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A Fast and Stable Solution
Method for the Radiative
Transfer Problem∗

Per Edström†

Abstract. Radiative transfer theory considers radiation in turbid media and is used in a wide range
of applications. This paper outlines a problem formulation and a solution method for
the radiative transfer problem in multilayer scattering and absorbing media using discrete
ordinate model geometry. A selection of different steps is brought together. The main
contribution here is the synthesis of these steps, all of which have been used in different
areas, but never all together in one method. First, all necessary steps to get a numerically
stable solution procedure are treated, and then methods are introduced to increase the
speed by a factor of several thousand. This includes methods for handling strongly forward-
scattering media. The method is shown to be unconditionally stable, though the problem
was previously considered numerically intractable.
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1. Introduction. Radiative transfer theory describes the interaction of radiation
with scattering and absorbing media. Radiative transfer is applied to such different
areas of application as diffusion of neutrons, stellar atmospheres, optical tomography,
infrared and visible light in space and the atmosphere, and light scattering from
pigment films, paper, and print. Models for calculating the light intensity within and
outside an illuminated turbid medium involve several numerical challenges and are
crucial for a number of sectors of industry. Solution methods for radiative transfer
problems have been studied throughout the last century.

In the beginning most radiative transfer problems were considered intractable
because of numerical difficulties, so coarse approximations were used, and methods
developed slowly due to the lack of mathematical tools. As computers have become
faster and more readily available, highly efficient and specialized solution methods
have been developed. Among the solution methods in use today are discrete ordi-
nate methods (approximating integrals with numerical quadrature), methods using
spherical harmonics (orthogonal functions), methods using finite elements or finite
differences, and Monte-Carlo methods. This paper focuses on discrete ordinate meth-
ods only.
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The first approximate solution was presented by Schuster [1], who considered
only diffuse radiation, and exclusively in a forward and a backward direction. Clearly
influenced by this, Kubelka and Munk [2] developed their model, well known in some
applications, which was further refined by Kubelka [3, 4]. Despite several limitations,
the Kubelka–Munk model is in widespread use for multiple scattering calculations in
paper, coatings, printed paper, paint, plastic, and textile, probably due to its explicit
form and ease of use. The models presented by Schuster and Kubelka and Munk, and
others after them, are known as two-flux models.

By using numerical quadrature to approximate an integral with a finite sum, Wick
[5] gave the first general treatment of discrete ordinate methods. The terms in the sum
can be interpreted as the contribution to radiation from a discrete cone in spherical
geometry. The polar angles of these cones are referred to as discrete ordinates, which
has given the method its name, and the cones are called channels or streams. Using
only two channels gives the earlier two-flux methods. If more channels are used, the
methods are referred to as multiflux methods or many-flux methods.

Chandrasekhar described a method using spherical harmonics [6], but having
read Wick’s article, he adopted the discrete ordinate method and further refined it
[7]. Later, he wrote a classic exposition on radiative transfer theory in book form [8],
and since then the area has expanded tremendously.

Mudgett and Richards [9, 10] described a discrete ordinate method for use in
technology and reported on numerical difficulties, as have many before and after them.
These difficulties worsened when the use of computers made it possible to tackle larger
problems. Only when recognizing the numerical difficulties can measures be taken. A
careful analysis of the problem makes it possible to find such measures, and advances
in numerical linear algebra and scientific computing provide ideas and software tools
to make it a tractable problem. The point of this paper is not to describe the best
possible solution method for the radiative transfer problem; the field is so diverse
that specialized routines are needed that exploit the special properties of each specific
application area. Instead, the point is to present a synthesis of the steps that are
needed or possible to make any discrete ordinate radiative transfer solution method
numerically efficient. To the author’s knowledge, this has not been summarized in
one single publication before.

2. Problem Formulation. For an ideally reflecting medium, all incoming light
is specularly reflected at the surface. For a turbid medium, transmission as well as
absorption and multiple scattering inside the medium have to be taken into consider-
ation. In this paper, the problem is studied in a plane-parallel geometry, where the
horizontal extension of the medium is assumed to be large enough to give no bound-
ary effects at the sides. The boundary conditions at the top and bottom boundary
surfaces, including illumination, are assumed to be time- and space-independent on
the respective boundary surface. The radiation is assumed to be monochromatic, or
confined to a narrow enough wavelength range to make scattering and absorption con-
stant. The scattering is assumed to be conservative, i.e., without change in frequency
between incoming and outgoing radiation. The medium is treated as a continuum of
scattering and absorption sites. Polarization effects are ignored, hence using only the
first component of the Stokes 4-vector. What is left is then a scalar intensity, which
is the variable to solve for.

2.1. Some Definitions. The energy flow is thought of as noninteracting beams
of radiation in all directions. This makes it possible to treat the beams separately.
The intensity, I, of the radiation is always considered to be positive. When radiation
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traverses a finite thickness ds of the medium in its direction of propagation, a fraction
is extinct due to absorption and scattering. The intensity then becomes I + dI, and
the extinction coefficient is defined as

σe = −
dI

Ids
.

The extinction coefficient can be separated into two parts, called the absorption and
scattering coefficients, σa and σs, corresponding to the two different origins of the
extinction. They are related to the extinction coefficient through σe = σa + σs.
A convenient measure is the single scattering albedo, which is the probability for
scattering given an extinction event, and is defined as

a =
σs
σe

=
σs

σa + σs
.

The phase function, p, specifies the angular distribution of the scattered radiation.
If the phase function is normalized by∫ 2π

0

∫ π

0
sin θ

p(θ′, ϕ′; θ, ϕ)
4π

dθdϕ = 1,

where θ and ϕ are the polar and azimuthal angle coordinates of spherical geometry
for the direction of the radiation (in the remainder of this paper, primed arguments
correspond to incident radiation), this can be given a probabilistic interpretation.
Given that radiation in the direction (θ′, ϕ′) is scattered, the probability that it is
scattered into the cone of solid angle dθdϕ centered on the direction (θ, ϕ) is

p(θ′, ϕ′; θ, ϕ)dθdϕ

4π
.

Different phase functions have been proposed to physically describe different types
of scattering. Among the best known are the phase functions given by Rayleigh [11]
and Mie [12]. The only one considered in this paper is the Henyey–Greenstein [13]
phase function. It should not be seen as a real phase function, but is a one-parameter
analytical approximation. It is given by

(2.1) p(cosΘ) =
1− g2

(1 + g2 − 2g cosΘ)3/2
.

Here, Θ is the scattering angle, and it is evident that the Henyey–Greenstein phase
function is dependent on the scattering angle Θ only, and not on the specific directions
of incident and scattered radiation. The angular variables are related through the
cosine law of spherical geometry as

cosΘ = cos θ′ cos θ + sin θ′ sin θ cos(ϕ′ − ϕ).

