
A Fast and Scalable Fault Injection Framework to
Evaluate Multi/Many-core Soft Error Reliability
Felipe Rosa, Fernanda Kastensmidt, Ricardo Reis

UFRGS - Instituto de Informatica - PGMicro/PPGC
Av. Bento Goncalves 9500 Porto Alegre, RS - Brazil

Email: {frdarosa, fglima, reis}@inf.ufrgs.br

Luciano Ost
Department of Engineering - University of Leicester

University Road, Leicester, LE1 7RH, UK
Email: luciano.ost@leicester.ac.uk

Abstract—Increasing chip power densities allied to the con-
tinuous technology shrink is making emerging multiprocessor
embedded systems more vulnerable to soft errors. Due the high
cost and design time inherent to board-based fault injection ap-
proaches, more appropriate and efficient simulation-based fault
injection frameworks become crucial to guarantee the adequate
design exploration support at early design phase. In this scenario,
this paper proposes a fast and flexible fault injector framework,
called OVPSim-FIM, which supports parallel simulation to boost
up the fault injection process. Aiming at validating OVPSim-
FIM, several fault injection campaigns were performed in ARM
processors, considering a market leading RTOS and benchmarks
with up to 10 billions of object code instructions. Results have
shown that OVPSim-FIM enables to inject faults at speed of up
to 10,000 MIPS, depending on the processor and the benchmark
profile, enabling to identify erros and exceptions according to
different criteria and classifications.

I. INTRODUCTION

Integrating multiple commercial Off-The-Shelf (COTS) pro-
cessors in the same system is now commonplace in both em-
bedded and high performance computing (HPC) domains [1].
Such systems aim to perform complex application workloads
(i.e. billions of object code instructions), which will continue
growing in diverse fields (e.g. aerospace, automotive, etc) [2].
To meet the system performance, processors of these systems
may be required to operate in aggressive clock frequencies (i.e
gigahertz). The high frequency operation and the continuous
technology shrink are making underlying systems more sus-
ceptible to soft errors, such as the ones caused by radiation
effects [3]. Soft errors or Single Event Effects (SEE) induced
by neutron may cause critical failures on system behaviour,
which can lead to financial or human life losses [4]. In this
regard, the occurrence of SEEs has been considered as a major
concern in memory cells and processors working at ground
level.

Fault injection techniques are widely used to assess soft
errors of embedded and HPC systems under fault campaigns
at design time [5]. Aiming at accelerating the fault injection
evaluation of such complex systems, simulation-based fault
injection approaches are proposed to enable complex soft
error resilience analysis regarding to different system config-
urations at acceptable time. Simulation-based fault injection
frameworks allow early evaluation of the system reliability
when only system components models are available. Although,
simulations performed either at register or at gate level provide

more accurate results, there are two main issues that reduce
their relevance for performing fault injection campaigns in
complex multi/many-core systems. Commercial processors are
rarely available to users in register or gate-level description
and required simulation time is extremely high even for rel-
atively small processors, making the investigation of systems
composed of more complex processors impractical.

More recently, researchers have been proposed to extend
virtual platform simulators aiming to enable fault injection
analysis at early design phases. Authors in [6] present the
Relyzer, a hybrid simulation framework for SPARC core using
Simics [7] and gem5 [8] simulators coupled with a pruning
technique to reduce injected faults. In this work, a 200-
cores cluster was employed and approximately 11 days were
required to inject around 32 million faults, resulting in an
average of 33 injected faults per second. In [9], a fault injection
framework based on QEMU is proposed. Faults are injected
in an X86 architecture running applications in a Real Time
Operating System (RTEMS). During the experiment, 8,000
faults were injected in 8.7 hours, given an average of less than
1 fault per second. Most reviewed approaches consider either
small scenarios or a single target processor or specific ISA
[7]. Further, such works typically report best-case simulation
performances of 2-3 MIPS, allowing 33 fault injections per
second considering a supercomputer [6].

