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Abstract— We present an efficient algorithm to compute the
generalized penetration depth (PDg) between rigid models. Given
two overlapping objects, our algorithm attempts to compute the
minimal translational and rotational motion that separates the
two objects. We formulate the PDg computation based on model-
dependent distance metrics using displacement vectors. As a
result, our formulation is independent of the choice of inertial and
body-fixed reference frames, as well as specific representation of
the configuration space. Furthermore, we show that the optimum
answer lies on the boundary of the contact space and pose
the computation as a constrained optimization problem. We use
global approaches to find an initial guess and present efficient
techniques to compute a local approximation of the contact space
for iterative refinement. We highlight the performance of our
algorithm on many complex models.

I. INTRODUCTION

Penetration depth (PD) is a distance measure that quantifies the

amount of interpenetration between two overlapping objects.

Along with collision detection and separation distance, PD

is one of the proximity queries that is useful for many

applications including dynamics simulation, haptics, motion

planning, and CAD/CAM. Specifically, PD is important for

computing collision response [1], estimating the time of con-

tact in dynamics simulation [2], sampling for narrow passages

in retraction-based motion planing [3], [4], and C-obstacle

query in motion planning [5].

There has been considerable work on PD computation, and

good algorithms are known for convex polytopes. As for non-

convex models, prior approaches on PD computation can be

classified into local or global algorithms. The local algorithms

only take into account the translational motion, i.e. transla-

tional PD (PDt), and the results may be overly conservative.

In many applications, including torque computation for 6-DOF

haptic rendering or motion planning for articulated models, it

is important to compute a penetration measure that also takes

into account the rotational motion, i.e. generalized penetra-

tion depth (PDg). However, the computational complexity of

global PD between non-convex models is high. For PDt , it

can be computed using Minkowski sum formulation with the

combinatorial complexity O(n6), where n is the number of

features in the models [6]. For PDg, it can be formulated

by computing the arrangement of contact surfaces, and the

combinatorial complexity of the arrangement is O(n12) [7].

As a result, prior algorithms for global PD only compute

an approximate solution [5], [8]. Moreover, these algorithms

perform convex decomposition on non-convex models and can

be rather slow for interactive applications. Overall, there are

no good and practical solutions to compute the PD between

non-convex models, thereby limiting their applications [4], [9],

[10].

A key issue in PDg computation is the choice of an appropriate

distance metric. It is non-trivial to define a distance metric that

can naturally combine the translational and rotational motion

for an undergoing model, such that the resulting distance

metric is bi-invariant with the choice of inertial and body-fixed

reference frames, as well as of specific representations of the

configuration space [11]. Specifically, it is well-known that for

the spatial rigid body motion group SE(3), it is impossible to

define a bi-invariant distance metric unless the shape of the

model is known a priori [12], [13]. Finally, the distance metric

should be easy to evaluate in order to devise an efficient PDg

computation algorithm.

A. Main Results

We present an efficient algorithm for computing PDg for

rigid, non-convex models. We formulate PDg computation

as a constrained optimization problem that minimizes an

objective function defined by any proper distance metric that

combines both translational and rotation motions, such as

DISP [14] and object norm [15]. We use global approaches,

based on motion coherence and random sampling, to compute

an initial guess and incrementally walk on the contact space

along the maximally-decreasing direction of the objective

function to refine the solution. The algorithm computes a local

approximation of the contact space, and we present culling

techniques to accelerate the computation. As compared to the

prior approaches, our algorithm offers the following benefits:

• Generality: Our approach is general and applicable to

both convex and non-convex rigid models. The algorithm

can be also extended to articulated or deformable models.

• Practicality: Unlike the prior approaches, our algorithm

is relatively simple to implement and useful for many

applications requiring both translational and rotation mea-

sures for inter-penetration.

