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Abstract
This paper proposes a new methodology for testing a core-based
system-on-chip (SOC), targeting thesimultaneousreductionof test
areaoverheadand test application time. Testingof embeddedcores
isachieved using thetransparencypropertiesof surroundingcores.
At the core level, testabilit y and transparency can be achieved by
reusing existing logic inside the core, and providing different ver-
sionsof thecorehaving different area overheadsand transparency
latencies. At the chip level, the techniqueanalyzesthe topology of
the SOC to select the core versions that best meet the user’s de-
sired test area overhead and test application time objectives. Ap-
plication of the method to example SOCs demonstrates the ability
to design highly testableSOCs with minimized test area overhead,
minimized test application time, or a desired trade-off between the
two. Significant reduction in area overhead and test application
timecomparedto an existing SOC testing techniqueis also demon-
strated.

1 Int roduction
System-level integration is evolving as a new paradigm in system
design, allowing an entiresystem to bebuil t on asinglechip, using
pre-designed functional blocks called cores. While SOC is prov-
ing to bevery useful in meeting aggressivetime-to-market, perfor-
mance, and cost requirements of today’s electronic products, test-
ing such core-based SOCs poses a two-fold challenge. Core-level
testing involves making each core testable - inserting the neces-
sary design for testabilit y (DFT) structures and generating test se-
quences. Typically, for hard and firm cores, testabilit y is ensured,
and precomputed test sets provided by the core provider. For soft
cores, testabilit y can be addressed and test sets generated by the
user. When thecores are integrated into an SOC, chip-level testing
needs to be addressed by the SOC designer. The main difficulty
in chip-level testing is the problem of justifying precomputed test
sequencesof acoreembeddeddeep in thedesign from the chip in-
puts, and propagating the test responses from the core outputs to
thechip outputs.

Core-level testing can be done through automatic test pattern
generation (ATPG) at the logic level and by employing a variety
of DFT techniques like full or partial scan, and built-i n self-test
(BIST). At the chip level, a number of DFT techniques have been
proposed [1]. In oneexisting DFT method, referred to as FSCAN-
BSCAN, each core is made testable by full scan while chip-level
testabilit y is obtained by isolating each core using boundary scan
[2]. This scheme may have large area and delay overheads, and
prohibitively large test application times. Recently, some work
has been done to address this problem [3]. Another existing DFT
method, utili zes a combination of full scan and test bus. In this
method, anaddedtest busrunsfrom thePIsof thesystemto its POs
and uses a series of multiplexers to isolate each embedded core,
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which is full scanned, during testing to providesystem-level testa-
bilit y. In this caseas well , theareaand delay overheadscan poten-
tially bequite large. In addition, the test bus architecture is unable
to test the interconnect that exists between cores.

In [4], a DFT method is described to test macro blocks insidea
circuit with aheavy relianceon full/partial scanand boundary scan
whose disadvantages have been stated above. Though functional
information of modules is sometimes used to reduce test overhead
by utili zing theconcept of moduletransparency, the techniquesfor
introducing transparency are ad hoc. In [5], a new techniqueis in-
troduced to makeeach core transparent. In the test mode, a trans-
parent core can propagatetest data from its inputs to outputs with-
out information loss. During testing of the SOC, the transparency
property of cores is used to propagate precomputed core test se-
quencesfrom the chip inputs to the core inputs, and test responses
from thecoreoutputs to thechip outputs. While successful in low-
ering the test area and delay overheads compared to existing tech-
niques, the techniquein [5] suffers from thedrawback of relatively
largetest application timesdueto thepotentially largetransparency
latency of each core (number of cycles needed to propagate test
data from inputs to outputs of the core). Also, functional descrip-
tion of the coresare required to make them transparent which may
not beavailable for many cores, including legacy cores.

