
A Fast Approach for Static Timing Analysis Covering All
PVT Corners∗

Sari Onaissi
University of Toronto
Toronto, ON, Canada

sari@eecg.utoronto.ca

Feroze Taraporevala
Synopsys Inc.

Mountain View, CA, USA
ferozet@synopsys.com

Jinfeng Liu
Synopsys Inc.

Mountain View, CA, USA
jinfengl@synopsys.com

Farid Najm
University of Toronto
Toronto, ON, Canada

f.najm@utoronto.ca

ABSTRACT
The increasing sensitivity of circuit performance to process, tem-
perature, and supply voltage (PVT) variations has led to an in-
crease in the number of process corners that are required to verify
circuit timing. Typically, designers attempt to reduce this com-
putational load by choosing, based on experience, a subset of
the available corners and running static timing analysis (STA) at
only these corners. Although running a few corners, which are
chosen beforehand, can lead to acceptable results in some cases,
this is not always the case. Our results show that in the case of
setup timing analysis, one can indeed bound circuit slacks across
all corners by running a small number of corners. On the other
hand, we show that this is not possible in the case of hold anal-
ysis. Instead, we present an alternative method for performing
fast and accurate hold timing analysis which covers all corners.
In this method a full timing run is performed for a small number
of corners, and partial timing runs, which cover only the clock
network, are performed for others. We then combine the results
of the full and partial runs to find the worst-case hold slacks over
all corners. Our results show that this method is accurate and
can achieve much improved runtimes.

Categories and Subject Descriptors
B.8.2 [Hardware]: Performance and Reliability—Performance
Analysis and Design Aids
General Terms
Performance, reliability, verification.

Keywords
Corner analysis, PVT corners, corner dominance, clock network.

1. INTRODUCTION
Accounting for the effects of process, supply voltage, and tem-

perature (PVT) variations on circuit performance is an integral
requirement in modern chip design flows. Typically, PVT varia-
tions are divided into two groups: chip-to-chip variations and on-
chip variations, which are variations seen across a single chip. In
practice, on-chip variations are considered less severe than chip-
to-chip variations and are handled using derates, or margins, in
static timing analysis (STA) runs [1]. On the other hand, chip-to-
chip variations can cover significantly wider limits within the op-
erating range, and therefore it is not practical to apply margining
techniques to this type of variations. Instead, designers employ
corner analysis, where STA runs are performed at a number of
PVT settings, referred to as corners. By doing this, it becomes
possible to capture a circuit’s worst-case behavior in the PVT
space without the excessive pessimism of margining. Of course,
this comes at the runtime cost of performing multiple STA runs.

With continuous technology scaling, the effect of PVT varia-
tions on circuit timing has increased, and this has led to an in-
crease in the number of corners required to cover the PVT space.

∗
This project was supported by Synopsys Inc. and the Natural

Sciences and Engineering Research Council (NSERC) of Canada.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC2011, June 5–10, 2011, San Diego, California, USA.
Copyright 2011 ACM 978-1-4503-0636-2/11/06 ...$10.00.

Combinational
Logic

Registers

Pin

Clock

Pout

RinRout

Figure 1: A general sequential circuit.

In addition, the trend towards the integration of more and more
functional blocks on a single chip means that current designs run
in an increasingly large number of modes. Because corner anal-
ysis must be performed in each of these modes, a large number
of PVT corners can lead to an explosion in the number of timing
runs. As a result, reducing the number of PVT corners at which
timing must be checked has become a primary concern in today’s
design flows. The technique of statistical static timing analysis
(SSTA), where PVT parameters are modeled as random vari-
ables (RV’s) with known probability distribution functions, has
been proposed as a solution to this problem [2, 3, 4]. By writ-
ing circuit element delays and signal arrival times as functions
of the random process parameters, these also become RV’s with
known distributions. However, although SSTA is accurate when
its underlying assumption of random process variables holds, this
is not always the case. Recently, some methods have emerged
where PVT variables are modeled simply as unknown variables
with known bounds, instead of RV’s with known distributions [5,
6, 7]. In these methods, circuit element delays are written as
affine (linear) functions of these variables, which are then used to
find the circuit’s worst delays. In [5] and [6] the authors use these
affine expressions to predict the corners which cause worst delays.
On the other hand, in [7] the authors propagate these affine func-
tions in the timing graph to find affine upper and lower bounds
on circuit delays. However, the linear dependence of gate and in-
terconnect delays on PVT parameters may not always hold, and
this can lead to errors in the reported results of these methods.
Therefore, we find that corner analysis is still the standard tech-
nique employed in industry, and that this is expected to remain
the case in the foreseeable future.

Usually, foundries characterize logic cells and interconnect for a
number of PVT corners and provide designers with these libraries.
Designers can then use these libraries to run STA at various cor-
ners to verify circuit timing across the PVT space. This process
of timing verification is generally performed at multiple stages of
the design flow. For example, in addition to running STA at sign-
off, timing runs are usually performed after logic synthesis and
before place and route to help identify timing violations early in
the flow. In particular, STA is heavily employed during circuit
optimization, where circuit timing and/or power are “fixed”by it-
eratively introducing changes and running STA until satisfactory
results are achieved. These repeated STA runs can become very
expensive if timing is to be verified at all PVT corners everytime.
In practice, designers rely on experience to choose a small subset
of all available corners which they believe will bound circuit slacks
at most endpoints. This set of corners is then used for non-final
STA runs throughout the design flow. Then, at sign-off, a number
of additional corners are added to this set to make sure that no
violations were overlooked in this process. Although it is possible
for a pre-determined small set of corners to account for worst-
case slacks over all corners for setup analysis, this is not always
the case for hold analysis. In fact, such a method can lead to

777

42.1

overlooking a large percentage of hold timing violations. There-
fore, it is important for designers to have an alternative method
of running multi-corner STA that not only reduces runtimes but
also provides accurate worst-case slack values.

