
0-89791-993-9/97 $10.00 1997 IEEE

A Fast and Robust Exact Algorithm for Face Embedding

Evguenii I. Goldbergy;z Tiziano Villax Robert K. Braytonz

Alberto L. Sangiovanni-V incentelliz

z Department of EECS y Academy of Sciences of x PARADES,
University of California at Belarus, Minsk Via di S.Pantaleo,

Berkeley,Berkeley, CA 94720 66, 00186 Roma

Abstract
We present a new matrix formulation of the face hypercube

embedding problem that motivates the design of an efficient search
strategy to find an encoding that satisfies all faces of minimum
length. Increasing dimensions of the Boolean space are explored;
for a given dimension constraints are satisfied one at a time. The
following features help to reduce the nodes of the solution space that
must be explored: candidate cubes instead of candidate codes are
generated, cubes yielding symmetric solutions are not generated,
a smaller sufficient set of solutions (producing basic sections) is
explored, necessary conditions help discard unsuitable candidate
cubes, early detection that a partial solution cannot be extended to
be a global solution prunes infeasible portions of the search tree.

We have implemented a prototype package MINSK based on the
previous ideas and run experiments to evaluate it. The experiments
show that MINSK is faster and solves more problems than any avail-
able algorithm. Moreover, MINSK is a robust algorithm, while most
of the proposed alternatives are not. Besides most problems of
the complete MCNC benchmark suite, other solved examples in-
clude an important set of decoder PLAs coming from the design of
microprocessor instruction sets.

1 Introduction

Consider a set of symbolsS and an encoding function e : S ! Bk ,
for a given k, that assigns to each symbol s 2 S a code e(s),
i.e., a binary vector of length k. Usually the only requirement
is that e is injective, i.e., that different symbols are mapped to
different binary vectors. In various applications it is important to
satisfy other encoding constraints, in order to obtain a code that is
correct or desirable to meet a certain objective. Either the encoding
length k is part of the problem instance or it is an unknown to be
found (usually minimized) by the procedure that satisfies the given
encoding constraints [15].

Given a set of symbols S, a face constraint cf is a subset
S0 � S specifying that the symbols in S0 are to be assigned to
one face (or subcube) of a binary k-dimensional cube, without any
other symbol sharing the same face. Face constraints are gener-
ated by multiple-valued (input) literals in two-level and multi-level
multi-valued minimization [15]. As an example, given symbols
a; b; c; d; e, an input constraint involving symbols a; b; c is denoted
by (a; b; c). An encoding satisfying (a; b; c) is given by a = 111,
b = 011, c = 001, d = 000 and e = 100 and the face spanned by
(a; b; c) is � � 1. Notice that the vertex 101 is not and should not
be assigned to any other symbol.

Given a set of face constraints Cf , it is always possible to find an
encoding that satisfies it, as long as one is free to choose a suitable
code length. It is a well-known fact that for k = j S j any set Cf

is satisfied by choosing as e the 1-hot encoding function (which
assigns to a state si the binary vector that is always 0 except for
a position to 1, the latter denoting state si). It is an important
combinatorial optimization problem, sometimes called [16] face
hypercube embedding, to find the minimum k and a related e :
S ! Bk such that Cf is satisfied. The decision version of this
problem is NP-complete [11].

An exact solution based on a branch-and-bound strategy to
search the partially ordered set of faces of hypercubes was de-
scribed first in [16], but it is not computationally practical. An
exact solution by reduction to the problem of satisfaction of encod-
ing dichotomies 1 was proposed in [17]. It uses a reduction by J.
Tracey [14] of the exact satisfaction of encoding dichotomies to a
unate covering problem. This approach was made more efficient
in [11], by improving the step of generating maximal compati-
bles of encoding dichotomies. Recently the problem of satisfac-
tion of encoding dichotomies has been revisited in [3], adapting
techniques to find primes and solving unate covering with binary
decision diagrams that have been so successful in two level logic
minimization [2]. From the experimental point-of-view none of
the previous algorithms has performed up to expectations, being
unable to solve exactly various instances of moderate size and prac-
tical interest. Moreover, algorithms reducing encoding dichotomies
to unate covering have a dismal behaviorwhen the problem instance
consists mostly of uniqueness encoding dichotomies (i.e., encod-
ing dichotomies with only one state in each block), because they
generate most of the encoding columns, which are 2k for k = j S j.

Heuristic solutions to the face embedding problem have been
reported in many papers [10, 4, 12, 5, 17, 13]. A heuristic solution
satisfies all face constraints, but does not guarantee that the code-
length is minimum. A related problem, that is not of interest in this
paper, is the one of fixing the code-length and maximizing a gain
function of the constraints that can be satisfied in the given code-
length. We refer to [15] for background material on satisfaction of
encoding constraints and their sources in logic synthesis.