In this work, we propose a new DFT technique for core-based
SOC testing that simultaneously targets reduction of areaoverhead
and test application time. It hastwo parts. Thefirst part consistsof
core-level DFT and test generation to makeeach core testable and
transparent, and generate a precomputed test set for the core. For
the core-level DFT, we use the low-cost high-level scan (HSCAN)
technique [6]. Transparency of a core is achieved by reusing ex-
isting paths in the core, including HSCAN paths. The core-level
DFT and transparency method uses only structural information of
the core, in contrast to functional information used in [5], which
may beharder to extract for somecores. This task needsto beper-
formed by the core provider in case of hard and firm cores, and
the user in case of soft cores. During the core testabilit y phase,
various versions of the same core are synthesized. For each ver-
sion, the following are specified: the appropriate DFT structures,
testabilit y and transparency area overheads, transparency latency
for different input/output pairs, and the test sequence for testing
each core. Note that this is a one-time cost incurred by the core
provider or the user. The second part consists of chip-level DFT
and test generation which is to be performed by the user. For this,
we proposea technique that analyzes the given interconnection of
variouscoresin theSOC, the test set sizeof eachcore, and thearea
overhead/transparency latency characteristics of the available core
versions, and identifies themost suitableversion of each core such
that the desired test areaoverhead/test application time trade-off is
achieved for the SOC. Testing of each embedded core can be per-
formed by justifying (propagating) the test sequences (responses)
from (to) the chip inputs (outputs) using the transparency mecha-
nism of thecores in theSOC.

Theproposedtechniquecanbeused to designanSOC with high
fault coverage such that: (i) the test area overhead is minimized,
(ii ) the test application time for testing the SOC is minimized, or
(iii ) a desired trade-off is obtained between the test area overhead
and test application time. This techniqueis suitable for testing the
SOC in a hierarchical fashion. Even if soft cores are used in the
SOC, sequential test pattern generation subsequent to integrating
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Figure 2: An example core-based embedded system

all cores into a single design can be computationally prohibitive.
This problem does not arise in our method. Significant reduction in
the area overhead and test application time compared to an existing
SOC testing technique is demonstrated for two example SOCs.

2 Preliminaries
In this section, we briefly describe the register-transfer level (RTL)
HSCAN methodology andillustrate its use as ourunderlying core-
level testing technique [6]. It utilizes existing paths between regis-
ters, through multiplexers (mux paths), to connect registers in par-
allel scan chains from the circuit inputs to the circuit outputs. Con-
sider the example RTL circuit shown in Figure 1, which shows 16-
bit multiplexers and registers. Since a multiplexer path already ex-
ists betweenREG1andREG2, in the HSCAN mode these registers
can be connected in 16 parallel scan chains by using just two ex-
tra logic gates, as shown in Figure 1(a). If the select-0 path of an
existing multiplexer needs to be chosen during testing then a con-
figuration like Figure 1(b) can be used. If a direct connection ex-
ists between two registers, only an OR gate is required at the load
signal of the destination register. If no path exists between two reg-
isters, or if there is a conflict with already created HSCAN paths,
then a scan path is created by adding a test multiplexer, as shown in
Figure 1(c). This multiplexer can be integrated with the destination
flip-flops to create a set of scan flip-flops to reduce test overheads
further. Since it is a full scan technique, only combinational test
pattern generation is required which makes it suitable for tackling
large designs like cores.

To achieve transparency in a core, the existing parallel paths
between registers as well as the ones introduced by HSCAN can
be utilized to transfer data from the inputs of the core to its outputs
making the HSCAN scheme suitable for obtaining low-cost
transparency for each core. This is explained next.
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3 Outline of the SOC Test Method
In this section, we describe our core-based testing method using an
example core-based embedded system that implements a barcode
scanning system. This embedded system consists of the follow-
ing cores: CPU, PREPROCESSOR, DISPLAY, RAM and ROM,
as shown in Figure 2. The PREPROCESSOR receives signals from
a video scanner (signalVideo), processes the barcode scanned, and
if no errors are detected, writes the width of the black and white
bars in consecutive locations in the RAM. Subsequently, the CPU
uses an embedded program in the ROM to convert the barcode in
the RAM to a cost. The DISPLAY then converts the binary coded
decimal output of the CPU to a series of six seven-segment display
codes. The memory space is 4KB long, organized as 16 pages of
256 byte each, and all ports are memory-mapped.