Different from the above works, this paper proposes a fault
injector framework, called OVPSim-FIM, developed on the ba-
sis of OVPSim [10] aiming to speed up the analysis of complex
and large-scale systems composed of hundreds of commercial
processors under neutron-induced faults. OVPSim-FIM can
be used to inject faults into: memory area, CPU registers,
and interconnection infrastructure. To validate the proposed
framework, several fault injection campaigns were performed
in ARM Cortex-A9, A15 and M4F. Fault injection reports
are obtained by performing a trustworthy number of fault
injections (at least 100,000 faults per campaign) considering a
market leading RTOS and several well-known benchmarks.
Another contribution of promoted framework relies on the
possibility of performing parallel fault injection campaigns,
defined according to the number of available host-CPUs.
Underlying feature enables to simulate up to hundreds fault
injections per second, considering normal desktop PCs (i.e.
quad-core with 8GB of memory).

II. PROPOSED FAULT INJECTOR FRAMEWORK

Figure 1 shows the main components of OVPSim-FIM: fault
model library, FIM, platform model and simulation infrastruc-
ture. The fault model library (FML) combines fault injection
techniques, which may be used to evaluate the dependability
of single or multi-core platforms composed of three main
components: memory, processor and interconnection. In this
regard, designers can select the most appropriate fault injection
(FI) technique for each set of platform components (e.g.
processors, busses, routers or memory) according to their
needs. FI models contain information about the behavior of the
faults (e.g. bit location and fault injection time), which shall be
performed by the fault injector module (FIM). Proposed FIM
incorporates four main mechanisms: (i) fault configuration, (ii)
fault monitor, (iii) error detection, and (iv) exception handler.

Software stack
(OS, application, drivers)

Compiler

OVPSim

Fault injector
module (FIM)

Error trace
file

Platform

m
odel

CP
U

 a
nd

pe

rip
he

ra
l

m
od

el
s

S
im

u
la

ti
o
n
 i
n
fr

as
tr

u
ct

u
re

faults

Fa
ul

t m
od

el

lib
ra

ry

Fig. 1. Proposed fault injection framework organization, where white boxes
represent OVPSim regular framework components and proposed FIM modules
and associated functions are indicated by blue boxes.

To set the FIM, users must use the appropriate flags to
inform target components/locations (e.g. processor, memory
regions, etc) as well as the injection technique for each
campaign. Users can either set up the fault configuration
mechanism using flags or employ a fault description input
file, which provides pre-defined parameters (e.g. number of
faults, etc) for each fault campaign. The default fault injection
configuration (e.g. bit location, injection time) relies on a
random uniform function, which is a well-accepted fault
injection technique since it covers the majority of possible
faults on a system at a low computation cost [11]. The fault
monitor function is used to check the system behavior and the
occurrence of errors in the presence of faults. In turn, the error
detection verifies the platform components (e.g. CPU control
registers) context at simulation end in order to detect arising
errors or consolidate exceptions captured by the exception
handler.

OVPSim-FIM was developed according to OVPSim API
environment, which has several functions defined as callbacks.

Callbacks enable to access, to modify, and to control plat-
form components during the simulation. For instance, in our
implementation, when a predefined events occur (e.g. access
to a give memory area) a callback function is used to stop
the simulation and to trigger the fault monitor component
execution.

A. Fault Injection Simulation Flow

Proposed fault injection flow comprises five phases, as
illustrated in Figure 2. In the golden execution (phase 1), each
application is executed in the original OVPSim distribution
to verify its correctness and to extract essential information
like instruction count and memory map. Resulting instruction
count and memory map are used to create the final error report
(phase 5), which provides fault injection positions and detected
errors.

Golden
execution

Fault setup
and creation

Error
report

OVPSim-FIM

Error analysis

Harvest1 2 3

4

faults

5

Fig. 2. Five phases of proposed fault injection flow using OVPSim-FIM.

