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Abstract— Linguistic fuzzy modeling in high-dimensional re-
gression problems poses the challenge of exponential rule ex-
plosion when the number of variables and/or instances becomes
high. One way of addressing this problem is by learning the used
variables, the linguistic partitioning and the rule set together,
in order to only evolve very simple but still accurate models.
However, evolving these components together is a difficult task
involving a complex search space.

In this work, we propose an effective multi-objective evolu-
tionary algorithm that, based on embedded genetic data base
learning (involved variables, granularities and slight fuzzy parti-
tion displacements), allows the fast learning of simple and quite
accurate linguistic models. Some efficient mechanisms have been
designed to ensure a very fast, but not premature, convergence
in problems with a high number of variables. Further, since
additional problems could arise for datasets with a large number
of instances, we also propose a general mechanism for estimating
the model error when using evolutionary algorithms, by only
considering a reduced subset of the examples. By doing so we
can also apply a fast post-processing stage for further refining
the learned solutions.

We tested our approach on 17 real-world datasets with
different numbers of variables and instances. Three well-known
methods based on embedded genetic data base learning have been
executed as references. We compared the different approaches
by applying non-parametric statistical tests for multiple com-
parisons. The results confirm the effectiveness of the proposed
method in terms of scalability, but also in terms of the simplicity
and generalizability of the obtained models.

Index Terms— Linguistic fuzzy modeling, Multi-objective ge-
netic fuzzy systems, embedded genetic data base learning, Scal-
ability, High-dimensional regression problems

I. INTRODUCTION

Linguistic fuzzy modeling in high-dimensional and large
scale regression datasets is a challenging topic since conven-
tional linguistic Fuzzy Rule-Based Systems (FRBSs) suffer
from exponential rule explosion when the number of vari-
ables and/or data examples becomes high [1], [2]. Another
problem when we deal with high-dimensional datasets is the
analysis of algorithm scalability on big databases, emphasizing
the training time and the convergence towards compact and
interpretable models [3]. In this way, we can distinguish two
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kinds of problems: high dimensionality when a large number
of variables have to be considered, and scalability in datasets
with a large amount of data.

A good way to address both problems is by searching
for a good and simple global structure within the same
process, in order to consider the relationships among the
different components defining the Knowledge Base (KB) of
the obtained linguistic models. That is, by learning the main
components of the KB, a Data Base (DB) containing the
definitions of the linguistic fuzzy partitions and a Rule Base
(RB) containing the associated set of rules, together. Since this
method involves using different coding schemes to represent
each solution, Evolutionary Algorithms, particularly Genetic
Algorithms (GAs), are useful for this task. These kinds of
global search techniques have been successfully applied to
learn fuzzy systems in recent years, giving rise to the so
called Genetic Fuzzy Systems (GFSs) [3]–[5]. Furthermore,
the application of MOEAs to the derivation of compact
linguistic FRBSs is a prolific framework in which we can
find several interesting and recent works. Some MOEAs were
proposed as post-processing techniques [6]–[13] while others
were proposed as learning techniques [11], [14]–[18].

However, this method involves a lot of compo-
nents/parameters that should be determined together:
selection of important variables, determination of a good
number of linguistic terms or granularities per variable,
parametric definition of the Membership Functions (MFs)
and associated set of rules. Since it involves using different
coding schemes to represent a complete solution and therefore
a very complex search space, this is a difficult task. In fact,
the balance among problem size, algorithm scalability and
solution quality is an important topic for GFSs that is worth
studying in depth [3], which has not been directly taken into
account in the mentioned evolutionary approaches devoted to
linguistic fuzzy modelling.

An efficient way to obtain the whole KB of an FRBS is to
obtain the DB and the RB within the same process but sep-
arately, based on embedded genetic data base learning [19]–
[24]. This is an evolutionary process that learns the DB and
wraps a simple method to derive a set of rules for each DB
definition. This enables the most adequate context [20] for
each fuzzy partition to be learned, which strongly affects the
final model complexity. However, this approach cannot solve
the following contradictory requirements:

• The obtained linguistic models should be simple and
transparent, but also competitive in terms of the general-
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ization error.
• The evolutionary learning algorithm should be effective,

but also scalable, in terms of the time and memory
consumed, in order to be useful for a wide range of high-
dimensional or large-scale problems.

In this work, we propose a convenient reduction of the
search space for the embedded genetic data base learning
(variable selection, granularities and MF parameters) and an
effective and efficient Multi-Objective Evolutionary Algorithm
(MOEA) as a tool that makes use of some specific mecha-
nisms in order to ensure a fast convergence. To reduce the
search space [25], we propose the performance of a slight
lateral displacement of fuzzy partitions by applying a common
displacement parameter to all the MFs at each linguistic
variable. This allows a simple pre-screening of promising
granularities, which avoids the derivation of very specific
systems presenting overfitting, and preserves equidistributed
strong fuzzy partitions. In addition, the proposed MOEA
includes such concepts as incest prevention and restarting in
order to improve the algorithm convergence [26], together with
some mechanisms to step up the learning process, such as a
rule cropping criterion in the RB generation process.

The proposed method is able to handle dimensionality,
however it does not directly solve scalability with respect to
the number of available data in the dataset. To deal with
this, we also propose a mechanism to avoid using a big
percentage of the examples for error computation, estimating
it from a reduced subset of the examples. By doing so we
can also apply a post-processing stage to further refine the
learned solutions. We have applied a previous MOEA [27],
[28], namely SPEA2E/E , including this new error estimation
procedure for fine tuning of the membership functions and
rule selection, which will help to significantly improve the
performance of the simple global structure (initially based on
strong fuzzy partitions) while the complexity is decreased.

We tested our approach on 17 real-world problems with a
number of variables ranging from 4 to 85 and a number of
samples ranging from 337 to 40,768. When it was possible,
depending on the dimensionality, we executed three well-
known accuracy-driven single-objective methods based on
embedded genetic data base learning in order to have some
good performance references. To assess the results obtained
by the different algorithms, we have applied non-parametric
statistical tests [29]–[32] for multiple comparisons, consider-
ing for the MOEA the average of the most accurate solution
from each Pareto front. The results obtained demonstrate the
effectiveness of the proposed method, particularly in terms of
scalability, but also in terms of simplicity and the generaliz-
ability of the obtained models.

This contribution is arranged as follows. Section II proposes
the lateral displacement of fuzzy partitions. In Section III,
we present an effective MOEA to learn FRBSs for high-
dimensional problems. Section IV proposes the new method
for fast error computation and its application to the proposed
algorithm and to a known algorithm for post-processing,
SPEA2E/E . Section V shows the experimental study on the
proposed method and describes a Web page associated with the
paper (http://sci2s.ugr.es/FS-MOGFS/) that contains

complementary material to this study. Finally, section VI draws
some conclusions.

II. A PROPOSAL FOR THE LATERAL DISPLACEMENT OF
LINGUISTIC FUZZY PARTITIONS

In [25], a new model of tuning of FRBSs was proposed,
considering the linguistic 2-tuples representation scheme in-
troduced in [33], which allows the lateral displacement of
the support of a label. The main achievement is that, since
the 3 parameters usually considered per label [4], [34]–
[40] are reduced to only 1 symbolic translation parame-
ter, this proposal decreases the learning problem complex-
ity, facilitating the derivation of optimal models [14], [25],
[41]. In any event, an FRBS based on linguistic 2-tuples
could be represented as a classical Mamdani FRBS [42],
[43]. See [25] or the Web page associated with the paper
(http://sci2s.ugr.es/FS-MOGFS/) for a more detailed
description of this tuning approach.

The lateral tuning of MFs allows a good adaptation for each
MF comprising the DB. However, our main aim in this work is
to learn a good, simple and general KB in a fast way. Learning
all the components of the KB together represents a huge search
space when high dimensional problems are considered. To per-
form a good adaptation for each individual MF while learning
the system structure could lead to very complex systems, since
it is difficult to obtain the best parameters for each concrete
system structure. Once relatively good parameters are obtained
for a system structure, convergence starts in this zone and it
is difficult to explore other good configurations (with similar
accuracy) that could represent more simple and interesting
systems.

To solve this problem, we propose the application of a
single lateral displacement of linguistic fuzzy partitions by
applying a common α displacement parameter to all the MFs
at each linguistic variable, i.e., all the MFs are uniformly
displaced depending on the displacement parameter associated
with each linguistic fuzzy partition. In order to avoid very
specific parameters and to preserve the original meanings of
the MFs as much as possible, we propose the use of a short
displacement interval, [−0.1, 0.1) in our case, as the range to
express the relative shifts associated with the labels. In this
way, we can represent the translation of a linguistic partition
S by the 2-tuple notation as,

(S, α), α ∈ [−0.1, 0.1) ⇒ (si, α), ∀si ∈ S.

Fig. 1. Lateral displacement in [-0.1, 0.1] of the whole linguistic partition
S = {s0, s1, s2, s3, s4}.
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Figure 1 shows the lateral displacement of a linguistic parti-
tion S for a concrete α value. Some interesting characteristics
of this approach are:

• The search space is reduced providing a fast convergence.
This makes it easier to explore different granularities that
can represent promising linguistic partitions.