The internal structure of the CPU core is shown in Figure 3 [7].
In the figure,PC represents the program counter,MAR represents
the memory address register, andIR represents the instruction reg-
ister. To make the CPU testable, we use HSCAN to obtain the scan
chain configuration shown in Figure 4(a). Each flip flop/register in
the circuit now belongs to one scan chain which can shift in the
tests and shift out the responses.

Next, we need to make the CPU transparent. This means that
each output of the core can be justified from at least one input or a
combination of inputs of the core, and each input of the core can be
propagated to one output or a combination of outputs of the core,
in a fixed number of cycles. First, we try to utilize the HSCAN
chains for transparency. Some extra transparency logic may be re-
quired, so that we can freeze values along the chain whenever re-
quired. If HSCAN is not the underlying test methodology for the
core, we can use other techniques given in Section 4 to achieve
transparency. The transparency mechanism for the CPU is shown
in Figure 4(b). Assume that the core outputAddress(7 downto 0)
needs a symbolic valueα. If α is applied at the core-inputData,
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then the core outputAddress(7 downto 0)will get α after six clock
cycles. Whileα is being shifted from the core input to output, the
data in theStatus registerneeds to be frozen for a cycle so that the
latency through the two parallel chains are balanced. This requires
some extra transparency logic. Subsequently, the value required at
the other core outputAddress(11 downto 8)can be applied at the
core inputData. The required value appears in registerMAR page,
which is connected toAddress(11 downto 8)), after two clock cy-
cles. Also, the HSCAN chains can be used to transfer the value
at inputResetto outputReadin two cycles, and inputInterrupt to
outputWrite in two cycles. However, these single-bit chains are
not explicitly shown in Figure 4(b). If all the bits of the core output
Addressneed to be justified simultaneously from inputData, then
some extra logic is required to freeze the values at output registers
MAR pageandMAR offset.

Next, we briefly describe our methodology of testing each em-
bedded core, using transparency of the other cores in the SOC. We
demonstrate the importance of the transparency latency of a core
in determining the test application time of a core under test, and
that of the entire SOC. We show how the transparency latency can
be traded off for area overhead to reduce the test application time.
Consider the DISPLAY in the SOC of Figure 2, which needs a
test sequence of 525 HSCAN vectors for achieving 100% test effi-
ciency (105 full-scan vectors are required and the sequential depth
of the longest HSCAN chain is 4). To test the DISPLAY, its inputs
A andD need to be controlled and its outputsPO-PORT1through
PO-PORT6need to be observed. To control inputA from the chip
inputs, the test vector needs to be propagated through the PREPRO-
CESSOR from its inputNUM to its outputDB and then through the
CPU from its inputData to its outputAddress. This path is shown
with the help of a dashed line in Figure 2. InputD of the DIS-
PLAY can be controlled by propagating the desired vector through
the PREPROCESSOR from its inputNUM to its outputDB. The
outputs of the DISPLAY can be observed directly as they are the
chip outputs.

Suppose the PREPROCESSOR can transfer data from input
NUM to outputDB in one cycle. The CPU takes a total of eight cy-
cles to transfer a test vector from its inputData to outputAddress
(six cycles to transfer a vector fromData to Address(7 downto 0),
and two cycles to transfer a vector fromData to Address(11 downto
8)). Here, we have assumed that test data cannot be pipelined
through a core. Thus, if two transparency paths in a core share
some logic between them, then data through one path can be prop-
agated only after data has been completely propagated through the
other path. Hence, a test vector can be propagated from the chip
input NUM to the core-inputA in nine cycles, where we have as-
sumed that test data can flow through different cores simultane-
ously. In between, the test vector at inputD can also be made ready.
A subsequent test vector for the DISPLAY can be made ready at
its inputs in another nine cycles. In the intermediate cycles, when
the data at the inputs of the DISPLAY are not valid, the scan clock
of the DISPLAY needs to be frozen. During this period, the test
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response can be scanned out through the primary outputs. Thus,
the test application time required for testing the DISPLAY alone
is 525�9 + 3 = 4,728 cycles. The last three cycles are required to
scan out the last test response. Since the DISPLAY core has 66 flip-
flops and 20 internal inputs, an FSCAN-BSCAN approach would
have needed (66 +20)�105 +(66 +20)�1 = 9,115 cycles to do the
same.