• Efficiency: We use a local optimization algorithm and

reduce the problem of PDg computation to multiple

collision detection and contact queries. As a result, our

algorithm is efficient and can be used for interactive

applications with high motion coherence.

http://gamma.cs.unc.edu/PDG


We have implemented our PDg algorithm and applied it to

many non-convex polyhedra. In practice, our algorithm takes

about a few hundred milli-seconds on models composed of a

few thousand triangles.

B. Organization

The rest of our paper is organized as follows. We provide

a brief survey of related work on PDg computations in Sec.

2. In Sec. 3, we present a formulation of PDg and give

an overview of distance metrics. In Sec. 4, we provide our

optimization-based algorithm to compute PDg. We present its

implementation and highlight its performance in Sec 5.

II. PREVIOUS WORK

There has been considerable research work done on proximity

queries including collision detection, separation distance, and

PD computation [16], [17]. In this section, we briefly discuss

prior approaches to PD computation and distance metrics.

A. PD Computation

Most of the work in PD computation has been restricted to

PDt , and these algorithms are based on Minkowski sums [6],

[18]. A few good algorithms are known for convex polytopes

[19], [20] and general polygonal models [8]. Due to the

difficulty of computing a global PDt between non-convex

models, some local PDt algorithms have been proposed [9],

[10], [21].

A few authors have addressed the problem of PDg compu-

tation. Ong’s work [22], [23] can be considered as one of

the earliest attempts. The optimization-based method using

a quadratic objective function can be regarded as implicitly

computing PDg [24]. Ortega et al. [25] presented a method

to locally minimize the kinetic distance between the config-

urations of a haptic probe and its proxy using constraint-

based dynamics and continuous collision detection. Zhang et

al. [5] proposed the first rigorous formulation of computing

PDg. They presented an efficient algorithm to compute PDg

for convex polytopes, and provide bounds on PDg of non-

convex polyhedra. The problem of PDg computation is closely

related to the containment problem [26]. The notion of growth

distance has been introduced to unify separation and penetra-

tion distances [22]. Recently, Nawratil et al. [27] have also

described a constrained optimization based algorithm for PDg

computation.

B. Distance Metrics in Configuration Space

The distance metric in configuration space is used to measure

the distance between two configurations in the space. It is well-

known that model-independent metrics are not bi-invariant,

and thus most approaches use model-dependent metrics for

proximity computations [11], [14], [28].

1) Distance Metrics in SE(3): The spatial rigid body displace-

ments form a group of rigid body motion, SE(3). Throughout

the rest of the paper, we will refer to a model-independent

distance metric in SE(3) as a distance metric in SE(3). In

theory, there is no natural choice for distance metrics in SE(3)

[12], [13]. Loncaric [29] showed that there is no bi-invariant

Riemannian metric in SE(3).

2) Model-dependent Distance Metrics: Using the notion of

a displacement vector for each point in the model, the DISP

distance metric is defined as the maximum length over all

the displacement vectors [14], [28], [30]. The object norm,

proposed by [15], is defined as an average squared length of

all displacement vectors. Hofer and Pottmann [31] proposed a

similar metric, but consider only a set of feature points in the

model. All of these displacement vector-based metrics can be

efficiently evaluated. The length of a trajectory travelled by a

point on a moving model can be also used to define model-

dependent metrics [5], [32]. However, it is difficult to compute

the exact value of these metrics.

III. GENERALIZED PENETRATION DEPTH AND DISTANCE

METRICS

In this section, we introduce our notation and highlight issues

in choosing an appropriate distance metric for defining PDg

for polyhedral models. We then show that our metrics can

naturally combine translational and rotational motions, have

invariance properties, and can be rapidly calculated. We also

show that the optimal solution for PDg computation with

respect to each metric exists on the contact space.

A. Notation and Definitions

We first introduce some terms and notation used throughout

the rest of the paper. We define the contact space, Ccontact ,

as a subset of the configuration space, C , that consists of the

configurations at which a robot A only touches one or more

obstacles without any penetration. The union of free space F

and contact space constitutes the valid space, Cvalid , of the

robot, and any configuration in Cvalid is a valid configuration.