In this paper we present a new matrix formulation of the face
hypercube embedding problem that inspires the design of an effi-
cient exact search strategy. This algorithm satisfies the constraints
one by one by assigning to them intersecting cubes in the encod-
ing Boolean space. The problem of finding a set of cubes with
a minimum number of coordinates satisfying a given intersection
matrix was first formulated in [18] without any relation to encoding
problems. No algorithm to solve the problem was described. The
relation between the face embedding problem and the construction
of intersecting cubes was employed in an heuristic algorithm de-
scribed in [12, 5]. The first formulation of a simple criterion of
when a set of cubes satisfies a set of constraints was given in [6].
We use some theoretical notions, e.g., basic sections, introduced

1An encoding dichotomy on S is a bipartition (S1; S2) such that S1 [S2 � S.

first in [7, 8]. The following features speed up the search of our
algorithm: candidate cubes instead of candidate codes are gener-
ated, symmetric cubes are not generated, a smaller sufficient set of
solutions (producing basic sections) is explored, necessary condi-
tions help discard unsuitable candidate cubes, early detection that
a partial solution cannot be extended to be a global solution prunes
infeasible portions of the search tree. The experiments with a pro-
totype implementation in a package called MINSK show that our
algorithm is faster, solves more problems than any available alter-
native and is robust. All problems of the MCNC benchmark suite
were solved successfully, except four of them unsolved or untried
by any other tool. Other collections of examples were solved or
reported for the first time, including an important set of decoder
PLAs coming from the design of microprocessor instruction sets.

In Section 2 we present a theoretical formulation based on matrix
notation. How to avoid the generation of symmetrical solutions is
explained in Section 3. In Section 4 we describe a new algorithm
to satisfy face constraints. Experimental results are provided in
Section 5. Section 6 concludes the paper with remarks on what has
been achieved and future work.

2 Matrix Formulation of the Face Embedding Prob-
lem

Given a matrix M , denote by Row(M) its rows and Col(M) its
columns. Mi: denotes the i-th row of M and M:j denotes the j-th
column of M . The multiplicity of a column C:j of M , mult(j)
is the number of times that C:j occurs in M . We use the term
vector to indicate a one dimensional matrix, when there is no need
to specify whether it is regarded as a row or a column. Vectors are
called binary or two-valued if their entries are 0 or 1 and 3-valued
if their entries are 0 or 1 or �. A singleton vector has a unique 1.

Given two 2-valued vectors v1 and v2 of the same length, their
disjunction v1[v2 is the vector vwhose i-th entry is the disjunction
of the i-th entries of v1 and v2. Similar definition holds for the
conjunction of v1 and v2. A vector v1 covers a vector v2 if,
whenever the i-th entry of v2 is 1, the i-th entry of v1 is 1. A vector
v1 intersects a vector v2 if for at least an index i, the i-th entry of
v1 and v2 is 1.

2.1 Constraint and Solution Matrices

Given a set of symbols S and a set of face constraints Cf on S, the
constraint matrix is a matrix with as many rows as constraints and
columns as symbols. Entry (i; j) is 1 iff the i-th constraint contains
symbol j, otherwise it is 0. For don’t care face constraints, the don’t
care states have a � in the corresponding position of the constraint
matrix.

Consider the set of constraints Cf = f(s3s4s6s9); (s3s5);
(s1s4s7); (s2s3s6); (s7s8); (s11s12)g. Then the related constraint
matrix is:
Example 2.1

C =

2
666664

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

0 0 1 1 0 1 0 0 1 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0 0 0 0 0
0 1 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0

3
777775

In the sequel we will refer usually to a set of face constraints Cf by its
encoding matrix C and we will not distinguish the two. Notice that
there is no need to add singleton constraints, because we guarantee
that different codes are assigned to different states, including the
states whose columns in Cf are equal.

Given an encoding e that satisfies a constraint matrix C , e
defines a face for each constraint of C , i.e., the minimum subcube
that contains the codes of the states in the constraint.

For a given constraint matrix C and integer n, consider a face
matrix S with Row(C) rows (faces or cubes) and n columns
(sections), whose entries may be 0 or 1 or �. Each row may be
regarded as a subcube in the n-dimensional Boolean space. If there
exists an encoding e such that, for each i 2 Row(S), the i-th row
of S is the face that e defines for the i-constraint of C , then we say
that S is a solution face matrix of C or that S satisfies C and that
the i-th row of S is a solution cube of the i-th constraint.

One verifies thatS is a solution face matrix ofC , by constructing
an intersection matrixTS whose rows are the cubes ofS and whose
columns are the minterms ofBn, where entry (i; j) is 1 iff minterm
j is in cube i. Then S satisfies C if for any columnC:j , the matrix
TS contains no less than mult(C:j) columns equal to C:j . In other
words, we require that each minterm (code of a state) belongs only
to those faces to which it is restricted by the constraints; moreover,
if there are equal columns in the constraint matrix, for each of them
there must be a different minterm. In this way, there is at least one
injective function fC!TS

that associates to each column of C one
column of TS .

Given a matrix S satisfying C , an encoding eS that satisfies C
can be extracted with the following rule: select an injective function
fC!TS

, whose existence is guaranteed becauseS satisfiesC , then
encode state i (i.e., column i of C) with the minterm of the column
fC!TS

(i) in TS . Such an encoding satisfies C because each code
lies only in the faces corresponding to the constraints to which the
state belongs.

Example 2.2 Given the previous C and n = 4, consider

S =

2
66664

� 0 1 �
1 0 � 0
1 � � 1
� � 1 0
� 1 0 1
0 � 0 0

3
77775

S satisfies C as it is shown by building the matrix

TS =

2
64

1001 0110 1010 1011 1000 0010 1101 0101 0011 0100 0000 0111 0001 1100 1111 1110
0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0
0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

3
75

An encoding eS that satisfies C can be extracted from S, with the
following injection from columns of C to columns of TS : e(s1) =
1001, e(s2) = 0110, e(s3) = 1010, e(s4) = 1011, e(s5) = 1000,
e(s6) = 0010, e(s7) = 1101, e(s8) = 0101, e(s9) = 0011,
e(s10) = 0100, e(s11) = 0000, e(s12) = 0111.