In this work, we present such an approach for achieving fast
and accurate timing verification covering all PVT corners. For
setup analysis, we show that the industry practice of choosing
a small set of corners can indeed capture worst-case slacks over
all corners. On the other hand, we show that it is not possible
to choose such a set for hold analysis. Instead, we present a
method where full timing runs, i.e. covering the entire circuit,
are performed for only a small number of corners. Then, much
cheaper partial timing runs that cover only the clock network
are used to estimate slacks at other corners. Our approach is
primarily intented for non-final STA runs where it provides large
runtime gains while maintaining a high degree of accuracy. As
a result it can lead to significantly reduced turnaround times for
multi-mode timing runs and circuit optimization iterations.

2. BACKGROUND
2.1 Static Timing Analysis

Consider the general logic circuit shown in Fig. 1, where Rin

is the set of register input data pins, Rout is the set of register
output data pins, Pin is the set of circuit input ports, and Pout

is its set of output ports. We call E = Rin ∪ Pout, the set of
endpoints of this circuit, and S = Rout∪Pin its set of startpoints.
At an endpoint e ∈ E, two types of timing constraints must be
satisfied for every startpoint s ∈ S. The first type is the setup
timing constraint which can be written, in its simplest form, as
follows:

max
s∈S

(as + Ds,e) − ae + tsetup < T (1)

where as is the clock signal arrival time at the startpoint s, Ds,e

is the largest datapath delay between s and e, ae is the clock
signal arrival time at the endpoint e, and tsetup is the required
setup time at e. The slack σsetup of this constraint is the timing
quantity by which this constraint is met, i.e.

σsetup = T − max
s∈S

(as + Ds,e) + ae − tsetup (2)

Thus a positive slack means that the endpoint meets the con-
straint while a negative slack means that it does not. The second
type of timing constraints is the hold timing constraint, written
as follows:

min
s∈S

(as + ds,e) − ae > thold (3)

where thold is the required hold time at e, and ds,e is the small-
est datapath delay between s and e. The slack σhold for this
constraint is written as:

σhold = min
s∈S

(as + ds,e) − ae − thold (4)

As in the case of setup constraints, a positive slack for a hold
constraint indicates that the constraint is met. A circuit is said
to satisfy its timing requirements, if, and only if, the setup and
hold timing constraints at each endpoint e ∈ E are met. This
verification is performed using STA, where the circuit is mod-
eled as a directed graph with nodes representing the nets of the
circuit and edges representing its timing arcs. Maximum and min-
imum delays are computed and propagated through this graph to
find the maximum and minimum signal arrival times as well as
the clock signal arrival times at all the endpoints of the circuit.
These values are then used to verify that the timing constraints
are met at all these endpoints. In corner analysis, this process
of delay computation, delay propagation, and the evaluation of
timing constraints is repeated for each PVT corner. An endpoint
is deemed to have satisfied its timing constraints only if the slacks
at this endpoint are positive for all corners.

2.2 Corner Dominance
Let the set of PVT corners of interest be C = {c1, c2, . . . , cn}

and the set of endpoints of the circuit under consideration be
E = {e1, e2, . . . , em}. A corner ci ∈ C is said to be dominant at
an endpoint ej ∈ E if it is the corner resulting in the worst-case

slacks (ps)0 10 20-20 -10

c4c1 c2 c3

c4c1 c2c3

c4c1c2 c3

c4c3 c1 c2

e4

e3

e2

e1

endpoints

Figure 2: Endpoints with corresponding corner
slacks.

Table 1: Test Circuits and Instances
Circuit T1 T2 T3 T4 T5
Inst 916K 933K 1,080K 1,145K 1,419K

slack at ej . For an arbitrary set of corners CA ⊂ C, we call the
percentage of endpoints in E where one of the corners in CA is
dominant the endpoint coverage, or simply coverage, of this set.
A set CD ⊂ C is said to be a dominant set if it has a coverage of
100%, i.e. if it includes the dominant corners for all e ∈ E. If one
were to know beforehand of such a set that is smaller than C, then
runtime gains could be achieved by restricting corner analysis to
CD instead of C. In fact, for non-final STA runs it is acceptable
to run a set CH ⊂ C which has high coverage even if it is not
strictly dominant.

The notion of dominance as defined above requires that a dom-
inant set captures the exact worst-case slack at all endpoints.
However, any industrial timing analyzer will have some margin of
error, and allowing deviations within this margin will not intro-
duce any additional inaccuracies. This concept can be be used to
reduce the size of dominant sets by allowing a dominance mar-
gin, where for a given endpoint, any corner whose slack is within
some acceptable margin from the worst-case slack can be con-
sidered dominant. Consider the example shown in Fig. 2, which
shows the slacks at 4 endpoints of a circuit for the set {c1, . . . , c4}.
In order to capture the exact worst-case slacks at each of these
endpoints, we would need to run corners c1, c2, and c3, i.e. the
smallest dominant set would be CD = {c1, c2, c3}. Now, if we
allow a dominance margin of 10ps, our dominant set can be re-
duced to {c1, c2}. This is because the dominance margin allows
c1 to be dominant at e1 and e3, thereby increasing the coverage
of the set {c1, c2} to 100%.