The transparency latency through the CPU can be reduced at the
expense of area overhead, by exploiting existing alternative con-
nections in the CPU and some extra transparency logic. In this
case, outputAddress(7 downto 0)can be justified from the input
Data, with some extra logic at the select line of multiplexerM in
Figure 3, in one cycle. Also,Address(11 downto 8)can be jus-
tified from Data in two cycles. This transparency logic is added
in addition to the HSCAN logic. Now, the CPU takes a total of
three cycles to transfer a test vector from its inputData to output
Address. If this version (namedVersion 2) of the CPU is used in
the chip, the test application time for testing the DISPLAY is now
525�4 + 3 = 2,103 cycles only. The latency of the CPU core can
be further reduced by using one extra transparency multiplexer to
form Version 3of the CPU as shown in Figure 5. In this configura-
tion, both outputsAddress(7 downto 0)andAddress(11 downto 8)
can be justified from inputData in one cycle. The test application
time for testing the DISPLAY is now reduced to 525�3+3 = 1,578
cycles. The results are summarized in the table in Figure 6. In the
table, the area overheads are for the extra transparency logic only.
The numbers are obtained after technology mapping with a .8µm
cell library using an in-house synthesis tool.

In general, more expensive versions can be used for critical
cores whose transparency latency affects the test application time
of many other cores in the SOC.

4 Making Cores Transparent
In this section, we explain the method we have developed to make
cores transparent with some given transparency latency. At first,
if HSCAN is the underlying DFT methodology, we try to exploit
the HSCAN chains to achieve transparency. If HSCAN is not
the underlying test methodology or if transparency is not possible
through the HSCAN chains or if any of the transparency latencies
for an input or output is not acceptable, we introduce extra logic
into the circuit to create transparency paths.

First, we extract a register connectivity graph (RCG) which con-
sists of input nodes, output nodes, and register nodes of the core.
An edge is present between two nodes if a direct or multiplexer
path exists between them. Figure 7 shows the initial RCG of the
CPU core. In the figure, the edges corresponding to the HSCAN
paths are darkened. In many RTL circuits, bit-slicing is common,
where a subset of bits (bit-slice) of a register is involved in an op-
eration (as source or destination register), instead of the complete
register. In such cases, the corresponding register node in the RCG
is marked as a split node. When different bit-slices of a regis-
ter must receive data from different sources, the register node is
termed a C-split node. To control a desired value in a C-split node,
the different bit-slices need to be controlled through different paths.
In Figure 7,ACCUMULATORis a C-split node. Similarly, if the
fanout of a node is split into different bit-slices going to different
destinations, the node is marked as an O-split node.

From the RCG, we try to find transparency paths from inputs to
outputs. To do this, we do a breadth-first search (BFS) from each
input node until we reach an output node. During this search, any-
time we reach an O-split node, the BFS is done from each of the
nodes at the fanout edges of the O-split node, as all the fanout edges
need to be used for propagating the data at the O-split node. At
first, we only use the HSCAN edges during this search. If we fail
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to get a transparency path, we try to use other existing edges in the
RCG. For the CPU core, the BFS from inputData reaches nodeIR.
Then, different BFSs start along the two fanout edges. The search
from the left edge terminates at output nodeAddress(11 downto 8).
The BFS from the right edge continues until we reach output node
Address(7 downto 0). Thus, we have found a transparency path for
propagating the input to the output with a latency of six cycles. We
delete this path and do a BFS for any remaining input whose trans-
parency path has not yet been found. If no paths are found, the
deleted paths are put back in the RCG and the BFS is repeated with
the aim of finding a transparency path by reusing edges from prior
transparency paths. If transparency paths are still not found, then
a transparency path is created by adding extra logic. Any register
reachable from the input in one cycle (found from the BFS) is con-
nected to an output (or outputs if bit-widths mismatch) with a test
multiplexer. To keep the transparency paths disjoint, preference
is given to an output(s) which has not yet been used for provid-
ing transparency to other core inputs. If any edge is used in more
than one transparency path, then it may not be possible to propa-
gate data through the two paths in parallel. Finally, a solution is
obtained where each input can be propagated to some output(s) in
a fixed number of cycles (transparency latency) in the test mode.

