9.9 Min. Area 12 255 115
Min. TApp. | 4.7 255 15.0
Table 3: Testability results
Orig. HSCAN FSCAN-BSCAN SOCET
Circuit FC | TER. || FC | TER. || FC | TER. | TApp. Circuit FC [ TEf. | TApp.
(%) | (%) || (0) | (%) || (%) | (%) | (cycles) type (%) | (%) | (cycles)
System1| 10.6 | 10.8 || 146 | 149 || 98.4| 99.8 | 36,152 || Min. Area | 98.4 | 99.8 | 17,387
Min. TApp. | 984 | 99.8 | 3,806
System2| 112 11.3 || 13.8| 13.8 || 98.2 | 99.9 | 46,394 || Min. Area | 98.2 | 99.9 | 16,435
Min. TApp. | 98.2 | 99.9 3,998
18000 givenin Columns 10, 11, and 12. While the fault coverage obtained
‘i\j? ﬁe by FSCAN-BSCAN and SOCET are equally high, the test applica-
16000 tion time required by SOCET is significantly lower than FSCAN-
. ] BSCAN.
g, Hom \ \ \ 7 Conclusions
< 12000 In this paper, we have presented a novel technique for efficient
E 3l/ 5 L7 testing of core-based SOCs. Individual cores are first made testable
§ 10000 and then transparent using the existing logic inside the core and
g x adding test hardware only if needed. Since the transparency
g " latency of cores is a critical factor in the overall test application
e &K time of the core-based system, it is shown how different versions of
2 o0 the same core can be created with different transparency latencies
2000 - and test overhead values. In the system, each core is tested with
17 18 its precomputed test set which is propagated through other cores
2000 using their transparency modes. A technique is presented here that

150 200 250

Area overhead in cells

300 350

Figure 10: Test application timesarea ovhd. for System 1

the minimum latency cores does not necessarily lead to an SOC
with minimum test application time. Design point 17 represents
the SOC having minimum test application time though it uses a
higher latency version of the PREPROCESSOR core than the on
used in design point 18.

helps the user to explore the design space and choose a particular
version of each core so that the final test overhead and chip test
application time goals can be met. Application of the technique to
example SOCs demonstrates the feasibility of our approach as well
as significant reduction in test overhead and test application times
compared to existing SOC test techniques.
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Table 2 compares the area overheads obtained by our method
with the existing core-based SOC testing method FSCAN-BSCAN. References

We use two extreme design points obtained by our method, termed
SOCET, for the comparison - the chip having least area overhead,
and the chip having least test application time. In Column 2 of the
table, the original area of the chip is given. Columns 3 and 4 give

the area overhead needed to make the cores testable using FSCAN[3]

and HSCAN, respectively. The next two columns give the area
overhead for the chip-level DFT needed to make the SOC testable:

Column 5 shows the boundary scan area overhead, while Columns

6 and 7 list the overheads for the two extreme design points us-
ing SOCET. The total area overheads including the core-level and
chip-level DFT for the two different methods are given in Columns
8 and 9. The area overhead required for SOCET is significantly
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the fault coverage of the chip before the addition of any test hard-
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DFT is added. This case shows that the overall fault coverage of
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