The complement of F in C is the C-obstacle space or O .

PDg is a measure to quantify the amount of interpenetration

between two overlapping models. Given a distance metric δ
in configuration space, PDg between two polyhedral models

A and B can be defined as:

PD
g

δ(A,B) = {min{δ(qo,q)}‖ interior(A(q))∩B = /0,q ∈ C },
(1)

where qo is the initial configuration of A, and q is any

configuration in C .

PDg can be formulated as an optimization problem under

non-penetration constraints (Fig. 1(a)), where the optimization

objective is described by some distance metric to measure

the extent of a model transformed from one configuration

to another. Therefore, the computation of PDg is directly

governed by the underlying distance metric.
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Fig. 1. PDg Definition and Contact Space Realization: (a) PDg is

defined as the minimal distance between the initial collision configuration

qo and any free or contact configuration, with respect to some distance

metric. (b) The optimal configuration qb, which realizes PDg
DISP or PDg

σ ,

must be on the contact space Ccontact ; otherwise, one can compute another

contact configuration qb
′, which further reduces the objective function. qb

′

is computed by applying the bisection method on the screw motion that

interpolates qo and qb.

B. Distance Metric

We address the issue of choosing an appropriate distance

metric to define PDg. In principle, any distance metric in C-

space can be used to define PDg. We mainly use two distance

metrics for rigid models, displacement distance metric DISP

[28], [30] and object norm [15].

1) Displacement distance metric: Given a model A at two

different configurations qa and qb, the displacement distance

metric is defined as the longest length of the displacement

vectors of all the points on A [28], [30]:

DISPA(qa,qb) = max
x∈A

||x(qb)−x(qa)||2. (2)

2) Object norm: Also based on displacement vectors, Kazer-

ounian and Rastegar [15] make use of an integral operator to

define the object norm:

σA(qa,qb) =
1

V

∫
A

ρ(x)||x(qb)−x(qa)||
2 dV, (3)

where V and ρ(x) are the volume and mass distribution of A,

respectively.

3) Properties of DISP and σ: Both metrics can combine

the translational and rotational components of SE(3) without

relying on the choice of any weighting factor to define PDg.

Since both metrics are defined by using displacement vectors,

they have some invariance properties; they are independent of

the choice of inertial reference frame and body-fixed reference

frame [11], and also independent of the representation of C .

Moreover, DISP and σ metrics can be computed efficiently.

In [14], we show that for a rigid model, the DISP distance

is realized by a vertex on its convex hull. This leads to an

efficient algorithm, C-DIST, to compute DISP. For σ , by

using a quaternion representation, we can further simplify the

formula originally derived by Kazerounian and Rastegar [15]

into:

σA(qa,qb) =
4

V
(Ixxq2

1 + Iyyq2
2 + Izzq

2
3)+q2

4 +q2
5 +q2

6, (4)

where diag(Ixx, Iyy, Izz) forms a diagonal matrix computed by

diagonalizing the inertia matrix I of A. (q0,q1,q2,q3) is the

quaternion for the relative orientation of A between qa and

qb, and (q4,q5,q6) is the relative translation.

C. Properties of PD
g
DISP and PD

g
σ

Geometrically speaking, the generalized penetration depth

under DISP, PDg
DISP, can be interpreted as the minimum of

the maximum lengths of the displacement vectors for all the

points on A, when A is placed at any collision-free or contact

configuration. Also, the generalized penetration depth under

σ , PDg
σ , can be interpreted as the minimum cost to separate

A from B, where the cost is related to the kinetic energy of A.

Due to the underlying distance metric, both PDg
DISP and

PDg
σ are independent of the choice of inertial and body-

fixed reference frames. In practice, these invariance properties

are quite useful since one can choose any arbitrary reference

frame and representation of the configuration space to compute

PDg
DISP and PDg

σ .