3. EXPERIMENTAL SETUP
Due to the complexity involved in performing STA on industrial

designs, a rigorous experimental setup is required to evaluate any
proposed technique in this area. In what follows, we present the
details of the setup used in this work.

3.1 Test Circuits and PVT Corners
Our timing runs were performed on a set of 15 industrial cir-

cuits mapped to a 45nm standard library. However, for brevity,
we only show results for a reduced set of 5 circuits that capture
the trends. These circuits range in size from 916,000 to 1.4 mil-
lion instances. Table 1 shows our test circuits and their respective
sizes.

In our tests, we use the standard set of PVT corners that is used
to run corner analysis in industry. This set covers 3 device settings
(“Best Case”, “Typical Case”, and “Worst Case”) and 5 intercon-
nect settings (“Min C”,“Min RC”,“Typical”,“Max RC”, and“Max
C”), which are crossed to give a set of 15 PVT corners [1]. Let
us first consider the device settings, shown in Table 2. The “Best
Case” setting (fast process, high voltage, and low temperature) is
the one which results in the fastest device performance, whereas
the “Worst Case” setting (slow process, low voltage, and high
temperature) results in the slowest performance. The “Typical
Case”, as the name suggests, gives the nominal performance. In
the interest of clarity, our discussion does not consider the effect
of temperature inversion, where it becomes possible for the slow-
est device performance to occur at a low temperature. However,

Table 2: Device Settings

Setting Process Supply Voltage Temp.
Best Case (bc) Fast 0.99V 0oC

Typical Case (tc) Typical 0.90V 25oC
Worst Case (wc) Slow 0.81V 125oC

778

42.1

Table 3: Interconnect Settings

Setting Capacitance Resistance
Min C Low > Nominal

Min RC > Nominal Low
Typical Nominal Nominal
Max RC < Nominal High
Max C High < Nominal

Table 4: PVT Corners
Min C Min RC Typical Max RC Max C

bc c1 c2 c3 c4 c5
tc c6 c7 c8 c9 c10
wc c11 c12 c13 c14 c15

our work can be easily extended to handle this effect by adding
an extra device setting with slow process, low voltage, and low
temperature to the list in Table 2 [1].

Now let us look at the interconnect settings, which are shown in
Table 3. The settings“Min RC”and“Max RC”result in the lowest
and highest interconnect RC products respectively, whereas “Min
C” and “Max C” result in the lowest and highest interconnect ca-
pacitance values [1]. Therefore, for paths with long interconnects,
corners“Min RC”and“Max RC”will give the smallest and largest
path delays respectively. On the other hand, for paths with short
nets, it is corners “Min C” and “Max C” that cause the extreme
path delays [1].

The device and interconnect settings described above are com-
bined to get the set C of 15 PVT corners shown in Table 4.
In this set, we define the three subsets Cb = {c1, c2, c3, c4, c5},
Ct = {c6, c7, c8, c9, c10}, and Cw = {c11, c12, c13, c14, c15}. The
set C includes the corners commonly available for performing tim-
ing verification in industry, and typically designers have to make
some difficult choices on how to reduce it to a more manageable
set as described earlier. Note that identifying the corners in this
set which result in extreme signal arrival times is not very chal-
lenging. That is, it would be enough to consider corners c1 and
c2 to find minimum signal arrival times, and corners c14 and c15
to find maximum arrival times. Therefore, we call Cm = {c1, c2}
the set of “fast” corners and CM = {c14, c15} the set of “slow”
corners. Although these two sets can be used to find extreme
signal arrival times, things are not necessarily this simple when
one is looking for the worst-case slacks.

3.2 Practical Issues
In our timing runs margining is used to account for on-chip

variations. In the case of setup analysis, this is done by adding a
margin of 5% to maximum signal arrival times, and a margin of
−5% to capture-clock signal arrival times. On the other hand, in
the case of hold analysis, this is done by using a margin of −5%
with minimum signal arrival times, and 5% with capture-clock
signal arrival times. These margins are commonly referred to as
derates. In cases where the clock launch and capture paths at a
given endpoint share common logic cells and interconnect, derat-
ing the delays of common elements differently can result in pes-
simistic slack values. Therefore, a clock reconvergence pessimism
removal (CRPR) technique was used to reduce this pessimism as
is customary in industry. In the interest of brevity, a lot of the
discussion and arguments in this work assume flop-to-flop paths,
i.e. paths that don’t start or terminate at circuit ports. Also,
unless stated otherwise, our timing runs exclude paths that start
at circuit input ports or terminate at circuit output ports. The
reason for this is that in the case of logic blocks these paths are
typically handled at a higher level, i.e. when the block timing is
analyzed in its context. As for a complete circuit, these will be
handled separately due to the extra complexity introduced by ex-
ternal factors such as pin capacitances and connections with other
circuits. Another practical issue of importance in our results is
that of failing and non-failing endpoints. Recall that a dominant
corner set is one which can account for worst-case slacks at all
the endpoints of a circuit. However, designers are only inter-
ested in a set which accounts for worst-case slacks at endpoints
that are failing or “close” to failing. Therefore it is acceptable
to cover only such endpoints. Because timing failures depend on
external parameters such as clock periods and path derates, dif-
ferent circuits will have different percentages of failing endpoints.
Therefore, looking at failing endpoints only will lead to skewed