• The constrained variation interval avoids a fine adaptation
of the MFs, allowing only a simple pre-screening of
promising granularities, which avoids the derivation of
very specific systems presenting overfitting.

All these properties facilitate a fast derivation of promising
models based on uniformly distributed strong fuzzy partitions.
Once they are obtained, a fine tuning [6], [7], [25], [37]–
[39] (post processing) could be applied easily depending on
user preference. We do not consider this possibility in this
contribution as we are focused only on the learning stage.

III. A FAST AND SCALABLE MULTI-OBJECTIVE GENETIC
FUZZY SYSTEM FOR EMBEDDED GENETIC DATA BASE

LEARNING

An alternative to learn an entire KB is Iterative Rule Learn-
ing (IRL). However, IRL approaches usually obtain models
with too many rules involving all the system variables. For
this reason, they are usually devoted to obtaining approximate
models, mainly focused on accuracy, in problems with a
reasonable number of variables. An example can be found in
[44] where a three stage learning process is used to obtain
a large set of accurate approximate TSK fuzzy rules. A
methodology with a similar philosophy [45] consists of the
use of a clustering method for first generating a set of initial
TSK local rules in order to subsequently reduce complexity
without affecting accuracy too much. Both approaches allow
TSK models (approximate FRBSs) to be obtained, considering
all the variables in each rule and presenting highly accurate
results in problems with a reasonable number of variables.

In the case of linguistic FRBSs (which need the definition
of a permanent appropriate grid), an efficient way to learn the
whole KB consists of obtaining the DB and RB within the
same process but separately, based on embedded genetic data
base learning [19]–[24], [46]. This method allows us to learn
the most adequate context [20], [46] for each fuzzy partition,
which is necessary in different contextual situations (different
applications).

Even though different optimization techniques could be
considered for the embedded learning of the DB parameters,
in this work, we consider an MOEA for this task, which
allows different coding schemes to be handled within the same
process and to improve both system accuracy and simplicity
(essential to handle high-dimensional problems). To this end,
we can learn different parts of the DB together (number
of labels and parameters), thus considering the relationships
among them.

The learning scheme considered to obtain complete KBs is
comprised of two main components, DB evolutionary learning
and an RB ad-hoc rule learning process. In the following, an
effective design of the learning process is first discussed and
proposed to later present the specific fast MOEA as the most
important part of the proposed technique.

A. Convergence and Scalability Discussion for the Embedded
Algorithm Design

Some problems arise when high-dimensional datasets are
considered (see Figure 2). The two main problems are:

• The large number of evaluations needed to reach conver-
gence. We solve this problem in two ways. By learning
together the number of labels and single partition dis-
placement parameters for each linguistic variable instead
of the three definition points for each MF (reduced search
space). And, by developing an advanced MOEA based
on the well known SPEA2, we ensure an effective trade-
off between exploration and exploitation. This specific
MOEA is able to stop the process when convergence is
reached. In this way, we can ensure a fast but effective
convergence in order to avoid unneeded evaluations.

• Too much time is required to generate the RB. This
problem is related to the previous one. Each evaluation
requires generating an RB based on the coded DB. Even
though a fast ad-hoc rule generation method is going to be
used, this method can take a significant amount of time in
high-dimensional problems. Due to the required number
of evaluations, it poses a problem. We solve this problem
by including a cropping criterion in the RB generation
method, thus avoiding the generation of excessively large
RBs that expend too much time and make no sense in
linguistic fuzzy modeling. Additionally, we enable the
removal of unnecessary variables while evolving, thus
leading to DBs that do not provoke an excessive number
of rules when the RB generation process is applied.

Fig. 2. Learning scheme of the KB.

The two previous problems are directly related to the
learning process. However, a third problem arises in large
scale problems (datasets with a large number of data) since
each evaluation can take a considerable amount of time (see
Figure 2). This problem is greatly reduced by solving the two
previous ones and is also related to data pre-processing [47]
or parallel computation [48], [49]. We address this problem
in Section IV, proposing a general scheme for fast error
estimation.

1) Embedded Genetic Data Base Learning: Taking into
account the previous discussion, the proposed algorithm is
comprised of these two main components:
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• An effective MOEA based on SPEA2 [50] with two min-
imization objectives (system error and number of rules)
in order to learn promising DBs. In order to improve
its search ability and good convergence, this MOEA
also implements such concepts as incest prevention and
restarting [26]. It allows us to define:

– The number of labels per variable, which determine
the corresponding uniformly distributed strong lin-
guistic partitions. We will enable the possibility of
removing unnecessary variables by allowing granu-
larity 1, which means that the corresponding variable
is not considered in the final model.

– The lateral displacements for each linguistic parti-
tion.

• A quick Ad-hoc data-driven method to learn an RB from
each DB definition within the evolutionary process. The
cooperative action of both components allows the whole
definition of the KB (DB and RB) to be obtained. The
simple Wang and Mendel algorithm [51] (WM) will be
considered for this task by adding a rule base cropping
mechanism.

Due to the importance of the cropping mechanism for high-
dimensional data sets, we first explain this approach devoted
to shortening the time spent on evaluating nonsensical KBs.
Then, the MOEA for evolving DBs that integrates this version
of WM is explained in depth.

2) Cropping Mechanism for the Ad-Hoc WM Algorithm:
The WM process is based on the existence of a predefined DB
and a set of input-output training data E = {e1, ..., el, ..., em}
with el = (xl

1, . . . , x
l
N−1, y

l), l ∈ {1, . . . ,m}, m being the
data set size, and N -1 being the number of input variables.
Since, in high-dimensional problems, WM can take a long
time to derive thousands of rules, a cropping criterion has
been added to this method. In this way, the RB is generated
by means of the following steps, integrating the WM cropping
mechanism as the last step of the process:

• Initially the RB is empty and the data randomly ordered
(the data is re-ordered at each generation of the evolu-
tionary algorithm).

• For each example el in E:
1) Generate the rule with the labels best covering the

example (xl
1, ..., x

l
N−1, y

l).
2) Compute the covering degree of the complete rule

(antecedent and consequent).
3) If there is no rule with the same antecedent in the

RB, add the obtained rule to the RB together with
its covering degree.
Otherwise maintain the consequent and covering
degree of the rule with the highest coverage.

4) Stop the process if the RB reaches a limit of 50
rules and mark the RB as incomplete.

In this contribution, we propose a maximum number of
rules of 50 for the rule cropping mechanism, based on some
empirical trials. The smaller this number is, the faster the
method is and the simpler the solutions are. However, the
precision of the models finally obtained is significantly af-
fected with too small values. We detected this phenomenon in

values clearly under 50, making this number a good limit for a
large variety of problems. Higher values or even those that do
not use cropping do not obtain significantly more accurate
solutions in terms of generalizability (see the Web page
associated with the paper for some examples demonstrating
this at http://sci2s.ugr.es/FS-MOGFS/).

B. Proposed Multi-Objective Evolutionary Algorithm

This section presents the proposed MOEA for the embedded
Genetic DB learning, namely FS-MOGFS (Fast and Scalable
Multi-Objective Genetic Fuzzy System). In the following, the
components needed to implement this algorithm are explained
in depth. They are: DB codification, objectives and incomplete
RBs Penalization, initial gene pool, crossover and mutation,
incest prevention, restarting and stopping condition.

1) DB Codification: A double coding scheme (C = C1 +
C2) to represent both parts, granularity and translation pa-
rameters, is considered:

• Number of labels (C1): This part is a vector of integer
numbers with size N (with N representing the number
of linguistic variables) in which the granularities of the
different variables are coded,

C1 = (L1, . . . , LN ) .

Each gene Li represents the number of labels used by
the i-th variable and takes values in the set {2, . . . , 7}.
Additionally, in the case of input variables, it can take
a value equal to 1 to determine that the corresponding
variable is not used.

• Lateral displacements (C2): This part is a vector of
real numbers with size N in which the displacements
of the different variables are coded. In this way, the
C2 part has the following structure (where each gene
is the displacement value of the fuzzy partition of the
corresponding linguistic variable and takes values from
[−0.1, 0.1]),

C2 = (α1, . . . , αN ) .

2) Objectives and Incomplete Rule Bases Penalization:
Once a complete KB is obtained the following two objectives
are minimized for this problem: the number of rules (simplic-
ity) and the Mean Squared Error (accuracy),

MSE =
1

2 · |E|
|E|∑

l=1

(F (xl)− yl)2,

with |E| being the data set size, F (xl) being the output
obtained from the FRBS decoded from a given chromosome
when the l-th example is considered and yl being the known
desired output. The fuzzy inference system considered to
obtain F (xl) is the center of gravity weighted by the matching
strategy as a defuzzification operator and the minimum t-norm
as implication and conjunctive operators.

In order to obtain a complete KB from a given chromosome,
we apply WM to the DB coded by this chromosome, consider-
ing a cropping mechanism. Firstly, in order to decode this DB,
equidistant strong fuzzy partitions are defined considering the
granularity values in C1. Secondly, the MFs of each variable
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are uniformly displaced to their new position considering the
displacement values in C2.

