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ABSTRACT

In this paper, we present a new rate of speech (ROS) detector that
operates independently of the recognition process. This detector is
evaluated on the TIMIT corpus and positioned with respect to other
ROS detectors. The ROS estimate is subsequently used to compen-
sate for the effects of unusual speech rates on continuous speech
recognition. We report on results obtained with two ROS compensa-
tion techniques on a speaker independent acoustic phonetic decod-
ing task.

1. INTRODUCTION

The performance of automatic speech recognizers typically de-
grades for unusually fast or slow speakers [1]. It has been shown
that compensation techniques can reduce the errors for fast speech
in HMM [2,3,4,5] as well as in hybrid HMM/MLP [6] recognition
systems. However, these techniques require a reliable ROS detec-
tor. In the first part of this paper, we present and evaluate a new
ROS detector, which can be used prior, during or after the recogni-
tion search. Subsequently, the advantages and drawbacks of each
of these approaches are analyzed and the proposed detector is po-
sitioned with respect to other ROS detectors. Finally, we address a
number of ROS compensation techniques focusing on the influence
of ROS on phone durations and on spectral features.

2. ROS DETECTOR

By rate of speech, we mean the rate at which individual speech
units are uttered. Reported ROS measures differ in the choice of the
speech unit that is used in the calculation. It has been argued [2,3]
that phone rate is more suited than syllable or word rate. By nor-
malizing the phone durations with respect to the phone specific ex-
pected durations [4,5] and variances [2], a normalized phone rate can
be obtained that is very effective in differentiating utterance rates.
However, this requires phonetic segmentation and classification in-
formation that is bound to be provided by the recognition process.
Therefore, normalized phone rates can only be calculated during [4]
or after [2,5] the recognition search.

In this paper, we show that the unnormalized phone rate, defined as
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the number of phones per second, can be estimated by a ROS detec-
tor operating independently of the recognition process. Recently, it
has been reported [3,6] that such a ROS measure too, even though
it is unnormalized, is valuable for compensating the effects of fast
speech.

The ROS estimate (ROSe) is obtained by accumulating the phone
boundary evidences in a certain interval, and by subsequently divid-
ing the result by the duration of that interval. The phone boundary
evidences are provided by a small Multi-Layer Perceptron (MLP)
that was trained to estimate for each hypothesised boundary the pos-
terior probability that it is a phonetic segment boundary. A bound-
ary can be hypothesised on each frame (which is the approach ex-
plored in this paper), or on a limited number of time instants which
were selected by a presegmentation algorithm. The proposed detec-
tor estimates the number of phone boundaries and thus the number
of phones per second.

The MLP has one output, 11 hidden nodes and 50 inputs. The inputs
consist of the auditory spectrum in the vicinity of the boundary and
some change functions measuring spectral and total energy changes.
The training examples were extracted from 160 sentences. For each
10ms frame boundary, a training example is generated. The training
targets were obtained from the hand segmentation that comes with
the TIMIT corpus. If the frame boundary corresponds with a phone
boundary, then the target is one, otherwise it is zero. If no hand seg-
mentation is available, a forced alignment would be required in order
to obtain the phonetic segmentation.

The length of the interval used in the calculation should be short
enough to account for changes in rate of speech during the utterance,
while long enough to contain enough phones, as to yield a rate that
is not too much affected by the phonetic content. Since the TIMIT
utterances are fairly short, the ROS was computed over a whole sen-
tence. In order to prevent silences from disturbing the ROS estimate,
non-speech segments are discarded from the calculation.

A scatter plot of the actual rate of speech (ROSa), as derived from
the hand segmentation, versusROSe is shown in figure 1. The solid
line shows the best linear fit through the data. The dotted line shows
the unbiased predictor. The observed bias is due to imperfections
in the boundary probability estimates that are provided by the MLP.
The sign and magnitude of the bias shows an arbitrary dependency



on the choice of the MLP inputs, the network size and the training
parameters. However, the ROS estimate is monotonously related to
the actual ROS, and therefore an improved estimate can be obtained
by regression. In the experiments reported below, we used a linear
regression (the solid line in figure 1), which was determined on the
sentences of the TIMIT training corpus that were not used for the
MLP training. Higher order regressions did not yield a substantial
improvement.
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Figure 1: Scatter plot of the actual ROS versus the ROS measure.
The solid line shows the best linear fit through the points. The dotted
line shows the unbiased predictor

The error between the predicted and the actual ROS approximates
a zero-mean Gaussian distribution with a standard deviation of 1.36
phones/sec (1.38 phones/sec without regression), whereas the stan-
dard deviation of the actual ROS is 2.03 phones/sec. Figure 2 shows
a histogram of the relative prediction error, defined as:

"R = 100 �
ROSe �ROSa

ROSa
(1)

The standard deviation of the relative prediction error is 9.9% (9.0%
without regression). This has to be compared with a standard devi-
ation of 16% when the mean ROS (13.83 phones/sec) is used as the
ROS ’estimate’.
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Figure 2: Histogram of the relative prediction error of the ROS de-
tector.