Table 5: Margins vs. minimum clock periods

Circuit T1 T2 T3 T4 T5
Tmin 4ns 3.9ns 2.2ns 3ns 1ns

Margin/Tmin (setup) 0.8% 0.8% 1.4% 1.0% 3.0%
Margin/Tmin (hold) 0.3% 0.3% 0.5% 0.3% 1.0%

Table 6: Maximum arrival-time dominance
Circuits

Margins T1 T2 T3 T4 T5
0ps c15 c14, c15 c14, c15 c14, c15 c14, c15
10ps c15 c14, c15 c14, c15 c14, c15 c14, c15
20ps c15 c14, c15 c14, c15 c14, c15 c14, c15
30ps c15 c14, c15 c14, c15 c14, c15 c14, c15

results if some circuits have very low or high percentages of fail-
ing endpoints. On the other hand, looking at all the endpoints
will not address the real issue of timing violations, and might miss
runtime improvement opportunities by attempting to capture the
behavior of safe endpoints that are of no interest to designers. In
our experiments, we accommodate both of these concerns by col-
lecting data from the top-25% of endpoints with the worst slacks,
regardless of whether they fail any timing constraints or not. This
relatively high percentage of endpoints allows us to focus on the
behavior of the endpoints with the worst slacks without the risk
of skewed results from circuits with few timing violations. There-
fore, in all our tests, we consider these to be the set of failing
endpoints and we only collect data from these endpoints.

Recall that in our analysis, we allow a dominance margin that
is acceptable to designers. In this work, results are presented
for multiple dominance margin values, where for setup analysis
the largest dominance margin allowed is 30ps, and in the case
of hold analysis it is 10ps. In order to put these numbers in
perspective, Table 5 shows the smallest clock period of each of our
test circuits, and how the maximum setup and hold dominance
margins compare to these clock periods. This table shows that
our margins represent a very small percentage of clock periods,
which would be acceptable in an industrial setting.

4. ARRIVAL-TIME DOMINANCE
For an endpoint e ∈ E, the maximum signal arrival time is

written as We = maxs∈S (as + Ds,e) and the minimum signal
arrival time is written as we = mins∈S (as + ds,e). These arrival
times are used to compute setup and hold slacks respectively at
e as shown in (2) and (4). In Section 3.1, we claim that it is
enough to look at corners c14 or c15 to find the largest value of
We, whereas corners c1 and c2 can be used to get the smallest
we. In order to check that, we ran each of our test circuits at
all PVT corners in set C. Then, for each circuit we collected the
maximum and minimum arrival times at all endpoints for all cor-
ners. Table 6 and Table 7 show corner dominance for maximum
arrival times (We) and minimum arrival times (we), respectively.
As expected, we see that the corners in set CM = {c14, c15} are
the main corners which cause the largest signal arrival times in
all of our circuits. We also see that set Cm = {c1, c2} results in
the smallest signal arrival times at the endpoints of these circuits.

5. SLACK DOMINANCE
So far, we have seen that signal arrival time dominance is pre-

dictable. This is mainly because signal arrival times are path
delays found by adding logic cell and interconnect delays, which
have known dependencies on PVT corners. However, slack is not
computed in the same way, but rather by finding the difference
between launch and capture path delays. Therefore, one cannot
assume that slack dominance will follow arrival time dominance.
In this section, we look at slack dominance for both setup and
hold analyses. We show that in the case of setup analysis, worst-
case slacks are indeed determined by the same corners which cause
maxiumum arrival times. On the other hand we show that the
same cannot be said of hold slacks and applying such a technique
is not possible in that case.

Table 7: Minimum arrival-time dominance
Circuits

Margins T1 T2 T3 T4 T5
0ps c1, c2 c1, c2 c1, c2 c2 c1, c2
5ps c2 c1, c2 c1, c2 c2 c1, c2

7.5ps c2 c1, c2 c1, c2 c2 c1, c2
10ps c2 c1, c2 c1, c2 c2 c1, c2

779

42.1

Table 8: Setup slack coverage of CM

Circuits
Margins T1 T2 T3 T4 T5

0ps 99.8% 99.0% 99.9% 87.6% 100%
10ps 100% 99.8% 100% 97.9% 100%
20ps 100% 100% 100% 99.8% 100%
30ps 100% 100% 100% 99.9% 100%

Table 9: Endpoints with startpoint changes

Circuit T1 T2 T3 T4 T5
% SP Changes 2.1% 2.7% 11.4% 0.5% 13.1%

5.1 Setup Analysis Dominance
Recall that for setup analysis, the slack at an endpoint e is

written as shown in (2). Changing PVT corners affects the values
of the maximum arrival time We = maxs∈S (as + Ds,e), the clock
signal arrival time ae, and the required setup time tsetup. In
the case of setup analysis, the maximum datapath delay Ds,e is
expected to be relatively large, while as and ae will be of the same
order of magnitude for a reasonably balanced clock tree. This
means that the maximum arrival time We will be considerably
larger than (ae − tsetup). If this is not the case, i.e. if the value
of We is comparable to that of ae − tsetup, then these two terms
will almost cancel each other out and we would have a large slack
σsetup. In such a case, the endpoint will be safe and it is not
of much interest to designers. Therefore, for failing or “almost
failing” endpoints, Ds,e will be large, and the signal arrival time
will dominate the slack expression. As a result, the changes in
maximum arrival time We will dominate changes in slack when we
move from one PVT corner to another. Because of this, the worst-
case setup slacks are expected to occur at the corners which cause
the largest signal arrival times, i.e. the “slow” corners. That is
why it is common practice in industry to verify setup constraints
by running only these corners.