WM is applied to the obtained DB, but it stops if the
RB reaches a maximum of 50 rules and marks the RB as
incomplete in order to penalize its objective values:

• In the case of the number of rules, we estimate the worst
possible value as the product of the number of labels
of the input variables in the decoded DB (a pessimistic
proportional estimation of the number of rules).

• In the case of the MSE, it is multiplied by 2.0 (if an
example is not covered by the incomplete RB, the middle
of the output domain is given as the estimated output).

In this way, these solutions are not a problem for the compu-
tational time and they compete with each other at secondary
Pareto fronts, which is useful for detecting promising com-
binations of selected variables and granularities at the first
stages of the algorithm (i.e., until appropriate combinations
of variables and granularities that allow the derivation of RBs
with a good number of rules arise, which will dominate those
previous incomplete solutions).

3) Initial Gene Pool: The initial population will be com-
prised of two different subsets of individuals:

• In the first subset, each chromosome has the same number
of labels for all the system input variables. In order to
provide diversity in the C1 part, these solutions have been
generated by considering all the possible combinations in
the antecedent part, i.e., from 2 labels to 7 labels in all
the input variables (6 combinations). For each of these
combinations, all the possible combinations are generated
in the consequent part (6 combinations per each input
combination). Additionally, for each of the previous com-
binations two copies are included with different values
in the C2 part. The first one with random values in
[−0.1, 0.0] and the second one with random values in
[0.0, 0.1]. Thus, a total of 72 (6∗6∗2) different individuals
are generated. If there is no space for these solutions,
they are included from the smallest granularities (the
most interesting combinations in principle) to the highest
possible ones.

• In the second subset, we generate random solutions in or-
der to completely fill the population (values in {2, . . . , 7}
for C1 and values in [−0.1, 0.1] for C2).

Finally, except in the cases of problems with less than three
input variables, an input variable v is removed at random,
Lv = 1, in the first individual. This action is repeated until no
more than 10 variables remain in this individual. If the problem
has no more than 10 variables this action is not repeated,
thus only one variable is removed at random. This process
is applied to all the individuals in the population in order to
avoid the generation of solutions that make no sense (because
of their exorbitant number of rules).

4) Crossover and Mutation Operators: The crossover op-
erator depends on the part of the chromosome to which it
is applied. A crossover point is randomly generated and the
classical crossover operator is applied to this point for the C1

part. The Parent Centric BLX (PCBLX) operator [52], which
is based on BLX-α, is applied to the C2 part (Figure 3 depicts

the behavior of these kinds of operators). Specifically, PCBLX
is described as follows. Let us assume that X = (x1 · · ·xn)
and Y = (y1 · · · yn), with xi, yi ∈ [ai, bi] ⊂ � and i = 1 · · ·n,
are two real-coded chromosomes that are going to be crossed.
The PCBLX operator generates the following two offspring:

• O1 = (o11 · · · o1n), where o1i is randomly (uniformly)
generated in the interval [l1i , u

1
i ], with l1i = max{ai, xi−

Ii}, u1
i = min{bi, xi+ Ii}, and Ii =| xi−yi | ·α. In our

case, α has been fixed to 0.3.
• O2 = (o21 · · · o2n), where o2i is randomly (uniformly)

generated in the interval [l2i , u
2
i ], with l2i = max{ai, yi−

Ii} and u2
i = min{bi, yi + Ii}.

ai bi
xi yi

PCBLX BLX

ai bi
xi yiai bi
ci ci

PCBLX BLX

1 2

Fig. 3. Scheme of the behavior of the PCBLX and BLX operators.

In this way, four new individuals are obtained by combining
the two offspring generated from C1 with the two offspring
generated from C2. For each of them, the mutation operator
is applied with probability Pm. The mutation operator de-
creases by 1 the granularity in a gene g selected at random
(Lg = Lg −1) or randomly determines a higher granularity in
{Lg + 1, . . . , 7} with the same probability. No decreasing is
performed when it provokes DBs with only one input variable.
The same gene is also changed at random in C2. Finally, after
considering mutation, only the two most accurate individuals
are taken as descendants.

5) Incest Prevention: An incest prevention mechanism has
been included by following the concepts of CHC [26] and by
only taking into account the C2 parts. Following the original
CHC scheme (for binary coding), two parents are crossed if
their hamming distance divided by 2 is over a predetermined
threshold, L. Since C2 makes use of a real coding scheme, we
have to transform each gene considering a Gray Code (binary
code) with a fixed number of bits per gene (BITSGENE),
that is determined by the system expert. In this way, the
threshold value is initialized as:

L = (#GenesC2 ·BITSGENE)/4.0.

Typically, L is decremented by one when there are no
new individuals in the next generation. In order to step up
the convergence, in our case, L will be decremented by two
at each generation for problems with less than 50 variables.
In order to increase the convergence speed for hard high-
dimensional data sets, this quantity is increased by two for
every 50 additional variables (L = L − 2 − 2 ∗ �N/50	).
Incest prevention represents a way to provide a good trade-off
between exploration and exploitation, avoiding unnecessary
crosses of very similar solutions at the earlier stages of the
algorithm.
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6) Restarting and Stopping Condition: In order to get
away from local optima a restarting mechanism [26] (external
population is forced to be empty) is applied by including the
most accurate individual as a part of the new population and by
generating the remaining individuals at random (taking values
between 1 and the granularity coded in the most accurate
individual for each gene of the C1 part). This mechanism is
applied when the threshold value L is below zero (L is set to
its initial value).

The algorithm ends when a maximum number of evaluations
are reached or when L is below zero for a second time. That,
only two exploration/exploitation stages are needed to reach
convergence.

IV. PARTIAL ERROR COMPUTATION ON LARGE SCALE
DATABASES FOR ELITIST-BASED EVOLUTIONARY

ALGORITHMS: EVOLVING WITH ESTIMATED ERRORS

As stated in the introduction, considering a post-processing
stage on the KBs obtained by the proposed learning algorithm
represents a way to enhance the solutions. To this end, we
will apply a previous MOEA, namely SPEA2E/E [27], [28],
for fine tuning of the MFs and rule selection which will help
to significantly improve the performance of the simple global
structure (initially based on strong fuzzy partitions) while the
complexity is decreased.

While the problem of high dimensionality (high number
of variables) is being solved at a first stage by the proposed
learning algorithm, there are still two interdependant problems
representing a difficult challenge in order to apply this second
post-processing stage: the convergence, imposing a minimum
number of evaluations needed (which is not a problem it-
self if the algorithm is well designed); and the large time
consumed by error computation in large scale datasets (i.e.,
datasets with a large amount of data). Since this last problem
cannot be solved by their own learning or tuning strategy,
and since particularly in the case of tuning it could present
high computational times in some datasets, we propose in this
section a new general mechanism for fast error computation on
large scale datasets. This procedure is based on taking a small
percentage of the training examples to estimate the quantity
of errors of bad solutions, thus only using all the examples to
evaluate good candidate solutions. In what follows, we present
the main steps to apply this fast fitness evaluation procedure,
which is defined in general as Evolving with Estimated Errors
with any kind of Elitist-Based Evolutionary Algorithm, either
single objective or multiobjective elitist-based ones.

The evaluation process is based on the existence of a set
of input-output training data E = {e1, ..., el, ..., em} with
m being the data set size. For a new solution C whose
performance is going to be computed, two sets of solutions
have to be taken into account: the set of elite solutions (one
solution in the case of single objective algorithms) and the
solutions previously evaluated at the current generation. Let re

be the rate of examples used to estimate the error. In any case,
if �re∗m	 ≥ 1000 then re = 1000/m, i.e., no more than 1000
examples have to be considered. The subset of examples Ee

for error estimation is obtained by randomly selecting �re∗m	

new examples at each generation. Thus, Ee is kept fixed for a
complete generation. After each generation the examples are
replaced by random selection from those examples that were
not used in the previous generation. In this way, we promote
a rotation of the selected examples.

Let Selit and Scurrent be the set of elite solutions and the
set of evaluated solutions at the current generation respectively.
The fast error computation process is as follows:

1) Compute the error of solution C in Ee (error estimation)
and assign this error to C.

2) If by taking into account the estimated error and the
solutions in Selit and Scurrent, C is candidate to become
a member of Selit (i.e., it presents the best error in single
objective algorithms or it is a non dominated solution in
multi-objective ones) continue to step 3, otherwise go to
step 4.

3) Perform a complete evaluation by considering the esti-
mated error and the examples in E − Ee. In this way,
Selit (the final output of the algorithm) will always
contain solutions evaluated considering 100% of the
examples.

4) Evaluations = Evaluations + 1 (since this mechanism is
proposed for saving time and not for saving evaluations).

The new mechanism for fast performance/error computation
has been included in the post-processing algorithm proposed
in [27] in order to speed up the fine classic tuning process,
giving way to an algorithm with a low computational expense.
It has also been included within the proposed learning algo-
rithm FSMOGFS in order to improve the computational time
with respect to the number of training data. As regards this
algorithm, we have to clarify that the reduced set of examples
is only used to estimate the errors, i.e., we do not recommend
using this set for the induction of rules. In this way, we always
use all the dataset to obtain the rules and the reduced one only
to compute/estimate the errors.