Notice that columns ofTS corresponding to the following groups
of codes f0100;0000g, f0111;0001;1100g, f1001;1111g,
f0110;1110g are equal, which gives freedom in selecting an encod-
ing satisfying C . For example, if we permute codes 0100 and 0000
in the previous encoding eS or assign to e(s12) code 0001 instead
of 0111 we still get an encoding satisfying C . So many different
encodings satisfying C specify the same set of faces.

2.2 Basic Sections

Given a constraint matrix C and an encoding e, the set of the
minimal cubes such that each of them contains the codes of the
symbols in a corresponding constraint of C defines the rows of a
face matrix S. If e satisfies C then S is a solution face matrix
of C . The operation of a finding the minimal cube that contains
the codes of the states that appear in a given constraint is captured

exactly by the notion of basic section that we are going to define
next. Informally, given a constraint matrix C , the columns of a
face matrix S such that there is an encoding e (that may or may not
satisfyC) for which the rows ofS are the minimal cubes containing
the codes of the constraints of C are basic sections.

Consider a vector d (whose elements are 0 or 1) with jCol(C)j
entries. We can regard d as an encodingcolumn, i.e., an assignment
of 0 or 1 to each symbol. An encoding function e : S ! Bk

defines a set of k encoding columns e1; � � � ; ek (i.e., the columns
of e), where the i-th entry of ej is 1 (is 0) if and only if the j-th
coordinate of e(si) is 1 (is 0).

Let us compare the set of columns that have a 1 in Ci: (i-th row
of C) with the set of columns that have a 1 in d. There are the
following cases:

1. d covers Ci: , i.e., all columns that have a 1 in Ci: have a 1 in
d. Say that the comparison returns a 1.

2. d does not intersect Ci: , i.e., no column that has a 1 in Ci:

has a 1 in d. Say that the comparison returns a 0.

3. d intersects but does not cover Ci: , i.e., a proper subset of
the columns that have a 1 in Ci: have a 1 in d. Say that the
comparison returns a �.

So given a d, let us denote by bs(d) a column vector with jRow(C)j
entries of value 1, 0, or -, where the i-th entry is 1, 0 or�, according
to whether the previous comparison of d and Ci: returns a 1, 0 or
�.

Definition 2.1 A 3-valued column B is called a basic section for
C if there is a vector d such that B = bs(d).

Example 2.3 Consider

C =

2
64

1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1

3
75

The encoding e(s1) = 000, e(s2) = 100, e(s3) = 110, e(s4) =
111, e(s5) = 101 satisfies C . The minimal cubes containing the
codes assigned by e to the symbols in each constraint of C define a
face matrix S:

S =

2
64

� 0 0
1 � 0
1 1 �
1 � 1

3
75

which satisfies C as seen by building the intersection matrix

TS =

2
664

000 001 010 011 100 101 110 111
�00 1 0 0 0 1 0 0 0
1 � 0 0 0 0 0 1 0 1 0
11� 0 0 0 0 0 0 1 1
1 � 1 0 0 0 0 0 1 0 1

3
775

The encoding columns of the encoding are e1 = 01111, e2 =
00110, e3 = 00011, and they yield the basic sections bs(e1) =
�111, bs(e2) = 0 � 1�, bs(e3) = 00 � 1. The rows of the matrix
of the basic sections are the minimal cubes spanned by the codes of
the states in the constraints of C .

Theorem 2.1 Given a constraint matrix C and an encoding e with
encoding columns e1; : : : ; ek, the basic sections bs(e1); : : : ; bs(ek)
define the set of minimal cubes such that each of them contains the
codes of the symbols in a corresponding constraint of C (even if e
does not satisfy C). Moreover, if e satisfies C the basic sections
bs(e1); : : : ; bs(ek) define a face matrix that satisfies C .

It is worthwhile to clarify that a matrix S that satisfies a constraint
matrix does not consist necessarily (only) of basic sections. A triv-
ial case comes from “redundant” solutions, obtained by adding to
a solution matrix S an arbitrary column (so not necessarily a basic
section). A more interesting case comes from a solution matrix S
whose faces are not minimal subcubes yielded by a corresponding
encoding e. However, the following theorem shows that it is suffi-
cient to consider only basic sections to find a minimum solution to
face hypercube embedding.

Theorem 2.2 Given a solution face matrix S0 of the constraint
matrix C there is always a solution face matrix S of C with the
same number of columns that consists only of basic sections.

Proofs of the theorems are omitted for lack of space.

3 Characterization of Symmetric Solutions

A crucial feature of an efficient algorithm to solve face embedding
constraints is the ability to avoid the consideration of symmetric
solutions, i.e., solutions that differ only by permutations and inver-
sions of variables of the encoding space. We will refer to permu-
tations and inversions of variables as symmetric transformations or
symmetries.