Recall that CM = {c14, c15} is the set of corners that cause the
largest signal arrival times. Table 8 shows, for each circuit, the
endpoint coverage of the set CM for different dominance margins.
This table shows that CM dominates over 99.9% of all endpoints
for a margin of 30ps, and over 97.9% of all endpoints for a mar-
gin of just 10ps. For non-final STA runs, the coverage provided
by CM is considered more than adequate, and it is enough to
run these 2 pre-determined corners to verify circuit setup con-
straints. Therefore, the industry practice of using “slow” corners
as a dominant set for setup slacks is accurate and justified.

5.2 Hold Analysis Dominance
Consider the expression of the hold slack at an endpoint e,

shown in (4). Although it is possible for the minimum arrival
time we = mins∈S (as + ds,e) to dominate ae + thold, one cannot
argue that this will be the norm as in the case of setup analysis.
The main reason for this is that the datapath delay ds,e will
typically be much smaller than in the case of setup analysis, thus
leading to more comparable values of we and ae+thold. Moreover,
if we is much larger than ae + thold then the slack will be large
and the endpoint will not be of much interest. Therefore, here we
see that endpoints fail when signal arrival times do not dominate
the slack expression rather than when they do as in the case
of setup analysis. This means that, unlike the setup analysis
case, we should not expect the corners which dominate worst-case
minimum arrival times to always dominate hold-slacks as well. In
fact, slack dominance for hold analysis can vary considerably for
different circuits as can be demonstrated for our test circuits.

Table 10 shows the endpoint coverage of the three sets Cm

(the set of dominant corners for minimum arrival times), Cb (the
set of corners with bc device setting), and Cw (the set of corners
with wc device setting) defined in Section 3.1. Here the objective
is to demonstrate that dominant sets for hold analysis can be
quite different from one circuit to another. Note that we do not
show any results for the set Ct only because it has extremely
low coverage for all of our test circuits. First, let us look at the
coverage of set Cm. Although this set covers a high percentage of
endpoints for circuits T1 and T3 (especially for larger margins),
we see that for other circuits this percentage drops to much lower
levels, e.g. a coverage of 68.5% of endpoints of circuit T2 for a

margin of 10ps. Therefore it is not possible to claim that this set
can be used to account for worst-case hold slacks for all of our
circuits. Now consider set Cb. This set improves on the coverage
of Cm in many cases, namely for circuits T2-T5. This means that
some corners which are in Cb but not in Cm can be dominant at
many endpoints of these circuits. However, although Cb achieves
very good results for some of the circuits, its coverage remains
very low for T2. Therefore, this set also cannot be used to account
for hold slacks for all of the circuits. Another complication in the
case of hold analysis is that corners in Cw can also be dominant
at many of the endpoints. This is clearly seen in the cases of
T2-T5, where the percentage of endpoints dominated by this set
exceeds 4% and can be up to 26%. These results clearly show
that the set of dominant corners can be quite different from one
circuit to another. In some cases the set Cm is enough, whereas
for other circuits this is not enough and other corners have to be
added from Cb and Cw. Thus, designers cannot simply restrict
the analysis to two pre-chosen corners as in the case of setup
analysis, because doing so would risk overlooking a lot of timing
violations that can occur at other corners.

6. A METHOD FOR HOLD ANALYSIS
In the previous section, we showed that the set of dominant

corners for hold slacks can vary considerably from one circuit to
another. Therefore, any set that is guaranteed to bound the hold
slacks of a circuit has to include a large number of corners. In
this section, we present an alternative method where full timing
runs are performed for only a small number of corners and then
partial runs, which cover only the clock network, are used to
estimate slacks at remaining corners.

6.1 Hold Slack Estimation
Consider an arbitrary endpoint e of a circuit and a PVT corner

ci. Let s′ be the startpoint of the path with the worst-case hold
slack at e for an STA run at ci. Thus, the minimum signal arrival
time at e for corner ci is written as:

wi
e = min

s∈S

`
ai

s + di
s,e

´
= ai

s′ + di
s′,e (5)

where ai
s′ is the clock signal arrival time at s′, and di

s′,e is the

smallest datapath delay between s′ and e at ci. Therefore, the
hold slack for e at corner ci can be written as:

σi
hold = ai

s′ + di
s′,e − ai

e − tihold = ki
s′,e + di

s′,e − tihold (6)

where ki
s′,e = ai

s′−ai
e, is the clock skew between s′ and e. Assume

that for a timing run at another corner cj , s′ was also found to
be the startpoint of the path causing the worst-case slack at e.
As a result, the slack for e at corner cj is written as:

σj
hold = kj

s′,e + dj
s′,e − tjhold (7)

In this case, the change in hold slack Δij , where σj
hold = σi

hold +
Δij , can be written as follows:

Δij =
“
kj

s′,e − ki
s′,e

”
+

“
dj

s′,e − di
s′,e

”
+

“
tihold − tjhold

”
(8)

Knowing the exact value of Δij would require performing an STA

run at cj . However, consider an approximation Δ̃ij of Δij written
as the skew difference between corners ci and cj as follows:

Δ̃ij = kj
s′,e − ki

s′,e (9)

and an estimate σ̃j
hold of the slack σj

hold found by substituting

Δ̃ij for Δij :

σ̃j
hold = σi

hold + Δ̃ij (10)