The coefficients for Legendre polynomial expansion (sometimes referred to as mo-
ments) of the Henyey–Greenstein phase function are simply χl = gl. The parameter
g, here called the asymmetry factor, controls the scattering pattern, ranging from
complete forward scattering (g = 1) over isotropic scattering (g = 0) to complete
backward scattering (g = −1).
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2.2. The Equation of Radiative Transfer. For a plane-parallel geometry, it is
convenient to measure distances normal to the surface of the medium. This coincides
with the z-axis in a Cartesian coordinate system if the surface is placed in the x-y-
plane, and it is evident that dz = ds cos θ. The optical depth, measured from the top
surface and down, is then defined as

τ(z) =
∫ ∞
z

σedz′.

It is also common to introduce u = cos θ, which gives dτ = −σeuds. Chandrasekhar
[8, eq. I.71] states the equation of radiative transfer for a scattering plane-parallel
medium as

(2.2) u
dI(τ, u, ϕ)

dτ
= I(τ, u, ϕ)− a

4π

∫ 2π

0

∫ 1

−1
p(u′, ϕ′;u, ϕ)I(τ, u′, ϕ′)du′dϕ′.

The integral term on the right-hand side is a source function. It gives the intensity
scattered from all incoming directions at a point to a specified direction. It is possi-
ble to add a term for emission, e.g., fluorescence or thermal emission, to the source
function if the emission is inside the wavelength range of interest. These terms are
easy to fit into the solution procedure. To perform the coupling of the intensities of
the different wavelengths associated with the fluorescence, an outer loop over wave-
lengths will be needed. It should be noted here that the equations are not necessarily
energy conservative, since absorbed light is always emitted as fluorescence or thermal
radiation in wavelengths that may be ignored.

3. Solution Method. The intensity is described by an integrodifferential equa-
tion, the solution of which is the goal of this paper. The outline of the solution method
is as follows. Fourier analysis gives a system of equations, which are then discretized
using numerical quadrature. The initial problem can then be transferred to a prob-
lem on eigenvalues of matrices. Boundary and continuity conditions are imposed, and
the computed intensity is extended from the quadrature points to the entire interval
through interpolation formulas.

The main steps to achieve a numerically stable solution procedure include the
Fourier analysis, the evaluation of normalized associated Legendre functions, the
choice of numerical quadrature, the matrix formulation of the discretization, the re-
duction of the eigenvalue problem, the preconditioning of the system of equations
corresponding to the boundary and continuity conditions, and the avoidance of over-
and underflow in the solution and interpolation formulas. The recognition of potential
divide-by-zero situations and reformulation of those are also important.

To make the method fast several measures are taken. The δ-N method and the
intensity correction procedures allow high speed by maintaining accuracy at a sig-
nificantly lower number of terms in the quadrature formula than would otherwise
be needed. Computational shortcuts stop the calculations earlier when certain con-
vergence criteria have been met. In addition, the sparse structure of the system of
equations corresponding to the boundary and continuity conditions should be ex-
ploited.

3.1. Fourier Analysis on ϕ. The unknown intensity is a function of three vari-
ables, τ , u, and ϕ. It is possible to reduce the problem by factoring out the ϕ-
dependence. This is achieved by Legendre function expansion of the phase function
and then Fourier analysis on the azimuthal angle variable ϕ. This gives a set of
radiative transfer equations that depend only on τ and u.
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The key is to expand the phase function in a series of 2N Legendre polynomials
as

(3.1) p(cosΘ) ≈
2N−1∑
l=0

(2l + 1)χlPl(cosΘ),

where Pl(cosΘ) is the Legendre polynomial of degree l, and χl is the corresponding
expansion coefficient. The Legendre polynomials are chosen for several reasons. They
are a natural basis set of orthogonal polynomials on [−1, 1]. Furthermore, they are
used in Gaussian quadrature schemes for evaluating integrals numerically, and they
give a simple expansion for the Henyey–Greenstein phase function. Finally, they
enable separation of the angular coordinates u and ϕ through the addition theorem
for spherical harmonics.

The addition theorem states that

Pl(cosΘ) = Pl(u′)Pl(u) + 2
l∑

m=1

Λml (u
′)Λml (u) cos(m(ϕ′ − ϕ)),

where

Λml (u) =

√
(l −m)!
(l + m)!

Pm
l (u)

are normalized associated Legendre functions and Pm
l (u) are associated Legendre

functions. The normalized functions are preferred since they remain bounded, while
the nonnormalized functions can become large enough to cause overflow. The addition
theorem allows the phase function, through the Legendre polynomial expansion, to
be expressed as products of functions of u and ϕ separately. Introducing the function

pm(u′, u) =
2N−1∑
l=m

(2l + 1)χlΛ
m
l (u

′)Λml (u),

the phase function can be expressed as

(3.2) p(u′, ϕ′;u, ϕ) =
2N−1∑
m=0

(2− δ0m)pm(u′, u) cos(m(ϕ′ − ϕ)).

This is in essence a Fourier cosine series for the phase function, and it makes sense to
expand the intensity in a similar way:

(3.3) I(τ, u, ϕ) =
2N−1∑
m=0

Im(τ, u) cos(m(ϕ0 − ϕ)),

where Im are the Fourier components of the intensity and ϕ0 is some suitably chosen
reference. Inserting these Fourier cosine series expansions for the phase function and
for the intensity into the equation of radiative transfer (2.2), the integral term after
some rearrangements becomes

a

4π

∫ 2π

0

∫ 1

−1
p(u′, ϕ′;u, ϕ)I(τ, u′, ϕ′)du′dϕ′

=
a

2

2N−1∑
m=0

cos(m(ϕ0 − ϕ))
∫ 1

−1
pm(u′, u)Im(τ, u′)du′.
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This gives an equation for each of the Fourier components as

u
dIm(τ, u)

dτ
= Im(τ, u)− a

2

∫ 1

−1
pm(u′, u)Im(τ, u′)du′,

m = 0, . . . , 2N − 1.
(3.4)

These equations are entirely uncoupled and can be solved independently. The com-
plete azimuthal dependence can then be assembled through the Fourier cosine series
expansion for the intensity above. Thus, the dependence of the variable ϕ is totally
eliminated.