The second phase involves fault configuration and fault list
creation. As OVPSim, promoted framework relies on just-in-
time compilation technology, which enables high simulation
performance at the cost of limited accuracy. As consequence,
one complete instruction is the minimum granularity achieved,
independent of real cycle count. In this regard, the number of
performed instructions is assumed as temporal reference in
this work. Supposing the default fault injection configuration,
injection time is defined randomly based on a number between
one and the final instruction count extracted in phase 1.
Following the principal, fault locations (e.g. registers, memory
address) are also defined randomly. Faults are characterized as
single bit-flips that can be injected in internal components like
CPU registers (e.g. R0, PC, fps). To guarantee a single bit-flip
injection, a bit pattern mask is generated for each fault. For
instance, considering a 32 bit processor like adopted Cortex
A-15, all 32 bits are set to 1 except the bit that will be
flipped. Thus, to change the second bit of a 32 bits register, the
0xFFFFFFFD mask must be defined. As the previous steps,
the pattern generation is also randomly. For this purpose, a
0x00000001 integer value is shifted up to 32 times to invert all
bits of this integer. In the third phase, the fault monitor verifies
the number of executed instructions in order to inject a fault.
At this moment, the targeted component position (e.g. register,
memory address) is accessed and related value is used with
the previous generated mask pattern (phase 2) in an exclusive
OR operation (XOR), inverting the collected value.

In phase 4 (error analysis), each application behavior run-
ning under fault injection is compared to the golden standard
run in order to detect possible arising errors. OVPSim-FIM
generates a error report according to Cho’s classification [5]:

(i) Vanished - no fault traces are left; (ii) Output Not Affected
(ONA) - the resulting memory is not modified, however, one or
more remaining bits of the architectural state are incorrect; (iii)
Output Mismatch (OMM) - the application terminates without
any error but the resulting memory is affected; (iv) Unexpected
Termination (UT) - the application terminates abnormally with
an error indication; and (v) Hang - the application does not
finish and it is preempted using a timeout.

B. Simulation Infrastructure

During the simulation, injected faults can generate different
processor exceptions (e.g. write/read private memory regions),
which can suspend the simulation. To overcome such restric-
tion, a C-module of our simulation infrastructure was built
to deal with such unexpected events at runtime in order to
keep the simulation running until it reaches the end. Promoted
simulation infrastructure enables to access and to deal at
runtime with different exceptions individually, allowing to
continue the execution of a faulty processor. In this context,
the OVPSim-FIM resumes the simulation for all unfinished
components; waiting until all processors finishes either by own
means (i.e. reaching an exit or break instruction) or triggering
another event. Note, our main goal is to capture arising errors,
not to treat or to mitigate them, however proposed framework
may be extended to support both process.

Proposed infrastructure includes two features to boost up
the fault injection simulation: checkpoint and an independent
parallel simulation engine. Checkpoint technique consists in
collecting platform components context during the gold exe-
cution (phase 1) in order to restore the appropriate context later
during the fault injection campaign, reducing the amount of re-
executed code. Such technique is constructed using OVPSim
save and restore functions, which allow restoring processor and
memory context. Restored contexts are executed identically
to an unmodified execution (i.e. complete simulation). For
this purpose, during gold execution the application context,
covering processor and memory models, is stored periodically
according to a pre-defined number of instructions, which
determines the interval between the checkpoints. The user can
specify this interval or assign a number of checkpoints to the
target application.

To benefit from host’s processing capacity, a simulation
infrastructure instrumentation is proposed to manage parallel
host-cores resources utilization. Proposed simulation infras-
tructure comprises a set of C-based functions (e.g. man-
agement) and bash scripts developed according to OVPSim
guidelines. Our simulation infrastructure was designed to be
modular and highly configurable, however we advocate that
the most suitable setup consider allocating one platform model
per available host-core (default operation mode). Each plat-
form model runs independently from fault injection (phase 1)
to error report generation (phase 5). For instance, considering
a quad-core processor machine, it is possible to execute 4 plat-
form models injecting 1,000 faults each, totalizing 4,000 fault
injections in parallel. In the present work, we adopt a platform
model composed of several nodes interconnected by an OVP-

based network-on-chip model, which was incorporated in the
original OVPSim components library. Each platform node is
composed of a single processor connected to the local memory
and router by a bus. Due the modeling flexibility, different
fault injection techniques can be employed to evaluate both
homogeneous and heterogeneous processor platforms.