That is, the slack at corner ci along with the clock skew difference
between these two corners is used to estimate the slack at cj . Such
an estimate can be obtained by running STA on the full circuit
for ci to obtain the slacks and skews at this corner, and then
performing a timing run that propagates delays only in the clock
network for cj to find only skews this time. In this operation,

780

42.1

Table 10: Hold slack coverage

Circuits
T1 T2 T3 T4 T5

Margins Cm Cb Cw Cm Cb Cw Cm Cb Cw Cm Cb Cw Cm Cb Cw

0ps 34.4% 99.5% 0.4% 33.0% 75.5% 22.9% 63.1% 95.3% 4.2% 34.0% 95.2% 4.1% 41.7% 93.3% 6.5%
5ps 97.5% 99.7% 0.6% 59.4% 77.9% 24.7% 92.3% 95.6% 4.3% 76.3% 96.0% 4.7% 83.5% 93.7% 6.8%

7.5ps 98.7% 99.8% 0.7% 64.5% 78.5% 25.3% 93.1% 95.8% 4.4% 83.9% 96.3% 5.0% 85.9% 93.9% 7.0%
10ps 99.2% 99.8% 0.9% 68.5% 79.0% 26.0% 93.6% 95.9% 4.5% 89.0% 96.4% 5.3% 88.3% 94.0% 7.0%

Table 11: Method results
Circuits

T1 T2 T3 T4 T5
Margins ΩA ΩT M ΩA ΩT M ΩA ΩT M ΩA ΩT M ΩA ΩT M

0ps 26.2% 100% 72.0% 11.1% 98.4% 51.8% 45.2% 99.4% 88.6% 16.2% 99.3% 60.3% 31.3% 99.7% 68.0%
5ps 85.6% 100% 99.8% 56.9% 100% 99.7% 94.7% 99.9% 99.9% 71.7% 100% 100% 76.1% 100% 98.6%

7.5ps 95.7% 100% 99.9% 65.6% 100% 99.8% 96.2% 100% 99.9% 82.5% 100% 100% 80.8% 100% 99.1%
10ps 98.7% 100% 99.9% 71.8% 100% 99.9% 96.9% 100% 99.9% 89.0% 100% 100% 85.8% 100% 99.4%

ci is referred to as the anchor corner and cj is called the partial
corner.

The difference between σj
hold and σ̃j

hold, i.e. the error of this

approximation, is essentially the difference between Δij and Δ̃ij

and can be written as:

σj
hold − σ̃j

hold =
“
dj

s′,e − di
s′,e

”
+

“
tihold − tjhold

”
(11)

Typically, the differences in required hold times are very small
and do not lead to significant errors. However, the term ed =“
dj

s′,e − di
s′,e

”
can lead to inaccuracies. If dj

s′,e < di
s′,e, the

estimated slack would be larger than the actual slack, and this
would lead to an optimistic slack value. On the other hand, if

ed is positive and very large, the estimated slack σ̃j
hold would be

much smaller than the actual slack σj
hold, and our estimate would

be overly pessimistic. Therefore, in order for this slack estimate

to be useful it is required that i) ed > 0, i.e. dj
s′,e > di

s′,e and ii)

the value of ed should not be very large.
The first condition above requires always using anchor corners

that have smaller datapath delays than those of partial corners.
This means that, for example, we could use c6 (tc, Min C) as
an anchor corner to estimate slacks at the partial corner c11 (wc,
Min C), but not at c1 (bc, Min C). On the other hand, the sec-
ond condition requires that we limit the datapath delay spread
between anchor corners and partial corners. In our approach, we
do this by dividing our set of corners C into the three subsets Cb,
Ct, and Cw from Section 3.1 where, for each of these groups, one
corner is designated as the anchor corner and is used to estimate
slacks at the remaining corners in the same set. The division of C
into these sets avoids potentially large spreads in datapath delays
between anchor and partial corners, and prevents excessive pes-
simism that results from such spreads. The anchor corners chosen
for these sets are c1 (bc, Min C) for set Cb, c6 (tc, Min C) for Ct,
and c11 (wc, Min C) for Cw. Note that because functional logic
paths generally tend to have short nets, corners with interconnect
setting “Min C” rather than “Min RC” are the ones expected to
result in the smallest datapath delays. Thus, these are chosen
as the anchor corners for sets Cb, Ct, and Cw, and are used to
estimate slacks at the partial corners in their corresponding sets.

In our discussion above, we presented the method used to es-
timate the worst-case slacks at the partial corner cj , using a full
timing run at the anchor corner ci. However, in this discussion
we assumed that, for an endpoint e, the worst-case startpoint s′
is the same at both the anchor corner ci and the partial corner cj .
Indeed, in practice it is mostly the case that the worst-slack start-
points for each endpoint are the same across all PVT corners. For
instance, Table 9 shows, for each of our test circuits, the percent-
age of endpoints whose worst-slack startpoints can differ between
any two corners in C. This table shows that the percentage of
endpoints which change startpoints across PVT corners is typi-
cally small. Therefore, in the majority of cases our assumption
of “startpoint stability” holds. When startpoint changes do occur
between corners, our slack estimate becomes that of the worst-
case slack from paths originating at s′. One solution to this would
be to find at ci the worst-case slacks for paths originating at a
number of startpoints, and then to estimate the slacks at cj for
paths originating from each of these. However, such a solution

is not necessary mainly because the estimates of worst-case slack
from s′ will be close enough to the actual worst-case slacks and
will still provide good endpoint coverage as our results will show.