3.2. Enhancing Symmetry. Half-range intensities are now introduced to exploit
the symmetry of the problem. They are denoted I+ and I−, where the plus and
minus signs designate intensities in the upper and lower hemispheres, i.e., for 0 ≤
θ ≤ π/2 and π/2 < θ ≤ π, respectively. It is also beneficial to use µ = |u| = | cos θ|.
Furthermore, most relevant illumination conditions are either diffuse, a directed beam,
or a combination of both. Therefore it is convenient to separate the intensity into the
corresponding components, a diffuse component Id, and a beam component Ib. The
beam component is assumed to be infinitesimally narrow, so it suffers from absorption
but it does not get any contribution from scattering from other directions. Therefore,
it is simply

(3.5) I−b (τ, µ, ϕ) = I0be
−τ/µ0δ(µ− µ0)δ(ϕ− ϕ0),

where I0b and (µ0, ϕ0) are the intensity and direction of the incident beam and δ is
the Dirac delta function. The diffuse component is also called the multiple-scattering
component and includes reflection from the bottom boundary surface. The beam
component is therefore present in downward directions only, I− = I−d + I−b , but not
in upward directions, I+ = I+

d . Using these expressions for I+ and I− (now dropping
the subscript d) yields the following pair of coupled integrodifferential equations for
the Fourier components of the diffuse intensity, since the nonintegral terms involving
I−b cancel:

µ
dIm+(τ, µ)

dτ
= Im+(τ, µ)− a

2

∫ 1

0
pm(µ′, µ)Im+(τ, µ′)dµ′

− a

2

∫ 1

0
pm(−µ′, µ)Im−(τ, µ′)dµ′ −Xm+

0 e−τ/µ0 ,

−µ
dIm−(τ, µ)

dτ
= Im−(τ, µ)− a

2

∫ 1

0
pm(µ′,−µ)Im+(τ, µ′)dµ′

− a

2

∫ 1

0
pm(−µ′,−µ)Im−(τ, µ′)dµ′ −Xm−

0 e−τ/µ0 ,

(3.6)

m = 0, . . . , 2N − 1,

where

(3.7) Xm±
0 =

a

4π
(2− δ0m)pm(−µ0,±µ)I0b.

3.3. Evaluation of the Normalized Associated Legendre Functions. There are
many ways of evaluating associated Legendre functions numerically, and a lot of them
are poor. For example, explicit expressions involve cancellation between successive
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terms, which alternate in sign. For large l, the individual terms become larger than
their sum, and all accuracy is lost.

The associated Legendre functions satisfy a number of recurrence relations on
either or both of l and m. Most of the recurrences on m are unstable and hence
numerically unsuitable. This paper uses the following three-term recurrence on l
from Magnus and Oberhettinger [14], which is stable:

(l −m)Pm
l (u) = u(2l − 1)Pm

l−1(u)− (l − 1 + m)Pm
l−2(u).

From this, the recurrence for the normalized functions can be found to be

(3.8) Λml (u) =
u(2l − 1)Λml−1(u)−

√
(l − 1 + m)(l − 1−m)Λml−2(u)√

(l −m)(l + m)
.

The three-term recurrence for the associated Legendre functions has a closed-form
expression for the starting value,

Pm
m (u) = (−1)m(2m− 1)!!(1− u2)m/2.

This can be translated into a two-term recurrence for the normalized functions,

(3.9)

{
Λ0

0(u) = 1,

Λmm(u) = −
√
1− u2

√
2m−1

2m Λm−1
m−1(u).

If the three-term recurrence for the associated Legendre functions is used with l =
m + 1, and using the convention Pm

m−1(u) = 0, the result is

Pm
m+1(u) = u(2m + 1)Pm

m (u).

For the normalized functions, this becomes

(3.10) Λmm+1(u) = u
√
2m + 1Λmm(u).

All together, this constitutes a numerically stable way to compute the normalized
associated Legendre functions.

3.4. Double-Gauss Quadrature. One problem in radiative transfer is to calcu-
late integrals of the form ∫ 1

−1
f(u)du.

This integral can be approximated by a finite sum, a numerical quadrature formula,
as ∫ 1

−1
f(u)du ≈

m∑
j=1

ω′jf(uj).

Different choices of the weights ω′j and nodes uj give different quadrature formulas. If
the nodes are taken linearly spaced from −1 to 1, there is a unique choice of weights
that gives the quadrature an order of accuracy of at least m − 1. This is known
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as a Newton–Cotes formula. It is simple and useful for small m, but for larger m,
their weights have oscillating signs and amplitudes of the order of 2m, which causes
numerical instability. Gauss showed that if not only the weights but also the nodes
are chosen optimally, the result is a formula of order 2m−1, which is the best possible.
This is known as a Gaussian quadrature formula. The optimal nodes are the zeros
of the Legendre polynomial Pm(u). Furthermore, the weights are all positive, which
makes the formula numerically stable even for large m.

There are closed expressions for the coefficients in the Legendre polynomials, but
there is a risk of overflow for large m. The Lanczos iteration is a numerically stable
method for finding the Legendre polynomial coefficients, but it is still unstable to find
zeros directly from polynomial coefficients. However, there is a closed expression for
the Jacobi matrix used in the Lanczos iteration. By solving an eigenvalue problem for
the Jacobi matrix, the optimal weights and nodes can be found without even forming
the Legendre polynomials, as suggested by Golub and Welsch [15]. The eigenvalues of
the Jacobi matrix are the required nodes, and the weights are twice the square of the
first component of the eigenvectors. Thus, this is a fast and stable method for finding
the nodes and weights for a quadrature formula with optimal accuracy. Furthermore,
there is an advantage in using Gaussian quadrature of even order; symmetry ensures
that the nodes occur in pairs and that the corresponding weights are equal.

Gaussian quadrature assumes that the integrand is a smooth function. It is
known, however, that the intensity changes rapidly close to u = 0 near the boundaries.
Furthermore, Gaussian quadrature has the nodes the least dense close to u = 0, where
the intensity changes the most. In order to improve the situation, a modification to
the Gaussian quadrature is used.

Double-Gauss, proposed by Sykes [16], approximates the integral over the two
hemispheres separately,∫ 1

−1
f(u)du =

∫ 1

0
f+(µ)dµ +

∫ 1

0
f−(µ)dµ ≈

N∑
j=1

ωjf
+(µj) +

N∑
j=1

ωjf
−(µj),

where the nodes µj and weights ωj are chosen for the “half interval” [0, 1]. For the
greatest accuracy, the optimal Gaussian quadrature should be used on the new interval
0 ≤ µ ≤ 1, so with a simple translation, the Jacobi matrix from the Lanczos iteration
can still be used to find µj and ωj .

It should be noted that the N used here is the same one that was introduced
for the phase function expansion in section 3.1. The correspondence of an expansion
in 2N Legendre polynomials (which are the eigenfunctions of the scattering operator
for the m = 0 equation) and a 2N point double-Gauss quadrature is important,
since fewer points would not give photon conservation. Actually, to maintain optimal
accuracy for Fourier components m > 0, different quadrature sets for each m that
are specifically designed to integrate the associated Legendre functions (which are the
eigenfunctions of the scattering operator for the m > 0 equations) would be needed.
However, this would complicate the solution procedure a great deal and is thus not
done here.