V. EXPERIMENTS AND ANALYSIS OF RESULTS

In order to evaluate the usefulness of the proposed approach,
namely FSMOGFSe+TUNe, in high-dimensional problems, we
have used 17 real-world problems with different numbers of
variables and cases. Table I sums up the main characteristics
of the different problems considered in this study and shows
the link to the KEEL project webpage [53] from which they
can be downloaded. These problems have been selected from
minor to major complexity, covering a range from 4 to 85
input variables and from 337 to 40,768 examples (even though
each of them is complicated in itself in terms of the modeling
task). The more complex problems are ELV, AIL, MV and
TIC because of the large number of variables and data. To the
best of our knowledge, the problems have never been solved
using GFSs o linguistic fuzzy models. This is due to the long
time needed to evaluate an individual and to the minimum
number of evaluations needed to reach convergence of GFSs.
Moreover, a large number of rules would be easily obtained
for these kinds of problems, which make no sense in linguistic
fuzzy modeling. Then, these problems represent an important
challenge for this algorithm.
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TABLE II
METHODS CONSIDERED FOR THE EXPERIMENTAL STUDY

Ref. Method Type of learning
[51] WM(L) Ad-hoc data-driven rule generation method with L labels
[19] GR-MF Gr. & MF parameters & RB by WM
[20] GA-WM Gr. & Scaling fact. & Domains & RB by WM
[54] GLD-WM Gr. & Individual Lateral MF parameters & RB by WM

- FSMOGFS Gr. & Lateral partition params. & RB by WM
- FSMOGFS+TUN FSMOGFS + (Tuning of MF parameters and rule selection by SPEA2E/E [27])
- FSMOGFSe FSMOGFS including fast error estimation
- FSMOGFSe+TUNe FSMOGFS+TUN including fast error estimation

TABLE I
DATA SETS CONSIDERED FOR THE EXPERIMENTAL STUDY

Problem Abbr. Variables Cases
Electrical Maintenance ELE 4 1056
Auto MPG6 MPG6 5 398
Auto MPG8 MPG8 7 398
Analcat ANA 7 4052
Abalone ABA 8 4177
Stock STP 9 950
Weather Izmir WIZ 9 1461
Weather-Ankara WAN 9 1609
MV Artificial Domain MV 10 40768
Forest Fires FOR 12 517
Mortgage MOR 15 1049
Treasury TRE 15 1049
Baseball BAS 16 337
Elevators ELV 18 16559
Computer-Activity CA 21 8192
Ailerons AIL 40 13750
The Insurance Company TIC 85 9822

Available at http://www.keel.es/

This section is organized as follows:
• First, we describe the experimental set-up and we intro-

duce the information shown at the Web page associated
to the paper in Section V-A.

• Second, we compare the most accurate solutions of our
proposal with respect to three well-known accuracy-
oriented single-objective related algorithms in Section V-
B.

• Third, we compare both stages including or not the fast
error computation procedure in terms of the performance
in Section V-C.

• Fourth, we show the computational costs of the different
algorithms and we discuss the scalability of the proposed
approach in Section V-D.

• Finally, in Section V-E, for each dataset we plot the
average Pareto fronts and the average results of the single
objective based approaches. These plots provide reliable
information on the form and characteristics of the Pareto
fronts obtained, allowing us to check the trend and the
kind of correlation of the training and the test errors.

A. Experimental Framework

This section describes the experimental set-up, including a
brief description of the methods and the non-parametric statis-
tical tests considered for comparisons. It then introduces the

contents of the Web page with additional material associated
with the paper.

1) Experimental Set-Up: In order to evaluate the effective-
ness of the proposed method designed for fast learning and
its applicability to large scale problems (with and without a
tuning stage; with and without fast error estimation), three
well-known single objective-based methods for the learning of
accurate KBs have been considered for comparisons, GR-MF
[19], GA-WM [20] and a more recent and effective approach,
namely GLD-WM [54]. These methods are also based on
embedded genetic data base learning. Further, WM [51] is
also considered as a reference since all of these approaches
are based on it. A brief description of the studied methods
is presented in the next three paragraphs while Table II
summarizes their main characteristics:

• WM [51] algorithm is considered as a simple rule genera-
tion method to quickly obtain RBs from a predefined DB.
This method is considered as a reference since the studied
algorithms are devoted to obtaining good fuzzy partitions
for the application of WM. The initial linguistic partitions
for this method are comprised by L linguistic terms with
uniformly distributed triangular MFs giving meaning to
them. In this way, we will refer to this method as WM(L),
with L taking values in {3,5,7}.

• On the other hand, three different GFSs devoted to obtain-
ing a complete KB (by embedded genetic data base learn-
ing) are considered for comparisons. Both are accuracy
oriented single objective-based algorithms whose main
objective is to obtain FRBSs as accurately as possible.
The first one, Gr-WM [19], learns the granularity for
each fuzzy partition and the MFs parameters (their three
definition points). The second one, GA-WM [20], learns
the granularity, scaling factors and the domains (i.e.,
the variable domain or working range to perform fuzzy
partitioning) for each system variable. Both methods
obtain the RB by means of the WM algorithm. The third
one, GLD-WM [54], has been proposed more recently
for an effective learning of the KB by obtaining the
granularity and the individual lateral displacements of the
MFs (i.e., fine parameter adaptation), which will have the
benefit of obtaining higher accuracy in the results.

• The proposed method, namely FSMOGFS (see Section III)
or FSMOGFSe when it includes the fast error estimation
mechanism (see Section IV), has less freedom degrees
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than the other three genetic approaches selected for com-
parisons, which should obtain the most accurate results
from a theoretical viewpoint. Therefore, they represent
a good accuracy goal for the proposed algorithm at the
first stage in those problems in which they are still
applicable (particularly in the case of GLD-WM, which
was more recently designed to obtain as accurate as pos-
sible linguistic models). The addition of a post-processing
technique, namely FSMOGFS+TUN or FSMOGFSe+TUNe

when it includes the fast error estimation mechanism,
gives way to a new procedure/method working at two
stages, which presents the same freedom degrees as the
approaches selected for comparisons and should obtain
the best results.

In all the experiments, we adopted a 5-fold cross-validation
model, i.e., we randomly split the data set into 5 folds, each
containing 20% of the patterns of the data set, and used four
folds for training and one for testing 1. For each of the five
partitions, we executed six trials of the algorithms (6 different
seeds). For each data set, we therefore consider the average
results of 30 runs. In the case of FS-MOGFS, the average
values are calculated considering the most accurate solution
from each obtained Pareto front. Our main aim following this
approach is to have the possibility of statistically comparing
the single objective approaches (only accuracy) with the most
accurate solution found by the proposed MOEA.

In order to assess whether significant differences exist
among the results, we adopt statistical analysis [29]–[32] and
in particular non-parametric tests, according to the recom-
mendations made in [29] and [30], where a set of simple,
safe and robust non-parametric tests for statistical comparisons
of classifiers has been analyzed. We will employ different
approaches for multiple comparison, including Friedman’s test
[55], Iman and Davenport’s test [56] and Holm’s method
[57]. For a detailed description of these tests and for de-
tailed explanation of the use of non-parametric tests for data
mining and Computational Intelligence see the Website at
http://sci2s.ugr.es/sicidm/. To perform the tests, we
use a level of confidence α = 0.1.

The values of the input parameters considered by GR-MF,
GA-WM and GLD-WM are: population size of 61, 100,000
evaluations, 0.6 as crossover probability and 0.2 as muta-
tion probability per chromosome. In the case of the SPEA2
based methods (FSMOGFS, FSMOGFSe, FSMOGFS+TUN and
FSMOGFSe+TUNe), we have considered an external popu-
lation size of 61 (the same size used by the named single
objective algorithms) and a proportion of 1/3 rounded to 200
as standard population size. The remaining parameters for
them are: a maximum of 100,000 evaluations, 0.2 as mutation
probability (crossover is always applied in SPEA2), 30 bits
per gene for the Gray codification, re = 0.2 for the fast
error computation technique, and the set {2, . . . , 7} as possible
numbers of labels in all the system variables for the learning
approaches. The same set {2, . . . , 7} has been considered for

1The corresponding data partitions (5-fold) for these
datasets are available at the KEEL project webpage [53]:
http://sci2s.ugr.es/keel/datasets.php

GR-MF, GA-WM and GLD-WM after comparing this configu-
ration with the original configuration indicated by the authors
in the corresponding papers [19], [20], [54] ({3, . . . , 9}). See
this study as complementary material in the associated Web
page at (http://sci2s.ugr.es/FS-MOGFS/).

2) Web Page Associated with the Paper: In order to provide
additional material to the paper content, we have developed a
Web page at (http://sci2s.ugr.es/FS-MOGFS/) in which
we have included the following information:

• The data sets’ partitions employed in the paper. These
partitions can be found in a table together with the main
characteristics of the used data sets.