For comparison, we also took the number of phones per second in
the best phone string hypothesized by our phone recognizer as a ROS
estimate. The standard deviation of the absolute error was now 1.35
phones/sec, corresponding to a relative error of 9.6% (8.9% without
regression). Apparently, this alternative ROS estimate is not better
than the one proposed above. Moreover, it can only be calculated
during or after the recognition process.

3. WHERE TO USE THIS ROS
DETECTOR?

The major advantage of the proposed ROS detector is that it does
not require a recognition process. Therefore, the algorithm is sim-
ple and fast. The computational cost is limited to the cost of detect-
ing silences and computing boundary evidences. This is an obvious
advantage for applications requiring nothing more than a ROS esti-
mate, e.g. in speech therapy.

In speech recognition, the ROS detector can be used prior, during or
after the recognition search. In the next paragraphs, we will analyze
the advantages and drawbacks of each of these approaches. First of
all, it is important to note that the proposed detector is most valuable
for applications where the ROS has to be determined in the time in-
terval that has to be recognized. If the ROS of the previous time in-
terval were a good estimate for the ROS in the present time interval
(in other words: if the ROS shows no abrupt changes), then it would
be more appropriate to calculate a normalized ROS measure from
the recognition system’s transcript and time-alignment of the previ-
ous time interval. However, we observed on the TIMIT corpus, that
the standard deviation of the prediction error is 2.25 phones/sec if
the actual ROS of the previous sentence of the same speaker is used
as a prediction for the present sentence. This figure is significantly
larger than the 1.36 phones/sec one obtains by using our ROS detec-
tor on the present sentence.

In the experiments reported in section 4, the ROS estimate was cal-
culated prior to the recognition. The ROS is assumed constant dur-
ing a sentence, but it can change arbitrarily from one sentence to
the next. This prior computation has the advantage that, during the
recognition, duration and/or acoustic models (and for word recog-
nition also word pronunciation and language models) can be used
which are adapted to the ROS of the sentence. On the other hand,
this technique has the disadvantage that the recognition can only
start after the completion of the utterance. This approach was also
used in the multi-pass search algorithm reported in [4]. The mean
syllabic duration was measured on an entire first recognition hy-
pothesis and subsequently used to adapt the subword unit durational
characteristics which are used in a second recognition pass. Obvi-
ously, the first recognition search is computationally more expensive
than our proposed algorithm.

If the time delay introduced by the previous approach is unaccept-
able, the ROS can be calculated as a running average during the
recognition process, such that improved estimates are obtained as a
larger fraction of the sentence is uttered. The performance of this ap-
proach will inevitably depend on the quality of the initial estimate,
especially in the beginning of a sentence. Typical choices for the
initial estimate are the statistical mean of the ROS and the final esti-



mate of the previous sentence. This approach was used in [4], where
a speaking rate factor is deduced for each recognition hypothesis by
means of a Kalman filter. In that case, the ROS calculation is in-
tegrated in the search and at each time instant, a normalized ROS
estimate is calculated for each recognition hypotheses.

In [2,5], the ROS is used the rescore an N-best list. A normalized
ROS estimate is calculated on each of the N recognition hypotheses
and corresponding time-alignments. With these estimates, the du-
ration models are adapted and the obtained duration likelihoods are
combined with the recognizer scores to reorder the N-best list. Since
the ROS is now determined after the recognition process, the esti-
mate cannot be used to adapt the acoustic models in order to compen-
sate for ROS effects in the feature space. Moreover, this approach
requires an N-best search, which is more demanding than a single-
best search. Although our ROS detector could be used after the N-
best search, it is our impression that, in this case, it makes more sense
to derive a normalized ROS estimate from the recognition transcripts
and corresponding time-alignments.

4. COMPENSATION OF ROS EFFECTS

In this section, we describe two attempts to compensate for the ef-
fects of unusual ROS. These compensation techniques are evaluated
on a speaker independent acoustic phonetic decoding task, with a
Context-Independent Connectionist Stochastic Segment Model [7]
recognizer, using a unigram phone language model. Figure ??
shows the phone recognition performance of the unadapted system.
The best second order regression of the data shows a small, but clear
dependency on the ROS. The recognizer was trained on eight sen-
tences (5 sx + 3 si) of 429 speakers from the TIMIT corpus. The re-
ported results were obtained on the remaining 33 training speakers.
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Figure 3: Total Phone Recognition Error as function of the actual
ROS. The line shows the second order regression.

The system comprises a presegmentation module which generates
a set b of candidate phonetic segment boundaries. A phonetic seg-
ment boundary is defined as a boundary between the acoustic real-
izations of subsequent phones. The segments enclosed by two con-
secutive candidate phonetic boundaries are called ‘initial segments’.