6.2 Results
6.2.1 Accuracy

The accuracy of our method can be evaluated by comparing
its estimated slacks to actual worst-case slacks found by running
all corners. As stated earlier, our corners were divided into the
three sets Cb, Ct, and Cw. In our method, the slacks for each
of these sets are found by performing a full STA run at only
the anchor corner and partial runs at the remaining corners. On
the other hand, in standard corner analysis, full timing runs are
performed for all the corners in these sets. Now, recall that the
set Ct has very low endpoint coverage for all of our test circuits.
Therefore, the set ΩT = Cb ∪ Cw achieves a coverage of close to
100% for all test circuits, as we will show shortly. Because of that,
our method was used to estimate the worst-case slacks at corners
in Cb and Cw only, and the results were compared to standard
corner analysis over ΩT . However, note that including the set Ct

in both our approach and in standard corner analysis does not
affect the accuracy or the runtime improvements of our method.

Recall that our method computes a worst-case slack estimate
for all the endpoints of a circuit. Here, we report, for each cir-
cuit, the endpoint coverage of our method found by comparing
our estimated worst-case slacks to actual worst-case slacks found
by running ΩT . Our method is deemed to have “covered” an end-
point, if the worst-case slack estimate is found to be less than or
equal to the actual worst-case slack, i.e. if the slack estimate is
conservative. Moreover, we also report results where a dominance
margin is used. In this case, an endpoint is also considered “cov-
ered” if the estimated worst-case slack is optimistic but within
the dominance margin from the actual worst-case slack. In Ta-
ble 11 we show the endpoint coverage of the set of anchor corners
ΩA = {c1, c11}, the coverage of set ΩT , and that of our method
(M). The contribution of our method can be seen by looking
at the improvement it shows over ΩA and its accuracy can be
observed by comparing its coverage to that of ΩT . Notice that
in some of our testcases the set ΩA covers a high percentage of
endpoints, especially for dominance margins of 7.5ps and 10ps
(e.g. T1 and T3). However, this coverage becomes lower when
the dominance margin is reduced to 5ps. In these cases, we see
that our method provides coverage which is very close to that of
ΩT for a dominance margin of 5ps. Moreover, as the coverage of
ΩA becomes low for circuits such as T2, T4, and T5 our method
still shows coverage of over 98.6% for a 5ps dominance margin.
In general, all of the testcases show that our method gives cover-
age that is very close to that of ΩT for the small margin of 5ps.
Therefore, our method would be very effective at finding close to
all hold timing violations with high accuracy.

6.2.2 Crosstalk
Typically, extracted interconnect capacitances are either grounded

capacitances or coupling capacitances between neighboring nets.
For delay calculations, the equivalent value of a coupling capac-
itance at a switching net (the victim) depends on whether the
coupled net (the aggressor) is switching at the same time, and,
if so, on whether this switching activity is in the same direction
as that of the victim. More specifically, an aggressor switching

781

42.1

Table 12: Method results with cross-talk analysis

Circuits
T1 T2 T3 T4 T5

Margins ΩA ΩT M ΩA ΩT M ΩA ΩT M ΩA ΩT M ΩA ΩT M
0ps 16.2% 99.6% 50.4% 6.8% 96.3% 39.3% 26.7% 99.6% 63.3% 7.7% 99.2% 47.8% 8.9% 99.7% 45.2%
5ps 87.6% 99.9% 98.9% 31.0% 99.7% 94.6% 75.0% 99.9% 97.1% 54.1% 99.9% 99.4% 44.3% 100% 86.5%

7.5ps 93.0% 100% 99.5% 41.9% 100% 97.3% 78.3% 100% 97.9% 67.0% 100% 99.7% 52.2% 100% 89.7%
10ps 94.9% 100% 99.7% 50.7% 100% 98.3% 81.5% 100% 98.4% 76.6% 100% 99.9% 59.5% 100% 92.1%

Table 13: Conservatism without and with SI
Circuit Mean S. Dev. Worst

T1 0ps (−1ps) 0ps (1ps) −9ps (−8ps)
T2 −1ps (−2ps) 2ps (2ps) −26ps (−28ps)
T3 −2ps (−6ps) 4ps (7ps) −26ps (−39ps)
T4 −1ps (−1ps) 1ps (3ps) −36ps (−37ps)
T5 −2ps (−3ps) 3ps (3ps) −38ps (−28ps)