D. Contact Space Realization

For rigid models, PDg
DISP (or PDg

σ ) has a contact space

realization property. This property implies that any valid

configuration qb that minimizes the objective DISP (or σ) for

PDg must lie on the contact space of A and B, or equivalently,

at this configuration qb, A and B just touch with each other.

Theorem 1 (Contact Space Realization) For a rigid model

A placed at qo, and a rigid model B, if qb ∈ Cvalid and

DISPA(qo,qb) = PDg
DISP(A,B), then qb ∈ Ccontact . A similar

property holds for PDg
σ .

Proof: We prove it by contradiction. Suppose the config-

uration qb realizing PDg
DISP does not lie on the contact space

Ccontact . Then, qb must lie in the free space F ((Fig. 1(b)).

We use Chasles’ theorem in Screw theory [33], which states

that a rigid body transformation between any two configura-

tions can be realized by rotation about an axis followed by

translation parallel to that axis, where the amount of rotation

is within [0,π]. The screw motion is a curve in C-space, and

we denote that curve between qo to qb as s(t), where s(0) = qo

and s(1) = qb. Since qo is in O , and qb is in F , there is at

least one intersection between the curve {s(t)|t ∈ [0,1]} and

the contact space (Fig. 1). We denote the intersection point as

qb
′.

Based on Chasles theorem, we can compute the length of the

displacement vector for any point x on A between qo and any

configuration on the screw motion s(t). Furthermore, we can

show that this length strictly increases with the parameter t.

Therefore, for each point on A, the length of the displacement

vector between qo and qb is less than the one between qo and

qb
′. Since DISP metric uses the maximum operator for the

length of the displacement vector over all points on A, we can
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Fig. 2. Optimization-based PDg Algorithm: our algorithm walks on the

contact space Ccontact , i.e. from qa to qb, to find a local minimum qm under

any distance metric.

infer that DISPA(qo,qb
′) < DISPA(qo,qb). This contradicts

our assumption that qb is the realization for PDg
DISP.

Similarly, we can infer σA(qo,qb
′) < σA(qo,qb), and thus

prove the property for PDg
σ .

According to Thm. 1, in order to compute PDg, it is sufficient

to search only the contact space Ccontact , which is one dimen-

sion lower than that of C . Our optimization-based algorithm

for PDg uses this property.

IV. PDg COMPUTATION ALGORITHM

In this section, we present our PDg computation algorithm.

Our algorithm can optimize any distance metric (or objective)

presented in Sec. 3 by performing incremental refinement on

the contact space. As Fig. 2 illustrates, our iterative optimiza-

tion algorithm consists of three major steps:

1) Given an initial contact configuration qa, the algorithm

first computes a local approximation Lqa of the contact

space around qa.

2) The algorithm searches over the local approximation to

find a new configuration qb that minimizes the objective

function.

3) The algorithm assigns qb as a starting point for the next

iteration (i.e. walk from qa to qb) if qb is on the contact

space with smaller value of the objective function as

compared to qa’s. Otherwise, we compute a new contact

configuration qb
′ based on qb .

These steps are iterated until a local minimum configuration

qm is found or the maximum number of iterations is reached.

Next, we discuss each of these steps in more detail. Finally,

we address the issue of computing an initial guess.

A. Local Contact Space Approximation

Since it is computationally prohibitive to compute a global

representation of the contact space Ccontact , our algorithm

computes a local approximation. Given a configuration qa,

where A is in contact with B, we enumerate all contact

constraints according to the pairs of contact features [28], [34].