Next, we try to find transparency paths so that each output of the
core may be justified from some input of the core during the trans-
parency mode. For this, we reverse all the edges in the RCG, and
again do a BFS from each output node of the RCG. We select an
output and continue the BFS until we reach an input node. For ex-
ample, for the CPU, we first selectAddress(7 downto 0), and do a
BFS using only the HSCAN edges. When we reach a C-split node,
the BFS is done from each of the nodes at the fanout edges (fanin
in the original RCG) of the C-split node since all the fanout edges
need to be used for justifying the data at the C-split node. When
two BFSs originating at the fanout nodes of a C-split node con-
verge at an O-split node, then they again constitute a single search.
Thus, the search branches into two different searches at the C-split
nodeACCUMULATORand reconverges to a single search at the O-
split nodeIR, eventually reaching the input nodeData. If the trans-
parency path thus formed has split nodes, and if the parallel sub-
paths are not balanced at each fanin of a C-split node in the original
RCG, for each fanin which does not fall on the longest subpath we
add extra logic to freeze the data there. This balances the parallel
sub-paths, so that the data, which have arrived early at the fanin of
a C-split node, wait until the data at all the fanin edges are ready.

Next, we repeat the procedure for the other output nodes. For the
CPU, we delete the transparency path and do BFS forAddress(11
downto 8). Since we cannot find a path, we put back the deleted
path and try again. This time we succeed. Thus, the transparency
paths of the two outputs are not disjoint, but rather reuse common
edges (MAR, IR) and (IR, Data). When the same edge(s) in the
RCG has to be reused in multiple transparency paths, we transfer
data through them in a sequential manner.

If transparency paths are not found using HSCAN edges, then
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the PREPROCESSOR and DISPLAY cores
other existing paths in the RCG are used to obtain transparency. In
the case of the CPU, transparency paths for all inputs and outputs
are achievable using HSCAN paths only. This gives rise toVersion
1 of the CPU core (see Figure 6).

The transparency latency of a core can be reduced by adding ex-
tra logic and using existing non-HSCAN paths or by adding trans-
parency multiplexers. Consider Figure 7. Let thenon-HSCAN
edges existing in the RCG be included in the BFS this time. Since
an edge exists fromData to Address(7 downto 0), a transparency
path can be found for outputAddress(7 downto 0)to input Data
with a latency of just one cycle. A transparency path exists from
Address(11 downto 8)to input Data with a latency of two cycles
as before. Consequently, we haveVersion 2of the CPU core.
When non-HSCAN edges are used for transparency, the type of
transparency logic required is determined by analyzing the multi-
plexer tree or bus interconnect that created the edge in the RCG
and adding the appropriate extra logic according to the data flow
required. This is a straightforward mapping, as explained in Sec-
tion 2.

Further reduction in transparency latency can be obtained by in-
troducing transparency multiplexers. This isdone one at a time for
each input/output pair with a transparency latency greater than one.
Figure 5 shows a transparency multiplexer (shaded) added to re-
duce the latency ofData! Address(11 downto 8)to one, leading
to Version 3of the CPU. The trade-offs for different core versions
for the other two cores in Figure 2 are shown in Figure 8.

Note that input control signals to a core can be treated as data
inputs and if direct paths from control inputs to control registers are
not present, the random logic in between can be simply bypassed
with single-bit multiplexers during testing. The control registers
can similarly connect to control outputs as shown in theReadand
Writechain in Figure 4. Thus, expensive test generation techniques
are avoided during the evaluation of transparency for such signals.