3.5. Matrix Formulation. The discrete ordinate approximation, i.e., application
of the double-Gauss quadrature rule described above, can now be used to transform
these pairs of coupled integrodifferential equations into systems of coupled ordinary
differential equations. For each Fourier component (where the superscript m has been
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dropped), this yields

µi
dI+(τ, µi)

dτ
= I+(τ, µi)−

a

2

N∑
j=1

ωjp(µj , µi)I+(τ, µj)

− a

2

N∑
j=1

ωjp(−µj , µi)I−(τ, µj)−X+
0ie
−τ/µ0 ,

−µi
dI−(τ, µi)

dτ
= I−(τ, µi)−

a

2

N∑
j=1

ωjp(µj ,−µi)I+(τ, µj)

− a

2

N∑
j=1

ωjp(−µj ,−µi)I−(τ, µj)−X−0ie
−τ/µ0 ,

(3.11)

i = 1, . . . , N.

This was suggested by Stamnes and Swanson [17], who also put it in matrix form as

(3.12)
d

dτ

[
I+

I−

]
=
[
−α −β

β α

] [
I+

I−

]
−
[

Q+

Q−

]
,

where

I± =
{
I±(τ, µi)

}
, i = 1, . . . , N,

Q± = ±M−1Q′± =
{
Q±(τ, µi)

}
, i = 1, . . . , N,

Q′± =
{ a

4π
(2− δ0m)pm(−µ0,±µi)I0be

−τ/µ0

}
, i = 1, . . . , N,

M = {µiδij)}, i, j = 1, . . . , N,

α = M−1
(a

2
D+W − 1

)
,

β = M−1 a

2
D−W,

W = {ωiδij)}, i, j = 1, . . . , N,

1 = {δij)}, i, j = 1, . . . , N,

D+ = {p(µj , µi)} = {p(−µj ,−µi)}, i, j = 1, . . . , N,

D− = {p(−µj , µi)} = {p(µj ,−µi)}, i, j = 1, . . . , N,

and δij is the Kronecker delta. It should be noted that this matrix formulation is
identical for all Fourier components m = 1, . . . , 2N − 1 if one simply replaces p(µ′, µ)
for each m with pm(µ′, µ).

3.6. Eigenvalue Problem. It is well known that the homogeneous solutions to
systems of coupled ordinary differential equations such as (3.12) are of the form I± =
g±e−kτ . This gives the eigenvalue problem

(3.13)
[

α β
−β −α

] [
g+

g−

]
= k

[
g+

g−

]
of the size 2N×2N for the eigenvalues k and the eigenvectors g±. The structure of the
2N×2N matrix is due to the choice of numerical quadrature where the nodes come in
pairs and the corresponding weights are equal, but it is also due to the phase function
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being dependent on the scattering angle Θ only (so that the ϕ-dependence could be
factored out). This structure ensures that the eigenvalues occur in positive/negative
pairs, which allows reduction in the size of the eigenvalue problem by a factor of 2,
and thus reduction in the eigenvalue calculations roughly by a factor of 8. This was
noted already by Chandrasekhar [8], and Stamnes and Swanson [17] proposed the
following solution to the eigenvalue problem. Adding and subtracting lines in (3.12)
without Q± and inserting the proposed homogeneous solutions I± = g±e−kτ gives

(α− β)(α + β)(g+ + g−) = k2(g+ + g−).

This is an eigenvalue problem for the eigenvectors (g+ + g−) and the eigenvalues k2

of size N × N , i.e., half the original size. Finding (g+ − g−) with some algebraic
rearrangements and taking the sum and difference of (g+ + g−) and (g+ − g−) then
gives the eigenvectors g± for the original homogeneous eigenvalue problem.

It can be verified by insertion that

(3.14) I(τ, ui) = Z0(ui)e−τ/µ0

is a particular solution if Z0(ui) is determined by the system of linear equations

(3.15)
∑

−N≤j≤N
j �=0

((
1 +

uj
µ0

)
δij − ωj

a

2
p(uj , ui)

)
Z0(uj) = X0(ui).

The general solution is given by the sum of the particular solution and a linear com-
bination of the eigensolutions as

I±(τ, µi) =
N∑
j=1

C−jg−j(±µi)ekjτ +
N∑
j=1

Cjgj(±µi)e−kjτ + Z0(±µi)e−τ/µ0 ,

i = 1, . . . , N.

(3.16)

Here, ±kj and g±j(±µi) are eigenvalues and eigenvectors, ±µi are quadrature points,
and C±j are constants to be given by boundary conditions. Also, kj > 0 for positive
j, and k−j = −kj .

These solutions pertain to a single, vertically homogeneous layer. There are at
least two reasons for considering multilayer structures. One is that the medium might
in fact be constructed as several discrete and vertically homogeneous layers placed on
top of each other. Another is that an inhomogeneous medium can be approximated
with a (sufficiently large) number of adjacent homogeneous layers. A method to
handle refraction and total reflection at the boundaries of layers with different indices
of refraction has been described by Jin and Stamnes [18] and can be included in this
solution method if desired.

Since each of the layers in the multilayer structure is homogeneous—whether it
is a real discrete structure or an approximation of a continuously varying one—the
previously derived single layer solution can be used. Thus, the solution for the pth
layer can be written as

I±p (τ, µi) =
N∑
j=1

(
Cjpgjp(±µi)e−kjpτ + C−jpg−jp(±µi)e+kjpτ

)
+ U±p (τ, µi),

p = 1, . . . , L,

(3.17)
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where the sum is the homogeneous solution, U±p (τ, µi) is the particular solution, and
L is the number of layers. The only difference from the single layer case is the addition
of the layer index p.

It should be noted that this is the solution for one Fourier component of the
diffuse intensity. The complete azimuthal dependence can be assembled through the
Fourier cosine series expansion for the diffuse intensity, as stated earlier. As a special
case, the m = 0 component alone gives the azimuthal average, which is something
several standardized measurements give, e.g., diffuse reflectance measurements.

It should also be noted that this eigenvalue problem can be formulated and solved
in an alternative way, known in the neutron transport community as the method of
separation of variables, which has been extensively developed by Barros and coworkers
[19, 20, 21]. The interested reader should also be aware of the review by Badruzza-
man [22], which discusses a number of relevant methods used in neutron transport
problems.