We further decompose each contact constraint into primitive

contact constraints, i.e. vertex/face (v− f ), face/vertex( f − v)

or edge/edge (e − e). Conceptually, each primitive contact

constraint represents a halfspace, and the set of all primitive

constraints are used to characterize the local non-penetration

Workspace
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Fig. 3. Local Contact Space Approximation: the local contact space is

algebraically represented as a set of contact constraints concatenated with

intersection or union operators (Eq. 5). Columns (a) and (b) explain how to

obtain proper operators when decomposing a constraint into primitive contact

constraints using 2D examples (cf. Sec IV.A). Column (c) shows a multiple

contact situation. The last row illustrates the corresponding linearization for

each local contact space.

computation between A and B. Therefore, we obtain a local

approximation Lqa of Ccontact around the contact configuration

qa after concatenating all these primitive constraints {Ci}
using proper intersection or union operators {◦i}:

Lqa = {C1 ◦1 C2 · · · ◦n−1Cn}. (5)

It should be noted that we do not explicitly compute a

geometric representation of Lqa . Instead, it is algebraically

represented, and each primitive constraint is simply recorded

as a pair of IDs, identifying the contact features from A and

B, respectively.

When decomposing each constraint into primitive constraints,

we need to choose proper Boolean operators to concatenate the

resulting primitive constraints. This issue has been addressed

in the area of dynamics simulation [35] and we address it in

a similar manner for PDg computation. Fig. 3 shows a 2D ex-

ample with a triangle-shaped robot A touching a notch-shaped

obstacle B. When decomposing a v−v contact constraint into

two v−e constraints C1 and C2, if both of the contact vertices

of A and B are convex (Fig. 3(a)), we use a union operator,

because if either constraint C1 or C2 is enforced, there is

no local penetration. Otherwise, if one contact vertex is non-

convex (Fig. 3(b)), the intersection operation is used. For 3D

models, a similar analysis is performed by identifying the

convexity of edges based on their dihedral angles. In case of

multiple contacts, one can first use intersection operations to

concatenate all the constraints. Each individual constraint is

then further decomposed into primitive constraints.

B. Searching over Local Contact Space

Given a local contact space approximation L of the contact

configuration qa, we search over L to find qb that minimizes

the objective function. Since the contact space is a non-linear

subspace of C , we use two different search methods: random

sampling in L and optimization over a first-order approxima-

tion of L . Each of them can be performed independently.
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Fig. 4. Sampling in Local Contact Space: Lqa is a local approximation

of contact space around qa, represented by the intersection of its contact

constraints C1 and C2. Our algorithm randomly generates samples on C1 and

C2. Many potentially infeasible samples, such as ql , can be discarded since

they are lying outside the halfspace of Lqa .

1) Sampling in Local Contact Space: Our algorithm randomly

generates samples on the local contact approximation Lqa

around qa (Fig. 4), by placing samples on each primitive

contact constraint Ci as well as on their intersections [36].

We discard any generated sample q if it lies outside of the

halfspace formulated by Lqa by simply checking the sign

of Lqa(q). Since Lqa is a local contact space approximation

built from all contact constraints, this checking of L allows

us to cull potentially many infeasible colliding configurations.

For the rest of the configuration samples, we evaluate their

distances δ to the initial configuration qo, and compute the

minimum.

These samples are efficiently generated for each non-linear

contact constraint Ci. First, we generate random values for the

rotation parameters. By plugging these values into a non-linear

contact constraint, we formulate a linear constraint for the

additional translation parameters. Under the formulated linear

constraint, random values are generated for these translation

parameters.

In practice, an optimal solution for PDg may correspond

to multiple contacts, suggesting that one needs to generate

more samples on the boundary formed by multiple contact

constraints. As a result, we set up a system of non-linear

equations for each combination of these constraints, generate

random values for the rotation parameters in the system

(thereby making the system linear), and sample the resulting

linear system for the translation parameters.

2) Linearizing the Local Contact Space: We search for a

configuration with smaller distance to the contact space by lin-

early approximating the contact space. For each basic contact

constraint Ci, we compute its Jacobian, which is the normal

of the corresponding parameterized configuration space. Using

this normal, we obtain a half-plane, which is a linearization

of the contact surface [21], [37]. By concatenating the half-

planes using Boolean operators ◦i, we generate a non-convex

polyhedral cone, which serves as a local linear approximation

of Ccontact .