• An Excel file with the complete tables of results. We
include an Excel file with the training and test results for
all the algorithms so that any interested researcher can use
them to include their own results and extend the present
comparison. A figure with the average Pareto fronts for
all the studied datasets.

• Some examples of the influence of the lateral displace-
ments and the rule cropping strategy in the proposed
method.

• Some representative models in some of the data sets con-
sidered are also depicted to graphically show the kinds of
models obtained by the proposed algorithm. Additionally,
we have depicted the KB of the most accurate solution
from the first data partition and seed in all the datasets
and included them in a zip file.

• The results of GR-MF, GA-WM and GLD-WM with the
sets {2, . . . , 7} and the original configuration indicated
by the authors in the corresponding papers [19], [20],
[54], {3, . . . , 9}, as possible numbers of labels in all
the system variables. We have included these results and
the assessment of Wilcoxon’s Signed-Ranks test [58],
[59] for pair-wise comparison in favour of versions with
{2, . . . , 7} in both, test error and number of rules.

• A description of Wilcoxon’s Signed-Ranks test [58]–[60]
and an explanation on how to apply it in the regression
framework.

• An introduction to the lateral tuning of MFs [25] as
preliminary information to the paper.

B. Results and Analysis of the Most Accurate Solution
The results obtained by the studied methods are shown in

Table III. This table is grouped in columns by algorithms and it
shows the average of the results obtained by each algorithm in
all the studied data sets. For each one, the first column shows
the average number of rules and used variables (R/V). The
second and third columns show the average MSE in training
and test data (Tra./Tst.) together with their respective standard
deviations (SDs). No values are shown with GR-MF, GA-
WM and GLD-WM in MV, ELV, CA, AIL and TIC because
the large number of variables and cases provoked memory
overflow errors after several hours running without finishing
the evaluation of the initial population (some memory issues
were improved in these methods to solve this problem, which
helped to show results in at least some of the data sets with
more than 7 variables, but it was impossible to run them in
these problems).
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TABLE III
AVERAGE RESULTS OF THE DIFFERENT ALGORITHMS IN COMPLEXITY AND ACCURACY (TRAINING/TEST). RESULTS IN THIS TABLE (TRA./TST. AND SD)

SHOULD BE MULTIPLIED BY 105 , 10−5 OR 10−8 IN THE CASE OF BAS, ELV OR AIL RESPECTIVELY. GR-MF, GA-WM AND GLD-WM WERE NOT

APPLICABLE TO MV, ELV, CA, AIL AND TIC BECAUSE OF THE LARGE NUMBER OF VARIABLES AND CASES PROVOKED MEMORY OVER FLOW ERRORS.

DATASET Measure WM(3) WM(5) WM(7) GR-MF GA-WM GLD-WM FSMOGFSe FSMOGFSe+TUNe

(V/Size) R/V Tra. Tst. R/V Tra. Tst. R/V Tra. Tst. R/V Tra. Tst. R/V Tra. Tst. R/V Tra. Tst. R/V Tra. Tst. R/V Tra. Tst.

ELE Mean 27/4 192241 192647 65/4 56135 56359 103/4 53092 55495 97/4 16645 18637 47/4 17230 18977 33/4 11483 13384 9/2 16153 16338 8/2 9665 10548
(4/1056) SD 9658 14436 1498 4685 1955 9452 2319 3386 2501 3195 1085 1978 450 1162 823 1150

MPG6 Mean 43/5 13.552 14.649 115/5 4.136 6.096 194/5 2.642 6.382 243/5 1.423 28.93 186/5 1.879 8.824 82/5 2.294 4.387 39/3 3.894 4.866 20/3 2.860 4.562
(5/398) SD 1.239 3.204 0.317 2.416 0.11 2.126 0.073 8.633 0.235 6.079 0.249 0.899 0.212 0.644 0.218 0.714

MPG8 Mean 71/7 12.709 13.739 161/7 4.143 7.195 223/7 2.372 9.811 262/7 1.356 49.36 214/7 1.563 15.22 135/7 1.709 4.782 43/3 3.885 4.695 23/3 2.757 4.747
(7/398) SD 1.885 2.528 0.317 2.731 0.152 1.646 0.104 16.2 0.183 9.13 0.170 1.445 0.312 1.168 0.342 1.235

ANA Mean 72/7 0.187 0.189 124/7 0.027 0.03 171/7 0.012 0.017 148/7 0.005 0.017 150/7 0.003 0.008 92/7 0.006 0.008 23/3 0.006 0.006 10/3 0.003 0.003
(7/4052) SD 0.001 0.005 0 0.002 0 0.003 0.001 0.008 0.001 0.005 0.001 0.004 0.000 0.001 0.000 0.001

ABA Mean 68/8 8.407 8.422 199/8 3.341 3.474 368/8 3.057 3.268 498/8 2.358 2.885 143/8 2.433 2.549 31/8 2.487 2.545 15/3 2.670 2.708 8/3 2.445 2.509
(8/4177) SD 0.443 0.545 0.13 0.247 0.084 0.185 0.052 0.263 0.052 0.163 0.078 0.170 0.139 0.216 0.114 0.184

STP Mean 123/9 8.852 8.951 265/9 1.576 1.624 378/9 0.611 1.488 343/9 0.4 1.543 344/9 0.389 2.192 217/9 0.299 0.435 43/3 1.393 1.456 23/3 0.764 0.912
(9/950) SD 0.508 1.193 0.09 0.09 0.029 1.634 0.019 2.484 0.017 3.168 0.025 0.067 0.077 0.159 0.139 0.181

WIZ Mean 105/9 6.944 7.368 399/9 3.107 5.961 652/9 2.036 10.56 331/9 1.176 9.602 218/9 1.233 3.529 107/9 0.926 1.150 17/2 1.519 1.571 10/2 0.929 1.011
(9/1461) SD 0.72 0.909 0.27 2.498 0.048 2.197 0.077 8.879 0.065 4.023 0.041 0.123 0.094 0.168 0.057 0.164

WAN Mean 156/9 16.063 16.393 457/9 4.878 6.305 853/9 2.692 6.538 397/9 1.406 7.381 279/9 1.522 2.82 133/9 1.111 2.075 11/2 1.897 2.151 8/2 1.441 1.635
(9/1609) SD 0.961 1.7 0.405 1.052 0.11 2.101 0.067 5.404 0.065 2.825 0.077 1.407 0.208 0.916 0.178 0.582

FOR Mean 246/12 2030 3793 375/12 1435 34235 401/12 340 1E+05 396/12 113 3300 395/12 47 3693 377/12 49 3847 35/3 1892 2449 10/3 1418 2628
(12/517) SD 531 2340 505 4356 147 4708 17 2207 24 2787 18 2714 505 2146 539 2108

MOR Mean 78/15 0.985 0.973 199/15 0.128 0.134 257/15 0.095 0.137 209/15 0.03 0.176 160/15 0.02 0.093 78/15 0.016 0.022 11/2 0.033 0.034 7/2 0.016 0.019
(15/1049) SD 0.129 0.09 0.005 0.012 0.006 0.056 0.002 0.28 0.003 0.147 0.002 0.005 0.004 0.007 0.003 0.006

TRE Mean 75/15 1.636 1.631 196/15 0.401 0.405 261/15 0.17 0.176 189/15 0.066 0.144 136/15 0.045 0.064 70/15 0.033 0.045 15/3 0.046 0.052 9/3 0.034 0.044
(15/1049) SD 0.121 0.181 0.014 0.055 0.009 0.017 0.011 0.191 0.007 0.046 0.005 0.015 0.005 0.010 0.003 0.015

BAS Mean 181/16 1.921 3.695 253/16 0.782 6.198 264/16 0.316 10.6 262/16 0.255 12.44 262/16 0.202 11.71 244/16 0.138 3.610 28/6 1.706 2.483 17/6 1.413 2.613
(16/337) SD 0.109 0.739 0.047 0.686 0.006 1.339 0.02 2.177 0.031 2.562 0.014 0.621 0.124 0.372 0.197 0.585

MV Mean 3812/10 12.404 12.62 24472/10 4.031 5.019 30616/10 1.963 24.83 16/3 0.159 0.160 14/3 0.158 0.158
(10/40768) SD 0.245 0.228 0.027 0.076 0.002 1.352 0.031 0.032 0.038 0.037

ELV Mean 530/18 1.723 1.73 4132/18 1.141 1.215 7769/18 0.995 1.461 15/3 1.000 1.000 8/3 0.900 0.900
(18/16559) SD 0.109 0.064 0.018 0.022 0.008 0.038 0.100 0.100 0.100 0.100

CA Mean 425/21 40.384 40.956 1539/21 8.449 12.44 2774/21 5.327 19.14 29/5 6.201 6.320 14/5 5.021 5.216
(21/8192) SD 3.115 4.637 0.351 1.148 0.06 2.807 0.455 0.489 0.422 0.483

AIL Mean 1074/40 3.539 3.581 6581/40 2.508 2.995 8593/40 1.381 4.678 32/4 2.343 2.367 15/4 1.955 2.000
(40/13750) SD 0.225 0.259 0.025 0.084 0.011 0.198 0.222 0.236 0.268 0.274

TIC Mean 5802/85 0.015 0.05 6598/85 0.007 0.09 6732/85 0.007 0.098 43/7 0.027 0.028 20/7 0.027 0.028
(85/9822) SD 0 0.001 0 0.001 0 0 0.000 0.002 0.000 0.002

As stated above, we have included WM as a reference on
different fixed granularities. By contrast, we want to compare
all the studied GFSs in order to determine whether or not
the proposed approach with and without tuning is working
properly in terms of the test error and the number of rules.
We do not include the methods without fast error estimation
here since we are proposing this mechanism based on the fact
that the results are almost the same and in order to speed up
the process with these kinds of complex problems. In any case,
since their counterparts without fast error computation are also
a good alternative, they will also be analyzed in the following
subsections.