5 Trading Off Area and Test Application Time
We next present a method to select the best core versions to pro-
duce a testable SOC for the following objectives:
(i) Given a test area overhead constraint ofx cells, the global test
application time of the SOC is minimized.
(ii) Given a test application time constraint ofy cycles, the overall
test area overhead of the SOC is minimized.

We propose an iterative improvement technique, which can
obtain solutions for either of the design objectives by varying
the parameters of a cost function. At first, we create a core
connectivity graph (CCG) from the given SOC. In this graph,
there are primary input (PI) nodes, primary output (PO) nodes,
core input nodes and core output nodes. Edges are added between
input-output pairs of a core according to the transparency paths
in the versions of the core currently in use. The cost associated
with an edge represents the transparency latency between the
corresponding input-output pair. An input node is split into
separate nodes if its fanin is split, i.e., if different bit-slices of
the node receive data from different sources exclusively. Similar
splitting is done for output nodes also by considering the fanout
bits. The CCG of the barcode system in Figure 2 is shown in
Figure 9 where the minimum area version (Version 1) of each core
is used. We do not consider the memory cores in this discussion,
as most memory cores use BIST [8].

5.1 Identification of test paths for a core
We next discuss how to identify the justification and propagation
paths for each core such that the test application time needed for the
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core is minimized. Let us take the DISPLAY core first. We have to
control its inputsA(7 downto 0), A(11 downto 8)andD. We find
out all possible shortest paths from the chip inputs toA(7 downto
0) and choose the one with lowest cost (which takes the least num-
ber of clock cycles). Any shortest path algorithm like Dijkstra’s
algorithm can be used for this purpose. Here, only one path is pos-
sible (NUM!DB!Data! Address(7 downto 0)! A(7 downto
0)) which is highlighted in Figure 9. We mark this path and reserve
the edges for the cycles in which they will be used. Hence, edge
(NUM, DB) in the PREPROCESSOR is reserved from cycle 0 to 5,
edge (Data, Address(7 downto 0)) is reserved from cycle 5 to 11,
and so on. If there is no path possible, we add a system-level test
multiplexer to connect the input of the core directly to a PI. Next,
we try to find the shortest path from any chip PI toA(11 downto
8). The shortest path algorithm is modified so that if any marked
edge is reused, then the cost is automatically modified so that the
edge is not reused in the reserved cycles. Here, part of the previ-
ous path needs to be reused. Therefore, the edge (NUM, DB) can
only be utilized from cycle 6 onwards, the edge (Data, Address(7
downto 0)) can only be used from cycle 12 onwards, and so on.
The minimum-cost path is again chosen among all possible paths
and test multiplexers are added if necessary. Similarly, the path for
controlling inputD can be found.

Next, we try to find the paths for observing the core outputs at
the POs of the chip. This process is very similar to the method
of finding paths to inputs which is described above. For the DIS-
PLAY, all paths are trivially found as they connect to POs of the
chip. Again, test multiplexers are added to increase observability if
necessary. This process is repeated for every core in the system. In
Figure 9, the outputAddressof the PREPROCESSOR is connected
to a PO with a system-level test multiplexer since there is no way
of observing it by existing paths through the cores.

Once a test solution is found, the global test application time and
area overheads for the system are calculated. If it does not meet the
constraints that the user has set, then a different design point which
provides the most improvement needs to be obtained.

5.2 Iterative improvement for core selection
Next, we outline the procedure to select the most suitable core to
be replaced by the next higher overhead version. First, all core
versions are ordered in terms of the area overhead from lowest up-
wards. Then a test application time improvement number is calcu-
lated for each core. To do this, the test solution is examined and
the number of times each edge in a core is used is counted. Then
this number is multiplied by the latency of the edge and is summed
over all edges of the core. For example, the edge (NUM, DB) in the
PREPROCESSOR is used twice to test the DISPLAY and once to
test the CPU. Its latency is five. The edge (NUM, Address) is never
used. The edge (Reset, Eoc) in the PREPROCESSOR is used once
to test the CPU. Its latency is two. Hence, the initial latency num-
ber for the PREPROCESSOR is 3� 5 + 0� 2 + 1� 2 = 17. Now
if we replace the PREPROCESSOR with the next area-expensive
version, the latency number changes to 3� 1 + 0� 2 + 1� 2 = 5.
Thus, the latency improvement,∆TAT, in the PREPROCESSOR is