III. EXPERIMENTAL SETUP AND RESULTS

Experimental setup: all fault injection simulations were
performed in a Quad-core Intel(R) Core(TM) i7-4790K CPU
(32 GB DDR3 RAM machine). Since OVPSim uses the target
CPUs binary code to perform emulation on a host machine,
all simulation scenarios were executed multiple times and only
worst cases are reported here.

A. Case Studies Considering ARM Processors
In order to demonstrate the OVPSim-FIM fault injection

capabilities, the proposed fault injection framework is used for
simulating the effect of faults on 1000-node system platforms.
Fault analyses are obtained by injecting faults (i.e. bit-flips)
in general-purpose registers of three ARM processor models:
Cortex-A9, Cortex-A15, and Cortex-M4F, executing14 bench-
marks. During fault injection campaigns, errors are classified
according to Cho’s proposal [5] (Figure 3). Thousands of faults
are injected in each ARM processor register (i.e. PC, SP and
other 12 registers) in a random order, in order to estimate the
percentage of errors that are not masked by each benchmark.
The mean error percentage for all 42 scenarios is 60.1%,
60.2%, and 74.4%, respectively, for Cortex-A9, Cortex-A15,
and Cortex-M4F, which executes a FreeRTOS. Cortex-M4F
running the FreeRTOS presents a SDC rate of 58% several
times higher than other two Cortex-A architectures, which
execute only bare-metal applications, resulting in a SDC rate
of only 2.4%. In contrast, both Cortex-A9 and A15 have a
higher rate of memory output and incorrect processor state,
40% against less than 1% for M4F.

B. OVPSim-FIM Performance
This experiment evaluates OVPSim-FIM speedup when

compared to the original OVPSim distribution, which uses one
physical core, even in multicore processors as Intel-I7. To pro-
vide relevant metrics, FreeRTOS kernel version V.7.4.21 was
ported to the ARM Cortex-M4F model available in OVPSim.
The Adpcm, Fibonacci and PeekSpeed benchmarks are chosen
due their workload profiles, i.e. number of instructions of each
one, number of generated exceptions during simulation, etc.

Figure 4 compares developed simulation performance tech-
niques using the original OVPSim as reference (white bars).
The second bar shows the simulation performance of OVPSim-
FIM when executed in one single host-core without checkpoint
technique. The simulation overhead is 2.3%, 5.2%, and 12.6%
for Adpcm, Fibonacci and PeekSpeed (baremetal), respec-
tively, when compared to the original OVPSim distribution.
Note, the more instructions the less simulation overhead.

The checkpoint technique achieves up to ten thousand MIPS
when comparing with the simple OVPSim-FIM implementa-
tion. The PeakSpeed provides the smallest gain (only 3%).

 20

 30

 40

 50

 60

 70

 80

 90

 100

A B C D E F G H I J K L M N

Co
nt

ro
l F

lo
w

 E
rro

rs
 (

%
)

ARM Cortex A9

 20

 30

 40

 50

 60

 70

 80

 90

 100

A B C D E F G H I J K L M N

Co
nt

ro
l F

lo
w

 E
rro

rs
 (

%
)

ARM Cortex A15

 20

 30

 40

 50

 60

 70

 80

 90

 100

A B C D E F G H I J K L M N

Co
nt

ro
l F

lo
w

 E
rro

rs
 (

%
)

ARM Cortex M4F (FreeRTOS)

Exit condition
Vanished ONA OMM UT Hang

Fig. 3. Error Percentage for Cortex-A9, A15, and M4F, executing Adpcm (A), Blowfish (B), Bubble Sort (C), Edn (D), Factorial (E), Fdct (F), Fibonacci
(G), Hanoi Tower(H), Harmonic Calculations (I), Insert Sort (J), Jfdctint (K), mdc (L), PeakSpeed (M), and Integer Matrix Multiplication (N).