Focusing on the number of rules, it is clear that the proposed
algorithms have the advantage since they consider feature
selection. What is remarkable about the effect of the post-
processing mechanism is that it is able to significantly reduce
the number of rules while the system error is decreased.

In case of the test error, we adopt a statistical analysis.
Since we will compare more than two algorithms together,
we use non-parametric tests for multiple comparison. In order

to perform a multiple comparison, it is necessary to check
whether any of the results obtained by the algorithms present
any inequality. In the case of finding some we can find out,
by using a post-hoc test, which algorithms’ partners’ average
results are dissimilar. We will use the results obtained in Tst.,
defining the control algorithm as the best performing algorithm
(which obtains the lowest value of ranking, computed through
a Friedman test [55]). In order to test whether significant
differences exist among all the mean values we use Iman and
Davenport’s test [56]. Finally, we use Holm’s [57] post-hoc
test to compare the control algorithm with the remainder.

TABLE IV
RANKINGS THROUGH FRIEDMAN’S TEST ON TST APPLYING ONE OR BOTH

STAGES OF THE PROPOSED ALGORITHM.

Only first stage: FSMOGFSe Complete algorithm: FSMOGFSe+TUNe

Algorithm Ranking on Tst. Algorithm Ranking on Tst.
GLD-WM 1.58 FSMOGFSe+TUNe 1.17

FSMOGFSe 1.75 GLD-WM 2.08
GA-WM 3.0 GA-WM 3.08
GR-MF 3.67 GR-MF 3.67
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TABLE V
HOLM’S POST-HOC TEST FOR THE STUDIED METHODS WITH α = 0.1 ON Tst. APPLYING ONE OR BOTH STAGES OF THE PROPOSED ALGORITHM

Control Algorithm: GLD-WM Control Algorithm: FSMOGFSe+TUNe

i Algorithm z p α/i Hypothesis i Algorithm z p α/i Hypothesis
3 GR-MF 4.74 7.72E-5 0.03 Rejected 3 GR-MF 4.74 2.10E-6 0.03 Rejected
2 GA-WM 3.64 0.007 0.05 Rejected 2 GA-WM 3.64 2.76E-4 0.05 Rejected
1 FSMOGFSe 1.74 0.75 0.1 Accepted 1 GLD-WM 1.74 0.082 0.1 Rejected

Comparison Comparison
5 FSMOGFSe vs. GR-MF 3.637 2.762E-4 0.02 Rejected 4 GLD-WM vs. GR-MF 3.004 0.003 0.025 Rejected
3 FSMOGFSe vs. GA-WM 2.372 0.018 0.033 Rejected 3 GLD-WM vs. GA-WM 1.897 0.058 0.033 Accepted

Table IV shows the rankings of the different methods
considered in this study when we only apply the first stage
of our algorithm (first study on FSMOGFSe, left part of
the table) and when we apply both stages (second study
on FSMOGFSe+TUNe, right part of the table). ImanDaven-
port’s test tells us that significant differences exist among
the observed results in all data-sets, with p-values (8.974E-
7 and 1.622E-9) on Tst for both studies respectively. The best
rankings are obtained by GLD-WM when only the first stage
is considered and by FSMOGFSe+TUNe when the complete
algorithm is considered.

We now apply Holm’s test to compare the best ranking
method with the remaining methods for each study, and to
obtain the results on FSMOGFSe VS. GR-MF and FSMOGFSe

VS. GA-WM (for the first study) and on GLD-WM vs. GR-MF
and GLD-WM vs. GA-WM (for the second study). Table V
presents these results. In this table, the algorithms are ordered
with respect to the z-value obtained for each study.

In the case of only using the first stage of the algorithm
(first study in the left part of the table), Holm’s test rejects the
hypothesis of equality with the rest of the methods (p < α/i)
but FSMOGFSe in Tst., indicating that GLD-WM outperforms
the previous approaches but not FSMOGFSe. Further, when we
check the statistical results with the same test on FSMOGFSe

VS. GR-MF and FSMOGFSe VS. GA-WM in the bottom part
of table V it is clear that FSMOGFSe also outperforms GR-MF
and GA-WM. From this analysis we can state that FSMOGFSe

outperforms the previous methods but GLD-WM in accuracy
while, of course, it outperforms all of them in complexity and
scalability.

In the case of using the complete algorithm (second study in
the right part of the table), Holm’s test rejects the hypothesis of
equality with the rest of the methods in Tst. (p < α/i). From
this analysis we can state that FSMOGFSe+TUNe outperforms
the previous methods in accuracy and, of course, in complexity
and scalability. On the other hand, we can check in the
bottom part of table V that GLD-WM outperforms GR-MF
and is very close to outperforming GA-WM (the hypothesis
is accepted because of the low quantity of datasets available
in the regression framework, which makes it more difficult to
assess the differences in this case).

Analyzing the results shown in Table III and the statistical
evidence obtained we can highlight that:

• FSMOGFSe+TUNe obtained the best results in the test
error with FSMOGFSe being the key point in these results
and TUNe a good complementary stage. Even though
FSMOGFSe has been designed to obtain simpler models it

is still preferable with respect to the previous approaches
(obtaining not so great results in accuracy with respect to
GLD-WM but simpler solutions based on strong equally
distributed fuzzy partitions).

• The larger the granularities are, and therefore the more
rules obtained, the more the overfitting increases. It is
particularly clear in the most complex data sets when
taking into account the results from WM (granularities
from 3 to 7).

• Both single objective-based GFSs (GR-MF and GA-WM)
overfit in most of the data sets, even though we selected
the versions with the best test values to give them the
possibility of competing in the best conditions. This is
probably due to the low proportion of data with respect
to the number of variables in these kinds of large scale
data sets. However, this is not the case with GLD-
WM (one of the state-of-the-art algorithms in terms of
accuracy for linguistic fuzzy modeling), which presents
very competitive results in both, training and test sets.

To sum up, the proposed method obtained very simple
solutions in general without significant overfitting, i.e., highly
correlated values in training and test in all the data sets before
and after fine tuning of the MFs. Another interesting aspect
of the algorithm is the number of variables it considers in the
different data sets (a value of around 3-4 in most of them). In
this sense, and taking into account that MPG6 is the same data
set as MPG8 without the two variables removed by experts, it
seems that the method is good for removing these variables,
obtaining practically the same results in number of rules and
accuracy. Then, the proposed approach seems good even in the
case that variables without interesting additional information
are initially included in the data sets. This property makes the
method scalable for high-dimensional problems, for which it
is still able to obtain good solutions from the point of view of
the accuracy-interpretability trade-off.

C. Analysis of the Use of Partial Performance Computation

In this section we present the results of the different versions
of the proposed technique in order to check the effects of the
fast error estimation mechanism. These results in the first stage
(only fast learning) and in the complete process (including
post-processing) are shown in Table VI separately. The best
results are shown in boldface for each of the parts.

Taking into account the results in this table, we can observe
that very similar results were obtained in the number of
rules and in both kinds of errors for both parts. In any
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TABLE VI
AVERAGE RESULTS OF THE PROPOSED ALGORITHMS WITHOUT AND WITH FAST FITNESS COMPUTATION IN COMPLEXITY AND ACCURACY

(TRAINING/TEST). RESULTS IN THIS TABLE (TRA./TST. AND SD) SHOULD BE MULTIPLIED BY 105 , 10−5 OR 10−8 IN THE CASE OF BAS, ELV OR AIL

RESPECTIVELY.

Data set Measure FSMOGFS FSMOGFSe FSMOGFS+TUN FSMOGFSe+TUNe

NAME(V/Size) R/V Tra. Tst. R/V Tra. Tst. R/V Tra. Tst. R/V Tra. Tst.