If a matrix S is a solution of C then any matrix S0 obtained
from S by permutations and (bit-wise) inversions of columns is a
solution of C . So if for example, in matrix S there are no columns
that are equal or equal after inversion then there exist n! 2n (n!
for permutations and 2n for inversions) different solutions obtained
by symmetries of S. For example for n = 6 (n = 7) n! 2n is
equal to 46080 (645120). Generation of such solutions is useless
because they all have the same cost as S. All solutions produced
by symmetries of S form an equivalence class of which it suffices
to consider a representative to solve the problem.

In Section 4 we will present a procedure search boolean space
that finds a solution face matrix S in an n-dimensional boolean
space, if such a solution exists. Let us write S(i) for a solution face
matrix satisfying the matrix C(i), which stands for the matrix C
restricted to the first i rows.

The procedure builds incrementally a matrix S by finding first
a solution S(1) for the first constraint C1, then augmenting it to a
solution S(2) for constraints C1,C2 and so on, until all constraints
are considered. More precisely, when handling the i-th constraint,
one generates the set Sat(Ci) of all cubes satisfying it and selects
a cube F 2 Sat(Ci). Then one verifies whether S(i) formed by
appending cube F to S(i�1) satisfies C(i). If not, another cube
of Sat(Ci) is tried and, if none works, one backtracks further to
a different choice of a cube F 0 2 Sat(Ci�1) such that C(i�1) is
satisfied by S(i�2) augmented by F 0.

Now we show how to avoid the generation of symmetrical so-
lutions. Let S(i�1) be a face matrix satisfying C(i�1) . Let A be a
set of column numbers and suppose that all columns of S(i�1) from
A are equal. Let F 0,F 00 be n-component cubes which differ only
in the columns from A. Denote by S0(i) and S00(i) the solutions
obtained by augmenting S(i�1) by cubes F 0 and F 00 respectively.
If there is a permutation of columns from A transforming F 0 to F 00

then the same permutation transformsS0(i) intoS00(i) , i.e., solutions
S0(i) and S00(i) are symmetrical. It is not hard to show that cube
F 0 can be transformed into cube F 00 by a permutation of columns
from A if and only if both cubes have the same numbers of 0 and 1
entries in the columns from A.

Assume that the columns of C(i�1) from A are not only equal,
but also they do not contain 0 and 1 entries. Suppose that there is a
permutation and inversion of columns from A transforming F 0 into
F 00. Then the same permutation and inversion transform S0(i) into

S00(i) . It is not hard to show that cubeF 0 can be transformed to F 00

by a permutation and inversion of columns from A if and only if
both cubes have the same number of - entries in the columns from
A.

Example 3.1 Consider C given in Example 2.1 for n = 4. When
generating the solutions of C(1), i.e., cubes satisfying C1 we need
to generate only cubes having different number of - entries since
matrix C(0) is empty, which can be interpreted as the case of all
columns of C(0) equal and not containing 0 and 1 entries. So
the candidate cubes to satisfy the first constraint are: ���� (4
dashes), 1 � �� (3 dashes), 11 � � (2 dashes), 111� (1 dash),
1111 (0 dashes). None of them can be obtained by a symmetric
transformation of another and any other cube of 4 components can
be obtained from one of the cubes above by a permutation and
inversion of components . Note that there is freedom in selecting
cubes representing an equivalence class. So instead of 11 �� we
could select any cube having two dashes, for example 0 ��1.

Suppose that we have already chosen cube 11�� to solveC(1),
i.e., to satisfy the first constraint. SoS(1) consisting of cube 11��
has two groups of equal columns: f1; 2g and f3; 4g. Note that the
columns of the second group do not contain 0 and 1 entries. Gener-
ating cubes satisfyingC2 we want to avoid considering symmetrical
solutions S(2) . To do so we must skip the generation of cubes that
have the same number of 0 and 1 entries in the columns of the first
group and the same number of - in the columns of the second group.
There are six patterns of two components having different number
of 0 and 1 entries : �� (0 zeroes, 0 ones), 1� (0 zeroes, 1 ones),
0� (1 zeroes, 0 ones), 11 (0 zeroes, 2 ones), 00 (2 zeroes, 0 ones),
01 (1 zeroes, 1 ones). These patterns give 6 possible combinations
of the values of the first and second components of candidate cubes.
There are 3 patterns of two components having different number
of dashes: �� (2 dashes) , 1� (1 dash), 11 (0 dashes). These
patterns give 3 possible combinations of the values of the third and
fourth components of candidate cubes.

All together we obtain 6 � 3 = 18 combinations: � � ��,
�� 1�, �� 11, 1 ���, 1 � 1�, 1 � 11, 11 ��, 111�, 1111,
0 � ��, 0 � 1�, 0 � 11, 01 � �, 011�, 0111, 00 � �, 001�,
0011. Augmenting S(1) by a cube from the previous set we obtain
18 different matrices none of which can be obtained by symmetrical
transformation from another.

4 An Exact Algorithm to Find a Minimum Solu-
tion

In Fig. 1 we present the flow of an algorithm find solution that
finds a minimum solution of a constraint matrix C . It starts with
the minimum dimension (log of the number of constraints) and it
increases it until a solution is found. It is guaranteed to terminate
because every constraint matrix can be satisfied by an encoding of
length k, if k is the number of symbols; more precisely by an 1-hot
encoding. Usually a much shorter encoding length suffices.

4.1 The Search Strategy

The key feature of the proposed algorithm is that it searches sets of
cubes, instead of sets of codes. Since a set of cubes may correspond
to many sets of codes (see Example 2.1), the algorithm explores
simultaneously many encodings. Once a satisfactory set of cubes is
found, it is straighforward to extract from it a satisfying encoding.