3.7. Boundary and Continuity Conditions with Preconditioning. The interac-
tion of the radiation with the bottom boundary surface of the medium (or with the
surface of an underlying medium) can be described by a function, ρ(−µ′, ϕ′;µ, ϕ), that
works in a similar manner as the phase function. The upward diffuse intensity at the
bottom boundary surface is obtained by integrating over all the incident downward
directions:

I+
L (τL, µ, ϕ) =

1
π

∫ 2π

0

∫ 1

0
µ′ρ(−µ′, ϕ′;µ, ϕ)I−L (τL, µ′, ϕ′)dµ′dϕ′

+
µ0

π
ρ(−µ0, ϕ0;µ, ϕ)I0be

−τL/µ0 ,

where τL is the optical depth at the bottom boundary.
If ρ(−µ′, ϕ′;µ, ϕ) is assumed to depend on the difference ϕ′ − ϕ, and not on the

specific azimuthal directions of incident and reflected radiation, it can be expanded
in a Fourier cosine series, and the azimuthal dependence can be factored out. Thus,

(3.18) ρ(−µ′, ϕ′;µ, ϕ) = ρ(−µ′, µ;ϕ′ − ϕ) =
2N−1∑
m=0

ρm(−µ′, µ) cos(m(ϕ′ − ϕ)),

where

ρm(−µ′, µ) =
1
π

∫ π

−π
ρ(−µ′, µ;ϕ′ − ϕ) cos(m(ϕ′ − ϕ))d(ϕ′ − ϕ).

Using the Fourier cosine series expansions for both the diffuse intensity and ρ yields

1
π

∫ 2π

0

∫ 1

0
µ′ρ(−µ′, ϕ′;µ, ϕ)I−L (τL, µ′, ϕ′)dµ′dϕ′

=
2N−1∑
m=0

(1 + δ0m) cos(m(ϕ0 − ϕ))
∫ 1

0
µ′ρm(−µ′, µ)Im−L (τL, µ′)dµ′.

This gives the following condition for each Fourier component at the bottom boundary:

Im+
L (τL, µ) = (1 + δ0m)

∫ 1

0
µ′ρm(−µ′, µ)Im−L (τL, µ′)dµ′

+
µ0

π
ρm(−µ0, µ)I0be

−τL/µ0 ,

m = 0, . . . , 2N − 1.
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But the multilayer solution contains 2N×L constants to be determined, so in addition
to boundary conditions, the intensity must also be required to be continuous across
layer interfaces. Stamnes and Conklin [23] gave the formulation below of the problem
of finding the unknown constants Cjp.

The conditions can be stated as a system of equations as (without the superscript
m)

(3.19)



I1(0,−µi) = I(−µi), i = 1, . . . , N,

Ip(τp, µi) = Ip+1(τp, µi), i = ±1, . . . ,±N, p = 1, . . . , L− 1,

IL(τL,+µi) = (1 + δm0)
N∑
j=1

ωjµjρ(−µj , µi)I(τL,−µj)

+
µ0

π
ρ(−µ0, µi)I0be

−τL/µ0 , i = 1, . . . , N,

where I(−µi) is the incident intensity at the top boundary surface. Inserting the
multilayer solution (3.17) into this system of equations gives

(3.20)



N∑
j=1

(
Cj1gj1(−µi) + C−j1g−j1(−µi)

)
= I(−µi)− U1(0,−µi),

i = 1, . . . , N,

N∑
j=1

{(
Cjpgjp(µi)e

−kjpτp + C−jpg−jp(µi)e
+kjpτp

)
−
(
Cj,p+1gj,p+1(µi)e−kj,p+1τp + C−j,p+1g−j,p+1(µi)e+kj,p+1τp

)}
= Up+1(τp, µi)− Up(τp, µi),

i = ±1, . . . ,±N, p = 1, . . . , L− 1,
N∑
j=1

(
CjLrj(µi)e−kjLτL + C−jLr−j(µi)e+kjLτL

)
= Γ(τL, µi),

i = 1, . . . , N,

where

rj(µi) = gjL(+µi)− (1 + δm0)
N∑
n=1

ρ(−µn, µi)ωnµngjL(−µn)

and

Γ(τL, µi) =− U+
L (τL, µi) + (1 + δm0)

N∑
j=1

ρ(−µj , µi)ωjµjU−L (τL, µj)

+
µ0

π
ρ(−µ0, µi)I0be

−τL/µ0 .

The boundary and continuity conditions give a (2N × L) × (2N × L) system of
equations for the 2N × L unknown coefficients Cjp, j = ±1, . . . ,±N, p = 1, . . . , L.
The coefficient matrix is sparse and block diagonal, with 6N−1 diagonals, a fact that
should be exploited in a numerical implementation.
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However, the equations are ill-conditioned due to the exponentials with positive
arguments. This is why the method was discarded in the past. But the ill-conditioning
can be removed by using as a preconditioner the scaling transformation

(3.21) C+jp = C ′+jpe
kjpτp−1 and C−jp = C ′−jpe

−kjpτp ,

where τp is the optical depth at the bottom of layer p. The scaled system of equations
for the coefficients C ′jp then becomes (with τ0 as the optical depth at the top)

(3.22)



N∑
j=1

(
C ′j1gj1(−µi) + C ′−j1g−j1(−µi)e−kjp(τ1−τ0)

)
= I(−µi)− U1(0,−µi),

i = 1, . . . , N,

N∑
j=1

{(
C ′jpgjp(µi)e

−kjp(τp−τp−1) + C ′−jpg−jp(µi)
)

−
(
C ′j,p+1gj,p+1(µi) + C ′−j,p+1g−j,p+1(µi)e−kj,p+1(τp+1−τp)

)}
= Up+1(τp, µi)− Up(τp, µi),

i = ±1, . . . ,±N, p = 1, . . . , L− 1,
N∑
j=1

(
C ′jLrj(µi)e−kjL(τL−τL−1) + C ′−jLr−j(µi)

)
= Γ(τL, µi),

i = 1, . . . , N.

Since kjp > 0 and τp > τp−1, all exponentials in the system of equations for the
coefficients C ′jp have negative arguments. Thus, the ill-conditioning is prevented, and
the problem of solving for the C ′jp is unconditionally stable.

There is a risk of overflow when evaluating the solution for the pth layer, but this
can be avoided with the use of the coefficients C ′jp. By using the same scaling as with
the boundary and continuity conditions, the general solution becomes

I±p (τ, µi) =
N∑
j=1

(C ′jpgjp(±µi)e−kjp(τ−τp−1) + C ′−jpg−jp(±µi)e−kjp(τp−τ)) + U±p (τ, µi),

p = 1, . . . , L.

(3.23)

Since kjp > 0 and τp−1 < τ < τp, all exponentials have negative arguments, and the
risk of overflow is prevented. It should be pointed out that in a numerical imple-
mentation the scaled coefficients should be used in the rest of the solution procedure,
which makes any rescaling transformation unnecessary and thus eliminates the risk
of enlarging errors later.

3.8. Interpolation Formulas. The general solution for the discrete problem gives
the intensity at any depth, but only in the quadrature points. If the intensity in an
arbitrary direction is required, interpolation formulas are needed. It is always possible
to fit a polynomial to a number of points. A polynomial of sufficiently high degree
will be exact in all points to be fitted, but will normally perform badly between the
points. If a polynomial of lower degree is chosen, it will perform better between the
points to be fitted, but on the other hand it will not be exact in those points, even
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though they are known. It is also possible to use cubical splines. They will be exact
in all points to be fitted, but they will also perform badly between if there are large
changes in one or more of the points. Another approach is to use the solutions of the
eigenvalue problem, as proposed by Stamnes [24], and that scheme is outlined below.