3) Local Search: The sampling-based method is general for

any distance metric. Moreover, we can generate samples on

each non-linear contact constraint efficiently. Finally, using the

local contact space approximation, our method can cull many

potentially infeasible samples.

On the other hand, the method of linearizing the contact space

Algorithm 1 Optimization-based Local PDg Algorithm

Input: two intersecting polyhedra: A - movable, B - static.

qo := the initial collision configuration of A, qo ∈ O .

qa := a seed contact configuration of A, qa ∈ Ccontact .

Output: PDg(A, B)

1: repeat

2: i++;

3: Lqa := Local contact space approximation at qa;

4: qb := argmin{δ(qo,q),q ∈ Lqa};

5: if δ(qo,qb) == δ(qo,qa) then

6: return δ(qo,qa);
7: else if qb ∈ Ccontact then

8: qa := qb;

9: else if qb ∈ F then

10: qa := CCD Bisection(qo, qb);

11: else

12: qb
′ := CCD(qa, qb);

13: Lqa := Lqa

⋂
L ′

qb
;

14: goto 3;

15: end if

16: until i < MAX IT ERAT ION

is suitable for optimizing PDg, if the underlying objective has a

closed form. For example, for the object norm, we transform

the coordinate in the quadratic function in Eq. (4), from an

elliptic form to a circular one. Now, the problem of searching

over L reduces to finding the closest point in the Euclidean

space from qa to the non-convex polyhedral cone, formulated

using the linearization of L . Since the polyhedral cone is

formulated as a local approximation of Ccontact , it typically

has a small size. Therefore, the closest point query can be

performed by explicitly computing the non-convex polyhedral

cone.

C. Refinement

Although searching over the local contact space L around

qa can yield a new configuration qb that improves the opti-

mization objective of qa, we still need to check whether qb

is a valid contact configuration before advancing to it because

qb is computed based upon a local approximation of contact

space and qb may not be on the contact space.

For instance, the new configuration qb may be a collision-

free configuration due to the first-order approximation. To

handle this case, we project qb back to Ccontact by computing

the intersection qb
′ between the contact space and a curve

interpolating from qo to qb using screw motion (Fig. 1). Since

qo is in O and qb is free, the intersection qb
′ can be efficiently

computed by bisection (CCD Bisection in Alg. 1). Also,

according to the contact space realization theorem in Sec.

III.D, δ(qo,qb
′) < δ(qo,qb). Therefore, we are guaranteed to

obtain a new configuration qb
′, which is closer to qo, and thus

it can be used for successive iterations.

It is also possible the new configuration qb may be a colliding

configuration. As Fig. 5 on the left shows, when moving from
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Fig. 5. Refinement. Left: using the local contact space representation of

qa, which includes only one constraint C1, we obtain new configuration qb.

Though qb is still on C1, it may not be on the contact space any more, since

it will violate other constraint, such as C2 here. The right figure shows a dual

example happening in the workspace. When A slides on B, i.e. from qa to qb,

a collision can be created by other portions of the models. Our algorithm

uses CCD to compute a correct, new contact configuration qb
′.

qa to qb, the contact constraint C1 is maintained. However,

qb is a colliding configuration as it does not satisfy the new

constraint C2. The figure on the right highlights this scenario

in the workspace. When A moves from qa to qb, the contact is

still maintained. In order to handle this case, we use continuous

collision detection (CCD) to detect the time of first collision

when an object continuously moves from one configuration

to another using a linearly interpolating motion in C [38]. In

our case, when A moves from qa to qb, we ignore the sliding

contact of qa, and use CCD to report the first contact qb
′

before the collision [39]. The new configuration qb
′ can be

used to update the local approximation of qa. This yields a

more accurate contact space approximation and consequently

improves the local search, e.g. culling away additional invalid

samples.