For a given dimension, the search of a satisfying encoding is
carried through by the routine search space, that returns a solution
face matrix S that satisfiesC . Once S is known, it is easy, as shown
in Example 2.2, to find an encoding of the symbols that satisfiesC .

Before calling search space the constraints are ordered as men-
tioned in Section 4.5 and then processed in that order. Each call of
search space processes a new constraint. Seach space keeps a cur-
rent partial solutionCurr Sol that satisfies all the constraints from
the first to the last constraint that has been processed. It satisfies a
constraint by generating a cube that encodes the constraint (a row
of S). A constraint is satisfied if there is a cube such that, by adding
it to the current solution, we satisfy the constraint matrix restricted
to the constraints from the first to the one currently processed.

Once the current constraint has been satisfied the current so-
lution is updated and search space calls itself recursively with a
new constraint. If the current solution cannot be extended to satisfy
the current constraint, search space backtracks and tries a different
cube for the last constraint that was satisfied by Curr Sol and it
continues to backtrack until it finds a partial solution Curr Sol
which can be extended to satisfy the constraint currently processed.
The procedure found solution tests whether a face matrix is a solu-
tion of a set of constraints, by constructing the intersection matrix
TS as shown in Section 2.1.

The following enhancements reduce the nodes of the search tree
that search space has to explore to find a minimum solution:

1. Candidate cubes are generated by a procedure generate cand cubes
that avoids the generation of symmetric solutions, based on
the theory presented in Section 3.

2. The procedure generate cand cubes eliminates also the cubes
that would yield a matrix S with sections which are not basic,
as allowed by Theorem 2.2 and explained in Section 4.2.

3. Cubes that do not satisfy the necessary conditions of Sec-
tion 4.3 to be valid extensions of the current solution are
discarded by a procedure discard cand cubes.

4. When trying to extend the current solution, the procedure
unsat constr checks first whether any of the constraints not
yet processed is unsatisfiable by an extension of the current
solution; if so, search space backtracks to modify the current
solution. See Section 4.4 for more discussion.

4.2 Restriction to Basic Sections
In Section 2 we highlighted the fact that not all solution face matrices
S consist entirely of basic sections, but we argued in Theorem 2.2
that basic sections are sufficient to find a minimum solution. There-
fore when generating cubes that are candidate solutions of face
constraints it is profitable to reject those that would produce an S
with some sections which are not basic. The rejection is performed
in the following way.

Suppose that the algorithm is processing constraint Ci . At this
time a solution S(i�1) satisfyingC(i�1) is known. Suppose that all
3-valued columns of S(i�1) are basic sections. Adding to S(i�1) a
cube F we extend each column of S(i�1) by one entry. The j-th
column of S(i�1) can be extended in three ways according to the
j-th component of F being equal to 0,1 or -. E.g., suppose that if
the j-th component of F is equal to 0 then the j-th column of S(i)

is not a basic section. Then when constructing cubes satisfying Ci

we need to avoid the generation of those that have 0 in the j-th
component.

So to guarantee that all produced solutions S(i) consist only of
basic sections we need to generate cubes which correspond to “cor-
rect” extensions of columns of S(i�1) . According to Definition 2.1,
a 3-valued column is a basic section if there is a boolean vector d
such that bs(d) is equal to the column. We use a branch-and-bound
algorithm that, given a column, checks whether the column is a
basic section. We do not report here the details of the algorithm.

find solution(C) f
/* order the constraints */
C = sort constraints(C)
for (cube size = lgdj C je; TRUE ; cube size++) f
cur constr = 1 /* cur constr is the index of the current constraint to satisfy */
Sol = search space(C; cube size;;; cur constr; f(1; : : : ; cube size))g
if Sol = ;

continue
else

return Sol
g

g

search space(C; cube size;Curr Sol; cur constr;Classes) f
/* Curr Sol satisfies all constraints */
if cur const >j C j

return Curr Sol
/* early detection of unsatisfiable constraints given Curr Sol */
if unsat constr(C;Curr Sol; cur constr)

return ;
/* generate candidate cubes CCubes excluding symmetric solutions
and enforcing that all solutions consist only of basic sections */
CCubes = generate cand cubes(C; cube size; cur constr;Curr sol; Classes)
/* sort candidate cubes in order of increasing size */
CCubes = sort cand cubes(CCubes)
/* eliminate candidate cubes that cannot satisfy constraints */
CCubes = discard cand cubes(C; cur constr;Curr sol; CCubes)
/* find a cube extending Curr Sol to satisfy also current constraint */
for (cur cube = 1; i <j CCubes j ; cur cube++) f

New Curr Sol = Curr Sol [cur cube
/* test if New Curr Sol satisfies constraints from 1 to cur constr */
if not found solution(C; cur constr;New Curr Sol)

continue /* not a solution: try another cube */
/* solution found: recompute equivalence relation on columns */
/* try to extend current solution to satisfy also next constraint */
Sol = search space(C; cube size;New Curr Sol; cur constr + 1;New Classes)
if Sol 6= ;

return Sol
g
return ; /* current solution cannot be extended to satisfy also current constraint */

g

Figure 1: Algorithm to find a minimum solution.