ELE4/1056 Mean 10/2 16018 16083 9/2 16153 16338 9/2 8803 9842 8/2 9665 10548

SD 314 1108 450 1162 739 1391 823 1150

MPG65/398 Mean 38/3 3.85 4.82 39/3 3.894 4.866 22/3 2.778 4.548 20/3 2.860 4.562

SD 0.198 0.772 0.212 0.644 0.220 1.047 0.218 0.714

MPG87/398 Mean 40/3 3.827 4.453 43/3 3.885 4.695 24/3 2.725 4.381 23/3 2.757 4.747

SD 0.274 1.049 0.312 1.168 0.294 0.909 0.342 1.235

ANA7/4052 Mean 25/3 0.006 0.006 23/3 0.006 0.006 17/3 0.003 0.003 10/3 0.003 0.003
SD 0 0.001 0.000 0.001 0.000 0.001 0.000 0.001

ABA8/4177 Mean 17/3 2.682 2.697 15/3 2.670 2.708 10/3 2.393 2.454 8/3 2.445 2.509

SD 0.149 0.204 0.139 0.216 0.092 0.163 0.114 0.184

STP9/950 Mean 44/3 1.361 1.46 43/3 1.393 1.456 25/3 0.724 0.892 23/3 0.764 0.912

SD 0.095 0.156 0.077 0.159 0.112 0.154 0.139 0.181

WIZ9/1461 Mean 23/3 1.469 1.567 17/2 1.519 1.571 15/3 0.867 1.011 10/2 0.929 1.011
SD 0.08 0.223 0.094 0.168 0.040 0.177 0.057 0.164

WAN9/1609 Mean 12/2 1.81 1.823 11/2 1.897 2.151 11/2 1.313 1.581 8/2 1.441 1.635

SD 0.06 0.143 0.208 0.916 0.174 0.580 0.178 0.582

FOR12/517 Mean 34/4 1873 2254 35/3 1892 2449 33/3 1593 2406 10/3 1418 2628

SD 497 2265 505 2146 570 2161 539 2108

MOR15/1049 Mean 12/2 0.032 0.033 11/2 0.033 0.034 9/3 0.015 0.018 7/2 0.016 0.019

SD 0.005 0.008 0.004 0.007 0.004 0.005 0.003 0.006

TRE15/1049 Mean 17/3 0.046 0.049 15/3 0.046 0.052 11/3 0.030 0.040 9/3 0.034 0.044

SD 0.004 0.01 0.005 0.010 0.004 0.012 0.003 0.015

BAS16/337 Mean 33/6 1.673 2.575 28/6 1.706 2.483 21/6 1.305 2.699 17/6 1.413 2.613
SD 0.103 0.521 0.124 0.372 0.172 0.620 0.197 0.585

MV10/40768 Mean 20/3 0.531 0.531 16/3 0.159 0.160 16/3 0.159 0.160 14/3 0.158 0.158
SD 0.06 0.062 0.031 0.032 0.031 0.032 0.038 0.037

ELV18/16559 Mean 21/3 1.024 1.025 15/3 1.000 1.000 8/3 0.900 0.900 8/3 0.900 0.900
SD 0.065 0.063 0.100 0.100 0.200 0.200 0.100 0.100

CA21/8192 Mean 28/5 6.046 6.135 29/5 6.201 6.320 15/5 4.763 5.063 14/5 5.021 5.216

SD 0.456 0.474 0.455 0.489 0.404 0.760 0.422 0.483

AIL40/13750 Mean 33/4 2.305 2.308 32/4 2.343 2.367 20/4 1.864 1.905 15/4 1.955 2.000

SD 0.21 0.206 0.222 0.236 0.221 0.233 0.268 0.274

TIC85/9822 Mean 44/8 0.027 0.027 43/7 0.027 0.028 25/7 0.026 0.027 20/7 0.027 0.028

SD 0 0.001 0.000 0.002 0.000 0.002 0.000 0.002

case, we can find some slight differences. FSMOGFSe and
FSMOGFSe+TUNe show a small increment in the test error
with respect to their counterparts. Besides, they also show
a small decrement in the number of rules, showing that the
proposed mechanism helps to obtain models with a little bit
less complexity (in all the 17 datasets for the last stage) and
a little bit less accuracy (in 12 of the 17). In any event, by
checking one by one the results in each part of the table and
taking into account the differences shown in Table III for
the different methods, we can consider that the mechanism
is very useful in both stages, FSMOGFSe and TUNe, since it
allows almost equivalent results with respect to the original
counterparts to be obtained even though FSMOGFSe+TUNe

also includes the slight differences derived from FSMOGFSe.

D. Computational Times and Scalability of the Proposed
Algorithm

With respect to scalability it is very important to analyze
the running times of the different methods (these times were

obtained in an Intel Core 2 Quad Q9550 2.83GHz, 8 GB RAM
by using only one of the four cores). Table VII shows the
running times of the fast WM algorithm (Ad-Hoc method)
and its cropped version. Of course, WM is practically instan-
taneous in many of the datasets. However, it is very interesting
to see the times this simple method can take in the case
of MV, ELV, CA, AIL and TIC (more than one minute in
most of the cases). Since each individual evaluation in the
genetic approaches is based on running WM, it represents a
time computing problem for the embedded algorithms. This
is one of the main reasons why we propose the rule cropping
strategy included in FSMOGFS, which is needed to ensure a
maximum computing time for the WM module independently
of the number of cases in any data set (only lineal with respect
to the number of variables). In fact, it can be seen from the
table that while the original version is mainly dependent on the
number of examples, the cropped version is more dependent on
the number of variables. The strong time reductions show why
the cropping strategy is able to apply these kinds of techniques
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TABLE VII
AVERAGE TIME OF A RUN OF WM AND ITS CROPPED VERSION — MINUTES AND SECONDS (M:S) - (S’)

Method MV ELV CA AIL TIC

WM(3) 00:47 - 0.0003 00:05 - 0.0002 00:18 - 0.0009 00:16 - 0.0007 01:55 - 0.0049
WM(5) 05:10 - 0.0003 00:39 - 0.0006 00:19 - 0.0009 01:46 - 0.0018 02:09 - 0.0062
WM(7) 06:12 - 0.0005 01:10 - 0.0006 00:35 - 0.0010 02:13 - 0.0019 02:10 - 0.0068

TABLE VIII
AVERAGE TIME OF A RUN OF THE DIFFERENT GFSS — HOURS, MINUTES AND SECONDS (H:M:S)

Method ELE MPG6 MPG8 ANA ABA STP WIZ WAN FOR MOR TRE BAS MV ELV CA AIL TIC

GR-MF 09:30 08:01 23:43 2:58:27 3:26:09 32:50 58:22 1:19:12 17:40 41:06 40:47 13:29 - - - - -
GA-WM 07:27 07:49 10:45 1:46:41 2:02:47 34:43 43:34 1:16:59 21:03 40:29 39:52 16:46 - - - - -
GLD-WM 09:48 04:22 13:04 1:32:41 1:14:35 39:18 44:16 53:18 37:06 40:25 42:58 32:09 - - - - -
FSMOGFS 00:08 00:07 00:10 00:50 01:38 00:24 00:35 00:33 00:26 00:38 00:38 00:22 17:31 12:18 08:28 24:14 29:28
FSMOGFS+TUN 02:05 01:46 01:49 09:45 12:10 03:32 04:20 03:51 01:29 02:09 02:24 01:55 2:01:51 54:54 42:18 43:19 59:19
FSMOGFSe 00:04 00:04 00:23 00:23 00:37 00:12 00:14 00:14 00:17 00:16 00:16 00:11 04:59 03:38 02:45 05:17 09:23
FSMOGFSe+TUNe 00:42 01:00 01:31 05:17 03:54 01:31 01:08 00:57 01:07 00:38 00:46 00:58 12:16 09:39 11:55 10:02 20:45

TABLE IX
AVERAGE NUMBER OF COMPLETE EVALUATIONS PER RUN OF THE PROPOSED APPROACH WITHOUT AND WITH PARTIAL EVALUATIONS (EVOLVING WITH

ESTIMATED ERRORS)

Method∗ ELE MPG6 MPG8 ANA ABA STP WIZ WAN FOR MOR TRE BAS MV ELV CA AIL TIC

FSMOGFS 4094 4868 6466 6432 7026 7816 7805 7784 9970 12374 12367 12947 8706 14608 16651 30588 32191
FSMOGFS+TUN 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000
FSMOGFSe 4085 4877 6441 6429 7028 7795 7786 7787 9979 12367 12317 12960 8711 14592 16682 30641 32287
FSMOGFSe+TUNe 30349 47398 40319 46799 38121 41673 33883 32268 64323 34051 35994 50598 31960 42736 43200 55383 67857

∗ (a maximum of 100000 individuals have been evaluated in all the fourth algorithms)

within an evolutionary process.
On the other hand, the running times of the studied GFSs are

shown in Table VIII. In this case, except for the very complex
data sets, the proposed method is able to obtain solutions
taking only seconds or around 1 minute. The times for the
remaining data sets are also very good, taking into account
the kinds of problems they represent and the evolutionary
nature of this algorithm. From these times we can highlight
the following facts:

• No more than 30 minutes in the worst case of FSMOGFS
and no more than 2 hours and 2 minutes in the worst
case of FSMOGFS+TUN. This last is obtained in MV
with 40,768 examples, thus showing a significant increase
that is dependent on the large number of examples due
to the additional time required by the second stage for
fine tuning.