Although derived for a single layer, the discrete equations for the Fourier compo-
nents (3.11) are equally valid across all layers together. They can, substituting the
quadrature points µi for the free variable µ, be written

(3.24)


µ

dI+(τ, µ)
dτ

= I+(τ, µ)− S+(τ, µ),

−µ
dI−(τ, µ)

dτ
= I−(τ, µ)− S−(τ, µ),

where 

S+(τ, µ) =
a

2

N∑
i=1

ωip(µi, µ)I+(τ, µi)

+
a

2

N∑
i=1

ωip(−µi, µ)I−(τ, µi) + X+
0 (µ)e−τ/µ0 ,

S−(τ, µ) =
a

2

N∑
i=1

ωip(µi,−µ)I+(τ, µi)

+
a

2

N∑
i=1

ωip(−µi,−µ)I−(τ, µi) + X−0 (µ)e−τ/µ0 ,

provided proper layer indexing—depending on the optical depth considered—is used
throughout.

Inserting the multilayer solution (3.17) into this expression for the source functions
yields

(3.25) S±p (τ, µ) =
N∑
j=1

C−jpg̃−jp(±µ)ekjpτ +
N∑
j=1

Cjpg̃jp(±µ)e−kjpτ + Z̃±0p(µ)e
−τ/µ0 ,

where

g̃jp(±µ) =
a

2

N∑
i=1

(
ωip(−µi,±µ)gjp(−µi) + ωip(+µi,±µ)gjp(+µi)

)
and

Z̃±0p(µ) =
a

2

N∑
i=1

(
ωip(−µi,±µ)Z0p(−µi) + ωip(+µi,±µ)Z0p(+µi)

)
+ X0p(±µ).

These are analytical interpolation formulas for the source function for each layer,
expressed in the solutions of the eigenvalue problem for each respective layer.

Equations (3.24) can be integrated formally, giving analytical formulas for the
intensity at arbitrary depth and direction expressed in the source function. Inserting
the interpolation formulas for the source function (3.25) then gives interpolation for-
mulas for the intensity as well, thus making it possible to calculate the intensity at
any depth and at any angle.
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As with the discrete solution (3.17), there is a risk of overflow when evaluating
the interpolation formulas, but this can be avoided by the use of the coefficients
C ′jp. By using the same scaling as with the boundary and continuity conditions, the
interpolation formulas become

I+
p (τ, µ) = I+

L (τL, µ)e−(τL−τ)/µ

+
L∑
n=p

{
Z̃0p(+µ)
1 + µ/µ0

(
e−(kjnτn−1+(τn−1−τ)/µ) − e−(kjnτn+(τn−τ)/µ)

)

+
N∑
j=1

C ′jn
g̃jn(+µ)
1 + kjnµ

(
e−(τn−1−τ)/µ − e−(kjn(τn−τn−1)+(τn−τ)/µ)

)

+
N∑
j=1

C ′−jn
g̃−jn(+µ)
1− kjnµ

(
e−(kjn(τn−τn−1)+(τn−1−τ)/µ) − e−(τn−τ)/µ

)}

(3.26)

with τn−1 replaced by τ and the exponentials in the second sum replaced by

e−kjp(τ−τp−1) − e−(kjp(τp−τp−1)+(τp−τ)/µ)

for n = p, and

I−p (τ, µ) = I−0 (τ0, µ)e
−(τ−τ0)/µ

+
p∑

n=1

{
Z̃0p(−µ)
1− µ/µ0

(
e−(kjnτn+(τ−τn)/µ) − e−(kjnτn−1+(τ−τn−1)/µ)

)

+
N∑
j=1

C ′jn
g̃jn(−µ)
1− kjnµ

(
e−(kjn(τn−τn−1)+(τ−τn)/µ) − e−(τ−τn−1)/µ

)

+
N∑
j=1

C ′−jn
g̃−jn(−µ)
1 + kjnµ

(
e−(τ−τn)/µ − e−(kjn(τn−τn−1)+(τ−τn−1)/µ)

)}

(3.27)

with τn replaced by τ and the exponentials in the third sum replaced by

e−kjp(τp−τ) − e−(kjp(τp−τp−1)+(τ−τp−1)/µ)

for n = p. Since all kjn > 0 (and especially kjp > 0) and τp−1 < τ < τp, all
exponentials have negative arguments, and the risk of overflow is avoided.

As can be seen, there is also a risk that the denominators 1− µ/µ0 and 1− kjnµ
could be close to zero. However, this risk can be entirely eliminated by noting that
when they are close to zero, there is in fact an exponential with argument close to
zero in an integral in the preceding step. An exponential with zero argument is a
constant, and the corresponding antiderivative does not have this denominator at all.
Thus, if a denominator is close to zero, the corresponding term in the interpolation
formulas is simply substituted with a term found by integrating the corresponding
exponential term with zero argument. This can in fact be seen as an application of
l’Hôpital’s rules.

In the interpolation formulas everything is known except I−0 (τ0, µ) and I+
L (τL, µ).

I−0 (τ0, µ) can be determined from the incident intensity at the top boundary. Then
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I−L (τL, µ) is calculated from the interpolation formulas, and using the boundary condi-
tions I+

L (τL, µ) can be found. The interpolation formulas for the intensity give exactly
the same result at the quadrature points as the discrete solution (3.17). They also
satisfy the boundary conditions for all µ, albeit such conditions were imposed through
(3.19) only at the quadrature points.

3.9. The δ-N Method. If the scattering is strongly forward-peaked, an accurate
expansion of the phase function needs a large number, up to several hundreds or
thousands, of terms. To maintain accuracy throughout the solution, a comparable
number of terms are needed in the numerical quadrature used to approximate the
integrals. This quickly gives very large eigenvalue problems and systems of equations,
and since the computation time for these grows approximately as the third power
of the size, the problem soon becomes intractable. The memory requirements also
increase rapidly. To avoid this, a transformation proposed by Wiscombe [25], the δ-N
method, can be applied to give a problem with a less peaked phase function.

The idea is to consider the beams scattered through the small angles within the
sharp forward peak as unscattered, and truncate this peak from the phase function.
The phase function is separated into the sum of a Dirac delta function in the forward
direction and a truncated phase function, which is expanded in a series of Legendre
polynomials with a much smaller number of terms, preferably equal to the number of
quadrature points, i.e., 2N .

On one hand, the phase function is directly expanded in Legendre polynomials as

p(cosΘ) =
Nlarge∑
l=0

(2l + 1)χlPl(cosΘ).