4.3 Removal of Unsuitable Cubes

Let S(i�1) be a partial solution andCand(Ci) be a set of candidate
cubes for satisfying Ci that do not contain symmetric cubes nor
cubes leading to sections that are not basic. Before checking if
S(i�1) together with a cube F 2 Cand(Ci) is a solution of C(i),
it is worthy to test whether F satisfies some necessary conditions.
Precisely we discard a cube F 2 Cand(Ci) it at least one of three
conditions holds:

1. The number of 1s in Ci is greater than 2n where n is the
number of �s in F .

2. There is a k such that cube F covers the cube specified by
the k-th row of S(i�1) , i.e., F satisfies Ck , but row Ci: does
not cover (dominate) row Ck: . In this case there is a column
C:m of C such that Cim = 0 and Ckm = 1, that does not
appear in the intersection matrix of the set of cubes obtained
by adding cube F to S(i�1) .

3. There is a k such thatCk: intersectsCi: , but the number of 1s
in their intersection is greater than 2n where n is the number
of �s in the cube obtained by the intersection of F and the
cube specified by the k-th row of S(i�1) .

4.4 Early Detection of Unsatisfied Constraints

Constraints are processedone by one in a predefinedorder. Suppose
that on the path leading to the current node of the search tree we
have already chosen 4 cubes satisfying the first 4 constraints and
that now we are trying to satisfy the 5-th constraint. Suppose also
that all constraints from the 5-th to the 19-th are satisfiable, but
that the 20-th is unsatisfiable, given the current choice of the first 4
cubes. So checking the satisfiability of one constraint at a time, we
would discover that the 20-th constraint is unsatisfiable only after
having processed all constraints up to the 19-th one; then we would
start backtracking to another cube satisfying the 19-th constraint
and we would try again to satisfy the 20-th one, and so on for all

the cubes that satisfy the 19-th constraint. We would repeat this
time-consuming process for all constraints from to the 19-th to the
5-th one, before discovering that we must modify the solution to
the first 4 constraints, in order to extend it to a solution that satisfies
the constraints up to the 20-th one.

To prevent such unrobust behaviour and lessen the dependency
on how the constraints are sorted initially,we employ early detection
of unsatisfied constraints. At each node of the search tree with
i satisfied constraints, the algorithm checks first that any of the
remaining unprocessed constraints is satisfiable, given the current
choice of cubes which satisfy the first i constraints. Although this
checks requires some extra calculations at each node of the search
tree, it is fully justified by the drastic reduction of the search tree
size.

4.5 Sorting of Constraints

Constraints are sorted with the goal to prune branches of the search
tree at the earliest possible stages. We have two sorting criteria. The
first one selects as next constraint the one that intersects the highest
number of already selected constraints. Ties are broken selecting
the constraint with the highest number of 1s. The second criterion
selects according to the highest number of 1s and breaks ties with
the highest number of intersected rows.

5 Results

We implemented the algorithm described in Section 4 in a prototype
package in C called MINSK (Minimum INput Satisfaction Kernel)
and we applied it to a set of benchmarks available in the literature.
The benchmarks are partitioned into three sets: FSMs from the
MCNC collection, reported in Table 2; FSMs collected from various
other sources, reported in the upper part of Table 4; decode PLAs
of the VLSI-BAM project, provided by Bruce Holmer [9], reported
in the lower part of Table 4. In all cases, face constraints were
generated with ESPRESSO [1]. In the tables we report: the name
of the example, the number of symbols to encode (“#states”), the
logarithm of the number of symbols (“min. len.”) together with the
minimum code length to satisfy all input constraints known so far
(“best known”), and the minimum code length to satisfy all input
constraints found by MINSK (“min. sol.”). Besides, the tables show
the number of calls of the routine found solution (“#checks”), the
number of recursive calls of the routine search space (“#calls”),
and the CPU time for a 300 Mhz DEC ALPHA workstation. We
did not report data on examples where the constraints were few and
MINSK found a solution in no time. We found an exact solution for
all the examples, except the FSMs tbk, s1488, s1494, s298 none
of which has been solved before. For some examples, like donfile,
scf, dk16 exact solutions were never found automatically before;
for others, like ex2 an exact solution was found automatically by
NOVA [16] with the option -e ie, but at the cost of an unreasonable
CPU time (60172.6 s. on 60Mhz DEC RISC workstation) 2.

Up to now four exact algorithms have been tried to solve face
hypercube embedding. The first is available as an option in NOVA
-e ie, the second is based on a reduction to satisfaction of encoding
dichotomies by means of unate covering [17, 11], the third is an
implicit implementation with ZBDDs of the latter [3], and the last is
a simplification of the third, where instead of prime dichotomies one
uses all possible encoding dichotomies [3]. In Table 3 we compare
the performance of MINSK with the last three previous algorithms,
based on the data recently reported in [3]. We are aware that the
experiments presented in [3] were run with a 75 Mhz SuperSparc
workstation with 96 MB memory and a timeout of 2 hours. The

2An solution of 7 was erroneously reported as exact in [16] for dk16, whereas the
minimum solution has 6 bits.

purpose of the comparison is to evaluate the behaviors of the various
algorithms, not to discuss specific running times. We included in
Table 3 all the interesting examples, leaving out “easy” cases where
all algorithms behaved similarly.

The experiments warrant the following practical conclusions:

� MINSK is a robust algorithm, that solves in no time problems
with few constraints and requires more time when the set of
constraints is larger and more difficult.