in the opposite direction of a victim leads to a larger equivalent
capacitance at the victim than a non-switching aggressor does.
On the other hand an aggressor switching in the same direction
of a victim results in a smaller capacitance than that caused by
a non-switching aggressor. Modern timing analyzers account for
this effect by integrating crosstalk analysis, commonly referred
to as signal integrity (SI) analysis, into STA runs. In SI analy-
sis, the maximum delays of certain nets and their driving cells are
increased if neighboring nets can simultaneously switch in the op-
posite direction, whereas minimum delays are decreased if these
can switch in the same direction. However, this dependency of
delay values on the switching activity of neighboring nets can lead
to two possible complications for our method. First, recall that
in order for our technique to be conservative we must choose, for
each set of corners, an anchor corner that leads to the smallest
datapath delays. Under SI analysis, crosstalk that happens at a
partial corner, but not at the anchor corner, can lead to some
endpoints where the minimum signal arrival times occur at the
partial corner. The second possible complication is that in our
partial timing runs, delays are not propagated in functional logic
blocks, and therefore the effects of crosstalk on the clock network
from functional block aggressors cannot be accurately computed.
However, in spite of these two issues, our method still works well
with standard SI analysis, and this is mainly due to the follow-
ing reasons. Although crosstalk analysis can have a significant
effect on datapath delays, this is not very likely to happen for
a partial corner without also happening for the anchor corner.
Even if this does happen, datapath delays at the anchor corners
are smaller than those of partial corners to start with, and any
crosstalk speedup at the partial corners is offset by this difference.
Moreover, designers typically take extra care to shield the clock
network from the effects of crosstalk, and as a result, our partial
timing runs will still lead to generally accurate skews. In Table 12
we show the coverage results of our method with SI analysis. Al-
though we see that the coverage of our method is slightly reduced
here, this table shows that its coverage is still very high. For cir-
cuits T1-T4, the coverage is still above 98.4%, whereas it drops
to 92.1% for T5. Moreover, we see that, for all of the circuits,
the coverage provided by our method is much larger than that
provided by ΩA and is very close to ΩT .

6.2.3 Conservatism
As noted earlier, the slack estimates found using our method

can be conservative. In what follows we present statistics of
our method’s conservatism, i.e. statistics of estimated worst-case
slacks which are smaller than actual worst-case slacks. Table 13
shows, for all conservative estimated slacks, i) the mean value by
which actual worst-case slacks are underestimated, ii) the stan-
dard deviation of this underestimation, and iii) the worst such
underestimation. Results for STA runs with SI analysis are shown
in brackets. Our results show that the means and standard de-
viations of conservative underestimation are quite low for all the
circuits. The results also show that estimates can be conservative
by up to −40ps (T3-T5). However, the low means and standard
deviations show that these are outliers, and that the majority of
conservative estimates remain small. Note that even when our
estimated slacks do not add a lot to the coverage of set ΩA (the
case of T1 in Table 11), the conservatism of our results remains
small.

Table 14: Method runtimes
Circuit T1 T2 T3 T4 T5
Lfull 490.9s 486.4s 1157.0s 2466.6s 1358.6s

Lpartial 9.0s 11.9s 14.8s 10.3s 25.3s
Lover 153.1s 163.6s 232.0s 265.5s 288.4s

Ssimple 2.5× 2.4× 2.9× 3.6× 2.8×
Sshared 4.2× 4.1× 4.4× 4.7× 4.3×

6.2.4 Runtimes
We have seen that our method is indeed accurate, and it re-

mains to be shown that it can provide significant speedups. Ta-
ble 14 gives the runtime improvements that can be achieved by
running our method instead of running all corners in ΩT . This
table shows, for each circuit, the time it takes to complete a full
STA run (Lfull), the time it takes to complete a partial STA run
(Lpartial), and the overhead time needed to load the circuit and
the parasitics (Lover). In addition, this table shows the speedups
achieved by running our method instead of running all corners
if each partial run also runs the overhead tasks (Ssimple). We
also show the speedup that is possible if the overhead tasks are
shared (Sshared). An example of this would be if all the runs are
performed in the same session.

The first observation from Table 14 is that the runtimes of
partial STA runs are much smaller than the runtimes of overhead
operations, and are negligible when compared to runtimes of full
STA runs. This table also shows that running our method can
produce runtime improvements of 2.4× to 3.6× if the overhead
is included in each run. On the other hand, if the overhead is
shared among all timing runs, runtime improvements of over 4.1×
can be achieved. These STA runtime gains would translate to
huge runtime gains in cases where timing verification has to be
performed many times such as in circuit optimization, or in cases
where timing has to be verified in a large number of modes.

7. CONCLUSION
In this work, we presented an approach for running STA which

covers all PVT corners. Our approach is primarily intented for
non-final STA runs where it provides large runtime gains while
maintaining a high degree of accuracy. In the case of setup anal-
ysis, we showed that the industry practice of using a small subset
of all PVT corners to find the worst-case slacks of a circuit is
indeed accurate. This is not the case in hold analysis. Instead
we presented an approach that uses a limited number of full STA
runs, and much cheaper partial timing runs to find worst-case
hold slack estimates at all corners. Our method produces large
runtime gains and gives very accurate results.

8. REFERENCES
[1] J. Bhasker and R. Chadha. Static timing analysis for

nanometer designs: a practical approach. Springer, New York,
1st edition, 2009.

[2] H. Chang and S. Sapatnekar. Statistical timing alaysis
considering spatial correlations using a single PERT-line
traversal. In ICCAD, pages 621–625, November 9-13 2003.

[3] J. A. G. Jess, K. Kalafala, W. R. Naidu, R. H. J. M. Otten, and
C. Visweswariah. Statistical timing for parametric yield
prediction of digital integrated circuits. In Design Automation
Conference, pages 932–937, June 2-6 2003.

[4] C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Waler, and
S. Narayan. First-order incremental block-based statistical
timing analysis. In DAC, pages 331–336, June 2004.

[5] L.G. e Silva, L.M. Silveira, and J.R. Phillips. Efficient
computation of the worst-delay corner. In DATE, pages 1–6,
2007.

[6] J. J. Nian, S. H. Tsai, and C. Y. Huang. A unified multi-corner
multi-mode static timing analysis engine. In ASP-DAC, pages
669–674, 2010.

[7] S. Onaissi and F. N. Najm. A linear-time approach for static
timing analysis covering all process corners. TCAD,
27(7):1291–1304, 2008.

782

42.1