D. Initial Guess

The performance of the PDg algorithm depends on a good

initial guess. For many applications, including dynamic sim-

ulation and haptic rendering, the motion coherence can be

used to compute a good initial guess. Since no such motion

coherence could be exploited in some other applications (e.g.

sample-based motion planning), we propose a heuristic. Our

method generates a set of samples on the contact space as

a preprocess. At runtime, given a query configuration qo,

our algorithm searches for the K nearest neighbors from the

set of precomputed samples, and imposes the inter-distance

between any pair of these K samples should be greater than

some threshold. The distance metric used for nearest neighbor

search is the same as the one to define PDg. The resulting K

samples serve as initial guesses for our PDg algorithms. To

generate samples on the contact space, we randomly sample

the configuration space and enumerate all pairs of free and

collision samples. For each pair, a contact configuration can

be computed by a bisection method (Fig. 1(b)).

V. IMPLEMENTATION AND PERFORMANCE

We have implemented our PDg algorithm using local contact

space sampling for general non-convex polyhedra. In this

section, we discuss some important implementation issues and

highlight the performance of our algorithm on a set of complex

polyhedral models. All the timeings reported here were taken

on a Windows PC, with 2.8GHZ of CPU and 2GB of memory.

A. Implementation

Since our PDg formulation is independent of the representation

of the configuration space, we use a quaternion to represent

the rotation because of its simplicity and efficiency. In our

PDg algorithm, any proximity query package supporting col-

lision detection or contact determination can be employed. In

our current implementation, we use the SWIFT++ collision

detection library, because of its efficiency and it provides

both these proximity queries [40]. Based on SWIFT++, our

algorithm computes all the contacts between A at a contact

configuration qa with B. We sample the contact space locally

around qa. For each primitive contact constraint Ci, we derive

its implicit equation with respect to the parameters of a rotation

component (a quaternion) and a translation component (a 3-

vector). In order to sample on a constraint Ci, we first slightly

perturb its rotational component by multiplying a random

quaternion with a small rotational angle. The resulting rota-

tional component is plugged back into the constraint Ci. This

yields a linear constraint with only translational components,

and therefore can be used to generate additional samples.

To linearize Ci, we compute the Jacobian of its implicit

equation for Ci . For other types of contacts, we decompose

them into primitive contact constraints. Proper operators to

concatenate them are identified by computing the dihedral

angle of contacting edges, thereby determining whether the

contact features are convex or not.

In the refinement step of the algorithm, we perform collision

detection using SWIFT++ to check whether qb from the local

search step still lies on the contact space. When qb is on

contact space, our algorithm proceeds to the next iteration.

Otherwise, when qb is free, a new contact configuration qb
′ is

computed for the next iteration by performing recursive bisec-

tions (Fig. 1(b)) on the screw motion interpolating between qo

and qb. Finally, when qb is in C-obstacle space, we compute

a new contact configuration qb
′ by using CCD. In our current

implementation, we check for collision detection on a set of

discrete samples on a linear motion between qa and qb. In

order to ignore the old contact during CCD query, the idea of

security distance is used [39]. After computing a new contact

configuration qb
′ from the CCD query, our algorithm updates

the local approximation around qa and resumes a local search

again.

B. Performance

We use different benchmarks to test the performance of our

algorithm. Fig. 6(a) shows a typical setup of our experiment

including two overlapping models, where A (‘Pawn’) is mov-

able and B (‘CAD Part’) is stationary. In (b), our algorithm

computes PDg
DISP or PDg

σ to separate the model A, initially

placed at A0, from the model B. The three images on the

right highlight the intermediate configurations of A1 and A2

and a PDg
DISP solution A3 with yellow color. The sequence of

images (b,c,d,e) illustrates that our algorithm successfully finds



Fig. 6. The ‘CAD Part’ example: (a) shows the models A - ‘pawn’ and B - ‘CAD Part’ used in this test. (b) illustrates a typical PDg query scenario where

the model A at A0 overlaps with B. A1 and A2 are intermediate placements of A during the optimization for PDg
DISP. A3 is the solution for an upper bound

of PDg
DISP. The sequence of images (c,d,e) illustrates that our algorithm incrementally slides the model ‘pawn’ on the model ‘CAD Part’ to minimize DISP

distance.