On the other hand, the delta peak is first removed and then the remainder is expanded
as

p(cosΘ) = fp′′(cosΘ) + (1− f)p′(cosΘ)

≈ fδ(1− cosΘ) + (1− f)
2N−1∑
l=0

(2l + 1)χ̂lPl(cosΘ)

≡ p̂δ-N (cosΘ),

where f is a dimensionless parameter between 0 and 1 (f thus denotes the fraction of
the phase function that is contained in the separated delta peak). Demanding that
the coefficients for Legendre polynomial expansion are the same for p and p̂δ-N , as
long as they have common terms, yields

χl = f + (1− f)χ̂l, or χ̂l =
χl − f

1− f
, l = 0, . . . , 2N − 1.

The expansion for p̂δ-N is truncated by demanding χ̂2N = 0, which gives f = χ2N .
Replacing p with p̂δ-N in the equation of radiative transfer and introducing τ ′ =
(1 − af)τ and a′ = 1−f

1−af a yields a structurally equivalent equation. Hence, the δ-N
method does not change the mathematical form of the radiative transfer equation. It
only changes the optical properties of the medium to make it appear less anisotropic.

Thus, the δ-N method allows handling of strongly forward-peaked phase func-
tions (g close to 1) with maintained accuracy without a tremendously increased com-
putational burden. The δ-N method also provides maintained accuracy for all g for
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significantly lower N than otherwise needed. However, the closer g is to zero, the
smaller N is needed anyway, so the savings in computation time diminish with de-
creasing |g|. The overhead introduced by the method is insignificant compared to the
core calculations.

Morel [26] reports an alternative way of dealing with strongly forward-peaked
scattering. He points out that it is not the accuracy of the truncated phase function
expansion that matters, but rather the accuracy of the representation of the source
function. Thus, if the solution is well represented by the given Legendre polynomial
expansion, an accurate solution will be obtained regardless of the convergence of the
truncated phase function expansion. Morel presents a Galerkin quadrature approach,
which under this assumption treats the scattering exactly, and thus leaves the solu-
tion invariant to the δ-N transformation. Unfortunately, this approach is limited to
the azimuthally averaged (m = 0) case, since the solution for Fourier components
m > 0 cannot be well represented by Legendre polynomials, but needs the associated
Legendre functions.

3.10. Intensity Correction Procedures. The accuracy of the intensity compu-
tation is generally improved by the use of the δ-N method except in the direction of
the forward peak, but the δ-N method also introduces minor errors in other direc-
tions. However, combining the δ-N method with exact computation of low orders of
scattering can considerably reduce the error. The purpose is to achieve high accuracy
with small N , to speed up calculations. The TMS and IMS methods of Nakajima and
Tanaka [27] serve to correct for single scattering and secondary and higher orders of
scattering, respectively.

The phase function resulting from the δ-N method oscillates around the original
phase function with a magnitude depending on the parameter f . This gives the
computed intensities an oscillating behavior, which becomes more apparent the more
peaked the phase function is. Since single scattering resembles the phase function, it
would be a good idea to compute the single scattering exactly to account for errors
due to the δ-N method.

Exact solutions for the single-scattered intensity are easy to derive. Using the
integrodifferential equations for the Fourier components (3.6) without the multiple
scattering terms, and allowing for the optical properties to vary between layers, gives
elementary first-order differential equations that are readily solved.

The TMS method subtracts the erroneous single-scattered intensity obtained by
using the scaled τ ′, the scaled a′, and the phase function

p′(cosΘ) =
2N−1∑
l=0

(2l + 1)χ̂lPl(cosΘ)

from the δ-N method, and adds back the exactly calculated single-scattered intensity
obtained by using the scaled τ ′, a

1−af (where the denominator is a consequence of the
scaled τ ′), and the exact phase function

p(cosΘ) =
Nlarge∑
l=0

(2l + 1)χlPl(cosΘ)

with all available terms. This can be denoted ITMS = I ′ +∆ITMS = I ′ − I ′ss + Icorr
ss ,

where I ′ is the intensity computed by using the δ-N method, and I ′ss and Icorr
ss are

the single-scattered intensities described above.
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The TMS method gives a substantial improvement for the computed intensity, and
the oscillations are suppressed. An error remains only in the direction of the forward
peak. This is corrected in the IMS method by accounting for secondary and higher
orders of scattering. Of course, exact solutions cannot be found for these corrections,
since that would mean actually solving the overall problem. Instead, an exact solution
can be derived symbolically, and then intelligent approximations need to be made in
order to make the solution possible to use in the IMS method in practice. Reaching
the final expression for the IMS method requires a substantial amount of algebra, and
the original paper is also rather brief. However, the essentials will be outlined here.

The IMS method corrects only the intensity inside a cone centered on the forward
peak direction, and thus affects only the downward intensity. Therefore, in this sec-
tion, some simplifying notation can be used. All intensity variables I implicitly mean
I(τ,−µ, ϕ) and all angular integrals 1

4π

∫
4π p · Idω′ implicitly mean

1
4π

∫ 2π

0

∫ 1

−1
p(τ, µ′, ϕ′;−µ, ϕ)I(τ, µ′, ϕ′)dµ′dϕ′.

The optical properties, a, f , and p · I0b implicitly mean, respectively, a(τ), f(τ), and
p(τ,−µ0, ϕ0;−µ, ϕ)I0b.

Using the notation Itrue = ITMS − ∆IIMS , where Itrue is the solution to the
exact radiative transfer equation, what is left to be found is an expression for the IMS
correction term ∆IIMS = ITMS−Itrue . Differentiating this, using the definitions of τ ′,
ITMS , Itrue , and p′′ = 1

f (p− (1− f)p′), defining the δ-N multiple-scattered intensity
as I ′mult = I ′ − I ′ss , and algebraically rearranging gives

(3.28) −µ
d

dτ
(∆IIMS ) = ∆IIMS −

a

4π

∫
4π

p ·∆IIMSdω′ − (Q1 + Q2 + Q3),

where

Q1 = af

(
I ′mult −

1
4π

∫
4π

p′′ · I ′multdω′
)

,

Q2 = af

(
Icorr

ss − 1
4π

∫
4π

p′′ · Icorr
ss dω′

)
,

and

Q3 =
a

4π
p · I0b

(
e−τ

′/µ0 − e−τ/µ0

)
− a

4π
(1− f)

∫
4π

p′ · (Icorr
ss − I ′ss) dω′.