Candidate phonetic segments are built by concatenating up to five
consecutive initial segments. A Viterbi search examines several can-
didate phonetic segmentations (characterized by a sequence of seg-
ment boundaries s � b) and phone sequences u of the same length
as s, and maximizes the joint probability of (s; u), given the acoustic
evidence x and eventually the ROS of the sentence. For this purpose,
the search requires the posterior probabilities given by equation ??:

P (si = bn+j ; ui = Umjsi�1 = bn; j; d;X;ROS) (2)

In this expression, si = bn+j means that the i-th phonetic bound-
ary is bn+j , ui = Um means that the phone Um (from an inventory
of phones) was uttered in this segment and d is the segment dura-
tion. The vector X represents the acoustic evidence (spectrum, total
energy, voicing,...) in the segment and its close surroundings. This
expression can be factorized as:

P (si = bn+j jsi�1 = bn; j; d;X;ROS) �

P (ui = UmjS; j; d;X; ROS) (3)

In this equation, we substituted the combination of si = bn+j and
si�1 = bn by S, which means that the segment is a phonetic one.
The first factor, which we call the segmentation probability, is esti-
mated by a MLP that is trained on all candidate phonetic segments
starting on a phonetic boundary. The second factor, which we call
the classification probability, is estimated by a MLP that is trained
on phonetic segments only.

4.1. Modification of Acoustic Models

The dependency on X; d and j of the probabilities in equation ??
is modeled by giving them as inputs to the MLP’s. The ROS de-
pendency could be modeled in the same way. However, for the
experiments reported in this paper, we followed another approach.
The training sentences were split into 3 groups (slow, average, fast),
based on the ROS of the sentence. The partition is done so that each
group contains approximately the same number of sentences. First, a
general segmentation and a general classification MLP were trained
on all the data. Starting from these two networks, three ROS-specific
MLP pairs were trained, one on each ROS partition, until maximum
performance on a cross-validation set was obtained.

These networks were subsequently embedded in different phone
recognition systems. Four systems were evaluated:

System-A: Uses general MLP’s (no ROS effect compensation).
System-B: Uses the selected ROS-specific MLP pair.
System-C: Uses a ROS-independent average (weights 1/3) of

the ROS-specific MLP pairs.
System-D: Uses a ROS-dependent weighting of the

ROS-specific MLP pairs.

The total phone recognition error rates in table 1 indicate that, al-
though the differences are small, the ROS-specific systems (B and
D) consistently outperform the ROS-unspecific ones (A and C). Fur-
thermore, the estimated ROS performs nearly as good as the actual
ROS.



System-A System-B System-C System-D
Actual ROS 38.1% 37.7% 37.9% 37.3%

ROS estimate ” 37.9% ” 37.4%

Table 1: Adaptation of acoustic models to ROS. Phone recognition
results: Total Error Rate.

4.2. Modification of Duration Models

In this section, we focus on the ROS dependency of the duration
models. In order to isolate this effect, we have rewritten the clas-
sification probability in equation ?? as:

P (ui = UmjS; j; X;ROS)P (djui = Um; S; j; X;ROS)P
k
P (ui = UkjS; j;X;ROS)P (djui = Uk; S; j;X;ROS)

(4)

The classification MLP was trained on all the data (ROS-unspecific),
but the duration was not provided as an input to the network. Fur-
thermore, once the phone identity is available, the dependency of the
probability of d onX and j is neglected, so that the duration models
are simplified to P (djui = Um; S; ROS). This formulation allows
us to model the segment duration explicitely, instead of using the im-
plicit modeling of d by the MLP’s as in section 4.1. For each phone,
three smoothed histogram representations of the duration were con-
structed, one for each ROS partition.

To illustrate the differences between partitions, figure 3 shows the
duration histograms for the vowel /ih/. The solid lines show the dis-
tributions obtained using the actual ROS for partitioning the data.
The dotted line shows the corresponding distributions when the ROS
prediction was used. The data indicate that our ROS estimate does
not introduce severe aberrations.
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Figure 4: Smoothed histogram of the durations of /ih/ found in the
slowest, average and fastest sentences

We have integrated the ROS dependent duration models in our
phone recognizer. During the recognition, the phone duration his-
tograms of the corresponding ROS partition are selected. The error
rates in table 2 are lower than in table 1 because larger segmentation
and classification MLP’s were used for this experiment. Again, four
systems were evaluated:

System-A: Does not use a duration model.
System-B: Uses ROS-unspecific duration models.
System-C: Uses ROS-specific duration models, using ROS

estimate.
System-D: Uses ROS-specific duration models, using actual

ROS.

System-A System-B System-C System-D
36.6% 36.2% 36.0% 35.9%

Table 2: Adaptation of duration models to ROS. Phone recognition
results: Total Error Rate.

The ROS estimate yields basically the same improvement in phone
recognition as the actual ROS. However, these improvements are too
small to be significant.

5. CONCLUSION

In this paper, a new rate of speech (ROS) detector, based on phone
boundary probabilities provided by a Multi-Layer Perceptron, is pre-
sented. The detector offers a fast and reliable prediction of the phone
rate, and accomplishes this without requiring a speech recognition
search. When used to compensate the effects of ROS in continuous
speech recognition, the ROS estimate performs nearly as good as the
actual ROS that is derived from the hand segmentation. The reported
compensation techniques result in a small but consistent improve-
ment of the recognition performance.
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