Fig. 7. The ‘torus-with-knot’ example: the left image highlights a PDg

query between a model ‘torus-with-knot’ B intersecting with a model ‘L-

shaped box’ at A0 (red). A1 is a collision-free placement of the ‘L-shaped

box’ model as a result of PDg
σ ; the right image shows the same result but

from another viewpoint.

Fig. 8. The ‘hammer’ example: from left to right: PDg
DISP query between

A and B, an intermediate configuration A1, and the solution A2.

an upper bound of PDg
DISP by gradually sliding the ‘pawn’

model on the ‘CAD’ model.

Figs. 7 and 8 show two more complex benchmarks that we

have tested. In Fig. 7, the model ‘torus-with-a-knot’ has hyper-

bolic surfaces. This benchmark is difficult for the containment

optimization-based algorithm [5], as that algorithm computes

the convex decomposition of the complement of the model.

On the other hand, our PDg algorithm can easily handle this

benchmark, and compute a tight upper bound on PDg.

Table I summarizes the performance of our algorithm on

different benchmarks. In our implementation, we set the

maximum number of iterations as 30. For the most of the

models we have tested, our algorithm can perform PDg
DISP

query within 300ms, and PDg
δ query with 450ms. Our current

implementation is not optimized and the timings can be further

improved.

C. Comparison and Analysis
Compared to prior method for PDg computation in [5], our

method can handle more complex non-convex models. This is

because we reduce PDg computation to proximity queries such

as collision detection and contact determination. Since there

are well known efficient algorithms for both these queries,

1 2 3

A L-Shape Pawn Hammer

tris # 20 304 1,692

B Torus-with-a-Knot CAD Bumpy-Sphere

tris # 2,880 2,442 2,880

Avg PDg
DISP(ms) 219 297 109

Avg PDg
σ (ms) 156 445 138

TABLE I

Performance: this table highlights the geometric complexity of different

benchmarks we tested, as well as the performance of our algorithm.

our method can handle complex non-convex models. Instead,

the method in [5] reduces PDg computation to containment

optimization, which suffers from enumerating convex con-

tainers using convex decomposition, and can result in overly

conservative query results for non-convex models.

Our algorithm computes an upper bound on PDg, since the

resulting configuration is guaranteed to be on the contact

space. Moreover, in general, the algorithm converges to a local

minimum due to the constrained optimization formulation. The

termination condition for the iterative optimization is to check

whether the gradient of the distance metric is proportional to

that of the contact constraint after each iteration. However,

some issues arise in checking this condition in practice. For

example, in the case of DISP metric, one can only compute an

approximation of the gradient, since no closed form is avail-

able for DISP metric. Furthermore, a convergence analysis is

difficult, due to the discontinuity in contact space caused by

multiple contacts.

VI. CONCLUSION

We present a practical algorithm to compute PDg for non-

convex polyhedral models. Using model-dependent distance

metrics, we reduce the PDg computation to a constrained

optimization problem. Our algorithm performs optimization

on the contact space, and the experimental results show that

we can efficiently compute a tight upper bound of PDg.

The main limitation of our approach is that our algorithm

can not guarantee a global solution for PDg computation.

Its performance depends on the choice of an initial guess.

For future work, it is worthwhile to analyze the convergence

properties of the algorithm, as well as an error bound on the

approximation. We would also like to apply our algorithm to

motion planning, dynamic simulation, and haptic rendering.
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