This exact equation for the IMS correction term ∆IIMS is more complicated than
the original radiative transfer equation, so several approximations need to be made
in order to make the IMS method practically useful. First,

− a

4π

∫
4π

p ·∆IIMSdω′ ≈ 0

and Q1 ≈ 0, since their contribution to the narrow forward peak, where the IMS
correction method is used, is negligible. Second,

Q2 ≈
I0b

4π
(af)2

1− af

e−τ
′/µ0

µ0
τ ′
(

p′′ − 1
4π

∫
4π

p′′ · p′′dω′
)
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and

Q3 ≈
I0b

4π
(af)2

1− af

e−τ
′/µ0

µ0
τ ′p′′,

where the reasons are more complex, so the interested reader is directed to the original
paper by Nakajima and Tanaka [27]. Finally, the IMS method uses vertically averaged
optical properties:

ā =

(
p∑

n=1

anτn

)/(
p∑

n=1

τn

)
,

f̄ =

(
p∑

n=1

fnanτn

)/(
p∑

n=1

anτn

)
,

χ′l,n =
{

fn, l ≤ 2N − 1,
χl,n, l > 2N − 1,

χ̄l =

(
p∑

n=1

χ′l,nanτn

)/(
p∑

n=1

fnanτn

)
,

p′′(cosΘ) =
Nlarge∑
l=0

(2l + 1)χ̄lPl(cosΘ),

µ′0 ≡
1

1− āf̄
µ0,

where n is the layer index.
Equation (3.28) for the IMS correction term ∆IIMS then becomes a first-order

differential equation that can be solved by integrating from 0 to τ , using eτ/µ as an
integrating factor. This gives the IMS correction term, which is then expanded into a
Fourier cosine series to provide the final expression that is used in the IMS method.

Thus a single Fourier component becomes

(3.29) ∆ImIMS =
I0b

4π
(āf̄)2

1− āf̄
(2− δ0m)pmIMS (−µ′0,−µ)

e−τ/µ

µµ′0

∫ τ

0
e(1/µ−1/µ′0)ttdt,

where

pmIMS (−µ′0,−µ) =
Nlarge∑
l=m

(2l + 1)(2χ̄l − χ̄2
l )Λ

m
l (−µ′0)Λ

m
l (−µ).

The intensity correction procedures further enhance the handling of strongly
forward-peaked phase functions beyond the capabilities of the δ-N method. These
procedures also give maintained accuracy for all g for significantly lower N than oth-
erwise needed. However, the closer g is to zero, the smaller N is needed anyway, so
at some point the possible savings in computation time are smaller than the overhead
introduced by the correction procedures. The correction procedures should therefore
not be used in those cases. The additional time taken for the intensity correction
procedures consists of evaluating Legendre functions Λml for the larger l and m that
are used.
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3.11. Computational Shortcuts. As shown by King [28], the azimuthal depen-
dence of the intensity typically converges well before the loop over Fourier components
has ended. Since it is the outermost loop, much is gained if it can be terminated ear-
lier. It is therefore beneficial to break the azimuthal loop when a convergence criterion
has been met, for example, when the quotient of the absolute value of a Fourier com-
ponent and the cumulative sum of components is smaller than a given limit. This
saves a significant amount of computation time in the vast majority of cases.

There is an obvious computational shortcut that allows for much faster calcu-
lation of variables that depend only on the azimuthally averaged intensity, which is
given by the zeroth Fourier component. Among these variables are total reflectance,
total transmittance, total absorptance, and flux. When such variables are all that
is required, the azimuthal loop is broken after the first time instead of fulfilling the
prescribed 2N times, thus giving a significant reduction in computation time.

4. Implementation and Performance. The solution method described in this
paper has recently been implemented in MATLAB under the name Dort2002, and
it is now being used in the paper and printing industries for light scattering simula-
tions. In the current process of replacing an older generation of simulation tools in
these sectors of industry, there is a need for more accurate models. These will offer
more understanding and deeper insight in the processes of light scattering in such
complex media as paper. The effect of the different paper constituents on light scat-
tering may then be investigated theoretically as well, with higher accuracy than real
measurements. Application areas for Dort2002 therefore include theoretical model
comparisons, but also fine-tuning the papermaking process, designing new paper qual-
ities, color management from prepress to print, and evaluation of printing techniques.
Dort2002 is, however, also intended as a general tool for radiative transfer problems,
and it can be obtained from the author for evaluation.

Performance and application of Dort2002 have been studied in an extensive test
series, which will be reported elsewhere. However, it may be appropriate to give a
short summary here. Tests show that the preconditioner for the system of equations
corresponding to the boundary and continuity conditions works very well, giving a
condition number close to 1 in most cases, and around 30 in the worst case. They
also show that the problem is very ill-conditioned without the preconditioner, having
a condition number near the largest positive floating-point number for the system. It
is also shown that the reduced eigenvalue problem is very well-conditioned, giving a
condition number close to 1 in all cases. Dort2002 is shown to converge when N
increases.

Performance tests show that the steps that are taken to improve the stability and
speed of Dort2002 are very successful, together giving an unconditionally stable
solution procedure to a problem previously considered numerically intractable, and
together decreasing computation time with a factor of 1,000–10,000 in typical cases
and with a factor up to and beyond 10,000,000 in extreme cases. Application tests
show very good agreement of Dort2002 with three established models of different
types and implementations when applied to different sets of relevant test problems,
which gives strong support for the accuracy of Dort2002.

5. Open Questions and Future Work. The TMS and IMS methods take rela-
tively little time in themselves, but far more time is taken by the evaluation of the
normalized associated Legendre functions, Λml (u), for the larger l and m needed for
these methods. Any studies that result in faster ways of evaluation of Λml (u) for large
l and m would be welcome.
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One bottleneck that remains is the generation in MATLAB of the sparse matrix
in the system of equations corresponding to the boundary and continuity conditions.
Although the values and the indices of the nonzero elements are known, the assigning
of these values to the sparse matrix is unsatisfactorily time consuming in MATLAB,
to the extent that this purely administrative part of the code consumes a significant
part of the execution time. Since all computational parts of the code are already
so optimized, this item is the first candidate for improving the speed of the code.
This problem remains, although the current implementation has been worked out in
cooperation with leading MATLAB experts and although the implementation, to the
author’s knowledge, is the best that can be done in MATLAB today. Improvements
in this direction could well be considered in future versions of MATLAB.

As an upcoming research activity, the inverse problem for the model presented in
this paper will be studied. This includes the study and development of fast and nu-
merically stable algorithms for parameter estimation. The parameter estimation will
be carried out to fit model simulations to angle-resolved light scattering measurements
or to desired angle-resolved light scattering patterns. This opens the possibility of in-
directly measuring parameters that are hard to determine in other ways, but also to
constructing materials with designed optical properties. The starting point is known
intensities in different directions in the form of measurements or design goals, and
known boundary conditions. In the simplest case the single scattering albedo, a, and
the asymmetry factor, g, are estimated. More complicated cases are multilayer struc-
tures where a and g are estimated for all layers, possibly with different values in every
layer. In addition to this, it will be necessary to deal with the problem of surface
effects such as gloss in real-life measurements.
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