• No more than 10 minutes in the worst case of FSMOGFSe

and no more than 21 minutes in the worst case of
FSMOGFSe+TUNe. As fast error estimation is consid-
ered, the large quantity of data of the MV problem
does not affect the overall two stage approach, solving
this problem in 12 minutes and 16 seconds, which in
this case represents 89.83% with respect to not using
the mechanism. In fact, FSMOGFSe+TUNe needs less
time than the initial learning algorithm without tuning,

FSMOGFS, in the most complex datasets (MV, ELV, AIL
and TIC).

In order to show the real reason for the great time savings,
Table IX shows the average number of evaluations per run
in the different versions of the proposed approach. For the
learning stage we will compute the number of evaluations by
adding 1 per solution evaluated in all cases FSMOGFS and
FSMOGFSe. In this way, in the case of using post-processing
as a second stage, this will proceed from the number of
evaluations that the learning process (first stage) consumed.
In the case of FSMOGFSe+TUNe, in order to show how the
fast error computation affects the times, we consider in the
table the total number of examples used throughout the process
(until reaching the stopping criterion) divided by the total
number of training examples to count part of the second stage,
TUNe. This is only to show the method’s behavior since for
the stopping criterion we always consider 100,000 trials, i.e.,
evaluated individuals independently of the kind of evaluation
(partial or complete).

E. Analysis of the Pareto fronts: Average solutions

This section analyzes the performance of the proposed
algorithm in the remaining solutions that it obtains in the
Pareto fronts. To do that, we plot the average Pareto fronts
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Fig. 4. Average Pareto fronts obtained by FSMOGFSe and FSMOGFSe+TUNe and average solutions obtained by GR-MF, GA-WM and GLD-WM on the
different data sets.

composed by the average values of the obtained solutions in
each of the thirty Pareto fronts. The first average solution that
we want to plot is the one shown in the previous sections,
i.e., the average of the most accurate solutions obtained in
each of the thirty Pareto fronts. The second average solution
is obtained in the same way but considering the second most
accurate solutions in each of the thirty Pareto fronts. This
process is repeated until no more solutions remain in any
of the thirty Pareto fronts. We should remark that there will
be a moment at which any of the Pareto fronts will have no
more solutions to compute the average of 30 solutions, i.e., the
i− th most accurate solution is not available in all the Pareto
fronts. In this case, the i − th average solution is calculated
considering the i−th solutions of those Pareto fronts in which
these solutions are available.

We can find then two different parts in the average Pareto
fronts, the statistically trusted zone (the one ensuring that there
will be those solutions in all the Pareto fronts) and the non
statistically trusted zone (the one showing that some other
solutions are available in some of the thirty runs performed).
Thus, we can analyze the correlation and differences between
the different solutions obtained by the FS-MOGFS algorithm
in terms of the Pareto fronts obtained with the average values,
which provide more reliable information than the solutions
obtained in a simple run. This method represents an extension
of the idea of analyzing the most accurate solutions in the
Pareto fronts (first, second, . . . ) presented in [7], a post-
processing mechanism where the search is focused on the most
accurate solutions only. The average Pareto fronts represent

what a user should statistically expect when he is choosing
the i− th most accurate solution obtained from FS-MOGFS.

The average Pareto fronts obtained in a representative set
of the studied data sets are shown in Figure 4. This figure
also includes the average solutions obtained by the two single
objective based GFSs considered for comparisons. We can see
that in most of the data sets, many solutions in the trusted zone
present better results in test than those obtained by the single
objective (accuracy oriented) based approaches.

A really important characteristic of the proposed method is
the very high correlation among the values in training and the
values in test. For each of the data sets considered we can
appreciate that the average solutions in test are a mimic of
the solutions obtained in training. The main interest of this
characteristic is that it makes the selection of any solution of
the obtained Pareto fronts by a standard user very easy. That
is, by taking into account the final number of rules/variables
and the training error (test errors are not available at the
selection moment), any solution could be selected depending
on the necessities of the final user expecting similar behavior
in test, i.e., similar behavior when the model is applied in
real life to solve a problem. This is not the typical situation
since usually the solutions obtained in the Pareto front present
not totally correlated errors in training and test, which makes
it very difficult to select a proper solution with the desired
generalizability.

This means that there are very simple solutions that could
be selected without losing a high degree of accuracy. In any
case, as mentioned before, a user could select any solution in
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Fig. 5. Pareto fronts obtained by FSMOGFSe and FSMOGFSe+TUNe on the data set Ailerons.

the Pareto front if the training error is acceptable to solve the
problem. Moreover, we can see that there is no overfitting in
any of the different parts of the obtained Pareto fronts.

The said behavior can also be checked for the re-
maining datasets in a figure with the plots of the av-
erage Pareto fronts together with the global result ex-
cel files on the Web page associated with the paper at
(http://sci2s.ugr.es/FS-MOGFS/). In Figure 5, we show
two representative KBs (the results of a single trial) on the
dataset Ailerons. Additionally, we have depicted the KB of
the most accurate solution from the first data partition and
seed in all the datasets. These graphics have been included in
a zip file on the Webpage associated with the paper together
with a brief analysis of some KB examples as complementary
material to the paper.

VI. CONCLUSIONS

In this work, we have proposed an effective MOEA for
the learning of linguistic KBs in high-dimensional regres-
sion problems, namely FSMOGFS. This method, based on
embedded DB learning, allows a slight uniform displacement
of the linguistic fuzzy partitions and includes some effective
mechanisms in order to enable the derivation of simple and
accurate linguistic FRBSs in problems that are difficult to
solve with standard evolutionary methods. A post-processing
stage performing a rule selection and a tuning of the MFs has
been also applied for further refinement of the simple learned
solutions. This helps to significantly improve the performance
of the simple global structure (initially based on strong fuzzy
partitions) while the complexity is significantly decreased.

In order to also take into account datasets with a large
amount of data, large scale problems, we have also proposed
a mechanism to avoid using a big percentage of the examples
for error computation, estimating it from a reduced subset of
the examples, but maintaining the performance and general
behavior of the methods. This mechanism has been defined
in general for Evolving with Estimated Errors for use with
any kind of Elitist-Based Evolutionary Algorithm, either single
objective or multiobjective elitist-based ones. By doing so we
can also apply a post-processing stage to further refine the
learned solutions. We have included this new error estimation
procedure in both the learning and the post-processing stages.

The results obtained in 17 data sets of different complexities
confirm the effectiveness of the proposed method, particularly
in terms of the simplicity and generalizability of the obtained
models but also in terms of dimensionality and scalability
(particularly when using the fast error estimation mechanism).
We have shown that the scalability of both FSMOGFSe and
FSMOGFSe+TUNe is a key characteristic of these approaches,
which are able to solve problems with more than 40,000
cases or more than 80 variables in a very fast way. Addition-
ally, FSMOGFSe+TUNe is able to obtain promising linguistic
models, avoiding overfitting and keeping uniformly distributed
strong fuzzy partitions in its first stage and refined ones in
its second stage, with very competitive results in terms of
accuracy.

The obtained KBs are the result of the application of
the well-known WM algorithm, which, based on covering
criteria, provides highly meaningful rules at each region of
the modeled surface. Further, because of this and because
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FSMOGFSe considers uniformly distributed fuzzy partitions,
the models obtained by this method are able to be further post-
processed (approximate tuning, linear consequents learning,
etc...) becoming a starting point for these kinds of techniques.
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[7] M. J. Gacto, R. Alcalá, and F. Herrera, “Adaptation and application of
multi-objective evolutionary algorithms for rule reduction and parameter
tuning of fuzzy rule-based systems,” Soft Computing, vol. 13, no. 5, pp.
419–436, 2009.

[8] A. Botta, B. Lazzerini, F. Marcelloni, and D. C. Stefanescu, “Context
adaptation of fuzzy systems through a multi-objective evolutionary
approach based on a novel interpretability index,” Soft Computing,
vol. 13, no. 5, p. 437449, 2008.
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[44] R. Alcalá, J. Alcalá-Fdez, J. Casillas, O. Cordón, and F. Herrera,
“Local identification of prototypes for genetic learning of accurate TSK
fuzzy rule-based systems,” International Journal of Intelligent Systems,
vol. 22, no. 9, pp. 909–941, 2007.

[45] H. L. Wang, S. Kwong, Y. C. Jin, W. Wei, and K. F. Man, “Multi-
objective hierarchical genetic algorithm for interpretable fuzzy rule-
based knowledge extraction,” Fuzzy Sets and Systems, vol. 149, no. 1,
pp. 149–186, 2005.

[46] J. Casillas, O. Cordón, F. Herrera, and P. Villar, “A hybrid learning
process for the knowledge base of a fuzzy rule-based system,” in
Proc. of the 2004 International Conference on Information Processing
and Management of Uncertainty in Knowledge-Based Systems, vol. 3,
Perugia (Italy), 2004, pp. 2189–2196.

[47] J. R. Cano, F. Herrera, and M. Lozano, “Evolutionary stratified training
set selection for extracting classification rules with trade-off precision-
interpretability,” Data and Knowledge Engineering, vol. 60, pp. 90–108,
2007.

[48] Y. Nojima, H. Ishibuchi, and I. Kuwajima, “Parallel distributed genetic
fuzzy rule selection,” Soft Computing, vol. 13, no. 5, pp. 511–519, 2009.
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