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

Adpcm Fibonacci Peakspeed

m
illi

on
 in

st
ru

ct
io

ns
 p

er
 s

ec
on

d
(M

IP
S)

OVPSim
OVPSim-FIM 1 Core
OVPSim-FIM 1 Core with checkpoint
OVPSim-FIM 2 Cores
OVPSim-FIM 2 Cores with checkpoint
OVPSim-FIM 4 Cores
OVPSim-FIM 4 Cores with checkpoint

Fig. 4. Comparison between OVPSim-FIM simulation performance tech-
niques, considering 3 benchmarks executing onto a 1000-node platform model,
where each core executes one instance of FreeRTOS and a benchmark.

In this case, the overhead for restoring processor and memory
context higher than executing the small number of instructions
of this benchmark (around 118 millions). Nevertheless, larger
and more complex applications like Adpcm and Fibonacci
benefit from this technique, saving a considerable simulation
time. Underlying results demonstrate the increased speedup of
the proposed approach when compared to original OVPSim
distribution, promoting large error/fault-oriented analysis as
required by emergent multi/many-core systems.

IV. CONCLUSION

This paper presented two major contributions: first is tar-
geting the general problem of accelerating the fault injection
and analysis of complex and large-scale systems composed
of multi/many-core processors; second is the focusing on
the specific problem of evaluating commercial processors
under soft errors scenarios. In light of that, we proposed the
OVPSim-FIM fault injection framework that unifies design
flexibility, fast simulation and high injection rate in one single

simulator. The effectiveness of OVPSim-FIM was evaluated
according to more than hundreds simulation scenarios, consid-
ering FreeRTOS, well-known benchmarks, and different ARM
Cortex family processors. Future works includes the use of
this framework to compare and evaluate different operating
systems, multiple processor embedded and HPC systems, fault
tolerant software-based applications.

REFERENCES

[1] N. Rajovic, P. M. Carpenter, I. Gelado, N. Puzovic, A. Ramirez, and
M. Valero, “Supercomputing with commodity cpus: Are mobile socs
ready for hpc?” in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, ser. SC ’13.
New York, NY, USA: ACM, 2013, pp. 40:1–40:12.

[2] C. Ebert and C. Jones, “Embedded software: Facts, figures, and future,”
Computer, vol. 42, no. 4, pp. 42–52, Apr. 2009.

[3] N. Seifert, “Radiation-induced Soft Errors: A Chip-level Modeling
Perspective,” Found. Trends Electron. Des. Autom., vol. 4, no. 2-3, pp.
99–221, Feb. 2010.

[4] “Toyota Case: Single Bit Flip That Killed | EE Times.” [Online].
Available: http://www.eetimes.com/document.asp?doc id=1319903

[5] H. Cho, S. Mirkhani, C.-Y. Cher, J. Abraham, and S. Mitra, “Quantitative
evaluation of soft error injection techniques for robust system design,”
in 50th ACM Design Automation Conference (DAC), 2013, pp. 1–10.

[6] S. K. S. Hari, S. V. Adve, H. Naeimi, and P. Ramachandran, “Relyzer:
Exploiting Application-level Fault Equivalence to Analyze Application
Resiliency to Transient Faults,” in Proceedings of the Seventeenth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS XVII. New York,
NY, USA: ACM, 2012, pp. 123–134.

[7] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Ha all-
berg, J. Hogberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A
Full System Simulation Platform,” Computer, vol. 35, no. 2, pp. 50–58,
Feb. 2002.

[8] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The Gem5
Simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7,
Aug. 2011.

[9] F. de Aguiar Geissler, F. Lima Kastensmidt, and J. Pereira Souza, “Soft
error injection methodology based on QEMU software platform,” in Test
Workshop - LATW, 2014 15th Latin American, Mar. 2014, pp. 1–5.

[10] Imperas, “Open Virtual Platforms (OVP),” 2014. [Online]. Available:
http://www.ovpworld.org/

[11] S. Feng, S. Gupta, A. Ansari, and S. Mahlke, “Shoestring: Probabilistic
Soft Error Reliability on the Cheap,” in Proceedings of the 15th Edition
of ASPLOS on Architectural Support for Programming Languages and
Operating Systems. New York, NY, USA: ACM, 2010, pp. 385–396.