17�5 = 12.∆TAT gives a notion of the improvement in the global
test application time if a core is replaced with another version. The
area overhead increase,∆A, for this replacement is 17 cells. For
each core, the cost of replacing it with another version is calculated
asC = w1�∆TAT+w2�∆A, wherew1 andw2 are weights that can
be adjusted according to the problem solved.

Next, suppose we are trying to meet objective (i) as specified
before. We setw1 to 1 andw2 to 0 and improve the existing solu-
tion by replacing the core that has the highestC value with its next
expensive version. We repeat this until the test overhead reaches
the preset maximum or the test overhead becomes higher than the
overhead of a system-level test multiplexer. In the latter case, we
choose the core which contributes the most to the global test ap-
plication time, examine the time it takes to get an input vector to
each of its inputs from the PIs (observe an output vector at each of
its outputs at the POs) and place the system-level multiplexer on
the input or output that is the most critical. This process is stopped
once the test overhead reaches the user-defined maximum allow-
able test overhead.

If we are trying to meet objective (ii) stated before, we setw1 to
0 andw2 to 1 and choose the core with the minimumC that has a
non-zero∆TAT value. This means that we replace the core which
is the least expensive to replace but ensure that it will have some
effect in reducing the global test application time. The global test
application time is again calculated and the process repeated un-
til the preset test application time limit is met. Once again, if the
test overhead becomes higher than the overhead of a system-level
test multiplexer, we place an extra test multiplexer as before. Thus,
in the worst case, the solution will degenerate into a test bus like
system in which core inputs are controllable from the PIs and core
outputs observable at the POs. Note that this system will have the
minimum possible test application time.

The proposed methodology requires that each core can be
clocked independently of the other cores as sometimes test data
needs to be frozen at certain points while it keeps on flowing at
other points. This is done by freezing the clock of the core when
necessary with the help of clock gating circuitry. During the test
mode, these control signals as well as the transparency mode con-
trol signals likeT2 andT3 in Figure 6 are provided by a test con-
troller which is added to the chip. This usually consists of a small
finite-state machine.

6 Experimental Results
We applied the proposed SOC testing methodology to two example
core-based systems. The first example, System 1, is the barcode
embedded system shown in Figure 2. System 2 consists of a graph-
ics processor core [9], a GCD core [10], and a X25 protocol core
[11]. Each core used in the systems has HSCAN DFT, and hence
can be treated as a full-scan circuit and tested using combinational
ATPG tools. The area numbers represent number of cells, and are
obtained after synthesizing and technology mapping different ver-
sions of the cores and systems with an in-house synthesis tool. The
fault coverage numbers are obtained by fault simulating the logic-
level implementation of the system with the system-level test set
using a commercial combinational ATPG tool.

The graph shown in Figure 10 demonstrates the chip-level
trade-off between the area overhead and the chip test application
time for 18 design points of System 1 which are obtained by
different combinations of the core versions. Design point 1 (18)
corresponds to the SOC consisting of a minimum area (minimum
latency) version of each core. Details of some of the design points
(1, 17, 18) are given in Table 1, with Columns 2, 3, 4, and 5
showing the area overhead, test application time, fault coverage,
and test efficiency, respectively. The first two rows, representing
design points 1 and 18, show that about 4.5 times reduction in
test application time can be achieved with about two times in-
crease in the test area overhead. The table also shows that selecting

Table 1: Design space exploration for System 1
Circuit description A. Ov. TApp. FCov. TEff.