� MINSK is also superior in running times to the other programs
in the more difficult cases, showing that the key ingredi-
ents of its search strategy, such as generating cubes and not
codes, avoiding symmetric solutions and sections which are
not basic, prune away large suboptimal portions of the search
space. The exact option of NOVA instead is hopelessly slow
in the more difficult cases, because it enumerates codes and
not cubes and does not avoid the generation of symmetric
encodings.

� The implicit algorithms of [3] rely on a very sophisticated
unate covering package that represents the table with ZBDDs.
MINSK instead is a simple-minded implementation, whose
strength lies only in the underlying theory. The running times
of MINSK can be improved a lot by making more efficient some
critical routines such as found solution.

6 Conclusions

We have presented a new matrix formulation of the face hypercube
embedding problem that motivates the design of an efficient search
strategy to find an encoding that satisfies all faces of minimum
length. Increasing dimensions of the Boolean space are explored;
for a given dimension constraints are satisfied one at a time. The
following features help to reduce the nodes of the solution space
that must be explored: candidate cubes instead of candidate codes
are generated, symmetric solutions are not generated, a smaller
sufficient set of solutions (producing basic sections) is explored,
necessary conditions help discard unsuitable candidate cubes, early
detection that a partial solution cannot be extended to be a global
solution prunes infeasible portions of the search tree.

We have implemented a prototype package MINSK based on the
previous ideas and run experiments to evaluate it. The experiments
show that MINSK is faster and solves more problems than any avail-
able algorithm. Moreover, MINSK is a robust algorithm, while most
of the proposed alternatives are not. All problems of the MCNC
benchmark suite were solved successfully, except four of them un-
solved or untried by any other tool. Other collections of examples
were solved or reported for the first time, including an important
set of decoder PLAs coming from the design of microprocessor
instruction sets.

We know that the current implementation of MINSK is simple-
minded and leaves room for improvements to speed-up more the
program. For instance, the satisfaction check with the intersection
matrix TS is expensive and currently not optimized. Other areas of
improvement to cope with difficult examples lie in the computation
of a lower bound on the Boolean space dimension tighter than
ln states; and in a dynamic choice of the next cube and its size,
based on a tighter analysis of the cube occupancy requirements of
the existing constraints.

Moreover, we want to generalize the existing theory and algo-
rithm in the following directions:

1. Solving face constraints with don’t cares, that is an important
practical problem.

2. Solving mixed problems that include constraints in the form
of encoding dichotomies.

Name #states #cons. min. len. / min. sol. #checks #calls time
best known (secs)

bbsse 16 5 4 / 6 6 127 9 0.02
beecount 7 6 3 / 4 4 75 9 0.01
cse 16 9 4 / 5 5 219 11 0.03
dk14 7 9 3 / 4 4 137 16 0.02
dk15 4 6 2 / 4 4 66 12 0.01
dk16 27 24 5 / � 8 6 622653 8686 161.45
dk17 8 7 3 / 4 4 162 9 0.01
dk27 7 4 3 / 3 3 42 5 0.00
dk512 15 9 4 / 5 5 569 12 0.06
donfile 24 24 5 / � 6 6 245476 1722 48.14
ex1 20 8 5 / 7 7 1522 15 0.47
ex2 19 8 5 / 6 6 666 13 0.13
ex3 10 6 4 / 5 5 195 11 0.02
ex5 9 7 4 / 5 5 99 13 0.01
ex6 8 9 3 / 4 4 87 11 0.01
ex7 10 6 4 / 5 5 71 12 0.01
keyb 19 18 5 / 7 7 3676 184 1.62
kirkman 16 6 4 / � 6 6 52 10 0.01
lion9 9 10 4 / 4 4 194 11 0.02
mark1 15 4 4 / 5 5 72 8 0.01
planet 48 10 6 / 6 6 2044 11 0.40
pma 24 13 5 / na 7 37339 687 14.42
s1 20 5 5 / 5 5 334 6 0.03
s1488 48 24 6 / na - - - timeout
s1494 48 24 6 / na - - - timeout
s208 18 5 5 / na 6 162 8 0.02
s27 6 6 3 / na 4 80 9 0.01
s298 218 47 9 / na timeout
s386 13 5 4 / na 6 124 9 0.02
s420 18 5 5 / na 6 162 8 0.02
s820 25 10 5 / na 6 1832 13 0.38
s832 25 10 5 / na 6 1848 13 0.35
sand 32 5 5 / 6 6 131 7 0.02
scf 121 14 7 / � 8 7 6239 17 2.82
sse 16 5 4 / 6 6 127 9 0.02
styr 30 16 5 / 6 6 973 18 0.29
tbk 32 73 5 / � 18 - - - timeout
tma 20 9 5 / na 6 2086 71 0.43
train11 11 11 4 / 5 5 8534 256 1.06

Figure 2: Experiments with FSMs from MCNC Benchmark Set.

From some preliminary analysis, both extensions are amenable to
the current frame, with some appropriate modifications to the test
when a candidate matrix is a solution and the introduction of the
equivalent of a face for an encoding dichotomy.

Notice that the reduction of face hypercube embedding to satis-
faction of encoding dichotomies [11, 3] has shown experimentally
that face hypercube embedding in a sense contains the hardest in-
stances of the problem to satisfy encoding dichotomies. This fact
justifies our strategy to solve the former first and extend it later to
the latter.