(cells) (cycles) (%) (%)
Each core has min. Area (1) 156 17,387 98.4 99.8
Each core has min. latency (18) 325 3,818 98.4 99.8
Min. chip TApp. (17) 307 3,806 98.4 99.8



Table 2: Area overheads
Orig. Core-level DFT Chip-level DFT Core + Chip-level DFT

Circuit FSCAN HSCAN BSCAN SOCET FSCAN-BSCAN SOCET
Area Ovhd. Ovhd. Ovhd. Circuit Ovhd. Ovhd. Ovhd.
(cells) (%) (%) (%) type (%) (%) (%)

System 1 8014 18.8 10.1 5.2 Min. Area 2.0 24.0 12.1
Min. TApp. 3.8 24.0 13.9

System 2 5540 15.6 10.3 9.9 Min. Area 1.2 25.5 11.5
Min. TApp. 4.7 25.5 15.0

Table 3: Testability results
Orig. HSCAN FSCAN-BSCAN SOCET

Circuit FC TEff. FC TEff. FC TEff. TApp. Circuit FC TEff. TApp.
(%) (%) (%) (%) (%) (%) (cycles) type (%) (%) (cycles)

System 1 10.6 10.8 14.6 14.9 98.4 99.8 36,152 Min. Area 98.4 99.8 17,387
Min. TApp. 98.4 99.8 3,806

System 2 11.2 11.3 13.8 13.8 98.2 99.9 46,394 Min. Area 98.2 99.9 16,435
Min. TApp. 98.2 99.9 3,998
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Figure 10: Test application timevsarea ovhd. for System 1

the minimum latency cores does not necessarily lead to an SOC
with minimum test application time. Design point 17 represents
the SOC having minimum test application time though it uses a
higher latency version of the PREPROCESSOR core than the one
used in design point 18.

Table 2 compares the area overheads obtained by our method
with the existing core-based SOC testing method FSCAN-BSCAN.
We use two extreme design points obtained by our method, termed
SOCET, for the comparison - the chip having least area overhead,
and the chip having least test application time. In Column 2 of the
table, the original area of the chip is given. Columns 3 and 4 give
the area overhead needed to make the cores testable using FSCAN
and HSCAN, respectively. The next two columns give the area
overhead for the chip-level DFT needed to make the SOC testable:
Column 5 shows the boundary scan area overhead, while Columns
6 and 7 list the overheads for the two extreme design points us-
ing SOCET. The total area overheads including the core-level and
chip-level DFT for the two different methods are given in Columns
8 and 9. The area overhead required for SOCET is significantly
lower than the area overhead required for FSCAN-BSCAN.

The testability results are reported in Table 3. Column 2 gives
the fault coverage of the chip before the addition of any test hard-
ware. This is obtained by running an in-house sequential test gen-
eration tool on the original circuit. As expected, the fault coverage
is very poor. The test efficiency is given in Column 3. In Columns
4 and 5, the corresponding results are given for the chip when in-
dividual cores are made testable using HSCAN, but no chip-level
DFT is added. This case shows that the overall fault coverage of
the chip may be quite poor even if individual cores are testable.
The fault coverage, test efficiency, and test application time for the
chip made testable by FSCAN-BSCAN are given in Columns 6,
7, and 8, respectively. The corresponding results for SOCET are

given in Columns 10, 11, and 12. While the fault coverage obtained
by FSCAN-BSCAN and SOCET are equally high, the test applica-
tion time required by SOCET is significantly lower than FSCAN-
BSCAN.
7 Conclusions
In this paper, we have presented a novel technique for efficient
testing of core-based SOCs. Individual cores are first made testable
and then transparent using the existing logic inside the core and
adding test hardware only if needed. Since the transparency
latency of cores is a critical factor in the overall test application
time of the core-based system, it is shown how different versions of
the same core can be created with different transparency latencies
and test overhead values. In the system, each core is tested with
its precomputed test set which is propagated through other cores
using their transparency modes. A technique is presented here that
helps the user to explore the design space and choose a particular
version of each core so that the final test overhead and chip test
application time goals can be met. Application of the technique to
example SOCs demonstrates the feasibility of our approach as well
as significant reduction in test overhead and test application times
compared to existing SOC test techniques.
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