References

[1] R. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-
Vincentelli. Logic Minimization Algorithms for VLSI Synthe-
sis. Kluwer Academic Publishers, 1984.

[2] O. Coudert. Two-level logic minimization: an overview. In-
tegration, 17-2:97–140, October 1994.

[3] O. Coudert and C.-J. Shi. Ze-Dicho: an exact solver for
dichotomy-based constrained encoding. In The Proceedings
of the International Conference on Computer Design, pages
426–431, 1996.

[4] S. Devadas, A. Wang, R. Newton, and A. Sangiovanni-
Vincentelli. Boolean decomposition in multilevel logic opti-
mization. IEEE Journalof solid-state circuits, pages399–408,
April 1989.

[5] C. Duff. Codage d’automates et theorie des cubes intersec-
tants. Thèse, Institut National Polytechnique de Grenoble,
March 1991.

[6] E.I. Goldberg. Metody bulevogo kodirovaniya znachenij argu-
mentov predicatov (methods of boolean encoding of predicate
arguments values). Preprint No. 3, Institute of Engineering
Cybernetics, Academy of Sciences of Belarus, 1991. (In Rus-
sian).

[7] E.I. Goldberg. Matrix formulation of constrained encoding
problems in optimal PLA synthesis. Preprint No. 19, Institute

Name ImpDicho ZeDicho Dicho MINSK

time(s.) time(s.) time(s.) time(s.)
dk16 spaceout timeout spaceout 161.45
dk512 timeout timeout 238.72 0.06
donfile timeout timeout spaceout 48.14
ex1 433.85 128.63 spaceout 0.47
ex2 timeout timeout spaceout 0.13
ex4 timeout timeout timeout 0.00
keyb timeout 14.43 125.2 1.62
planet spaceout timeout spaceout 0.40
s1 timeout timeout timeout 0.03
sand spaceout timeout spaceout 0.02
scf spaceout timeout spaceout 2.82
styr spaceout timeout timeout 0.29
tbk spaceout timeout spaceout timeout

Figure 3: Comparison with Other Approaches.

Name #states #cons. min. len. min. sol. #checks #calls time
(secs)

apla 29 10 5 7 1267 14 0.45
lange 6 7 3 4 128 15 0.01
papa 7 9 3 4 162 19 0.02
scud 8 17 3 6 1102 77 0.28
tlc34stg 35 19 6 6 3635 20 1.22
viterbi 68 6 7 7 4510 7 1.07
vmecont 32 41 5 9 25958139 22354 95424.37
ir1a 128 2 7 8 22 4 0.01
ir1b 128 4 7 8 549 7 0.21
ir1c 128 5 7 8 1224 7 0.62
ir1d 128 11 7 9 402694 2299 512.10
ir2 128 8 7 8 10374 35 6.00
ir2m 128 11 7 8 31468 13 20.43
ir3 128 11 7 8 18075 13 13.89
ir4m 128 5 7 8 733 7 0.32

Figure 4: Experiments with FSMs from Other Sources (upper part of the table) and Decode PLAs of the VLSI-BAM (lower part).

of Engineering Cybernetics, Academy of Sciences of Belarus,
1993.

[8] E.I. Goldberg. Face embedding by componentwise construc-
tion of intersecting cubes. Preprint No. 1, Institute of Engi-
neering Cybernetics, Academy of Sciences of Belarus, 1995.

[9] B. Holmer. A tool for processor instruction set design. In The
Proceedings of the European Design Automation Conference,
pages 150–155, September 1994.

[10] G. De Micheli, R. Brayton, and A. Sangiovanni-Vincentelli.
Optimal state assignment for finite state machines. IEEE
Transactions on Computer-Aided Design, pages 269–285,
July 1985.

[11] A. Saldanha, T. Villa, R. Brayton, and A. Sangiovanni-
Vincentelli. Satisfaction of input and output encoding con-
straints. IEEE Transactions on Computer-Aided Design,
13(5):589–602, May 1994.

[12] G. Saucier, C. Duff, and F. Poirot. State assignment using a
new embedding method based on an intersecting cube theory.
In The Proceedings of the Design Automation Conference,
pages 321–326, June 1989.

[13] C.-J. Shi and J. Brzozowski. An efficient algorithm for con-
strained encoding and its applications. IEEE Transactions on
Computer-Aided Design, pages 1813–1826, December 1993.

[14] J. Tracey. Internal state assignment for asynchronous sequen-
tial machines. IRE Transactions on Electronic Computers,
pages 551–560, August 1966.

[15] T. Villa, T. Kam, R. Brayton, and A. Sangiovanni-Vincentelli.
Synthesis of FSMs: logic optimization. Kluwer Academic
Publishers, 1997.

[16] T. Villa and A. Sangiovanni-Vincentelli. NOVA: State
assignment for optimal two-level logic implementations.
IEEE Transactions on Computer-Aided Design, 9(9):905–
924, September 1990.

[17] S. Yang and M. Ciesielski. Optimum and suboptimum algo-
rithms for input encoding and its relationship to logic min-
imization. IEEE Transactions on Computer-Aided Design,
10(1):4–12, January 1991.

[18] A.D. Zakrevskii. Logicheskii sintez kaskadnykh skhem (Logic
synthesis of cascaded circuits). Nauka, 1981. (in Russian).

