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Abstract. The bilateral filter is a nonlinear filter that smoothes a signal
while preserving strong edges. It has demonstrated great effectiveness for
a variety of problems in computer vision and computer graphics, and a
fast version has been proposed. Unfortunately, little is known about the
accuracy of such acceleration. In this paper, we propose a new signal-
processing analysis of the bilateral filter, which complements the recent
studies that analyzed it as a PDE or as a robust statistics estimator.
Importantly, this signal-processing perspective allows us to develop a
novel bilateral filtering acceleration using a downsampling in space and
intensity. This affords a principled expression of the accuracy in terms of
bandwidth and sampling. The key to our analysis is to express the filter
in a higher-dimensional space where the signal intensity is added to the
original domain dimensions. The bilateral filter can then be expressed
as simple linear convolutions in this augmented space followed by two
simple nonlinearities. This allows us to derive simple criteria for down-
sampling the key operations and to achieve important acceleration of the
bilateral filter. We show that, for the same running time, our method is
significantly more accurate than previous acceleration techniques.

1 Introduction

The bilateral filter is a nonlinear filter proposed by Tomasi and Manduchi to
smooth images [1]. It has been adopted for several applications such as texture
removal [2], dynamic range compression [3], and photograph enhancement [4,5].
It has also be adapted to other domains such as mesh fairing [6, 7], volumetric
denoising [8] and exposure correction of videos [9]. This large success stems from
several origins. First, its formulation and implementation are simple: a pixel is
simply replaced by a weighted mean of its neighbors. And it is easy to adapt to
a given context as long as a distance can be computed between two pixel values
(e.g. distance between hair orientations in [10]). The bilateral filter is also non-
iterative, i.e. it achieves satisfying results with only a single pass. This makes
the filter’s parameters relatively intuitive since their action does not depend on
the cumulated effects of several iterations.

On the other hand, the bilateral filter is nonlinear and its evaluation is com-
putationally expensive since traditional acceleration, such as performing convolu-
tion after an FFT, are not applicable. Elad [11] proposes an acceleration method
using Gauss-Seidel iterations, but it only applies when multiple iterations of the
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filter are required. Durand and Dorsey [3] describe a linearized version of the
filter that achieves dramatic speed-ups by downsampling the data, achieving
running times under one second. Unfortunately, this technique is not grounded
on firm theoretical foundations, and it is difficult to evaluate the accuracy that
is sacrificed. In this paper, we build on this work but we interpret the bilateral
filter in terms of signal processing in a higher-dimensional space. This allows us
to derive an improved acceleration scheme that yields equivalent running times
but dramatically improves numerical accuracy.

Contributions This paper introduces the following contributions:

– An interpretation of the bilateral filter in a signal processing framework.
Using a higher dimensional space, we formulate the bilateral filter as a con-
volution followed by simple nonlinearities.

– Using this higher dimensional space, we demonstrate that the convolution
computation can be downsampled without significantly impacting the result
accuracy. This approximation technique enables a speed-up of several orders
of magnitude while controlling the error induced.

2 Related Work

The bilateral filter was first introduced by Smith and Brady under the name
“SUSAN” [12]. It was rediscovered later by Tomasi and Manduchi [1] who called
it the “bilateral filter” which is now the most commonly used name. The filter
replaces each pixel by a weighted average of its neighbors. The weight assigned
to each neighbor decreases with both the distance in the image plane (the spatial

domain S) and the distance on the intensity axis (the range domain R). Using
a Gaussian Gσ as a decreasing function, and considering a grey-level image I,
the result Ibf of the bilateral filter is defined by:

Ibf
p

=
1

W bf
p

∑

q∈S

Gσs(||p − q||) Gσr(|Ip − Iq|) Iq (1a)

with W bf
p

=
∑

q∈S

Gσs(||p − q||) Gσr(|Ip − Iq|) (1b)

The parameter σs defines the size of the spatial neighborhood used to filter a
pixel, and σr controls how much an adjacent pixel is downweighted because of
the intensity difference. W bf normalizes the sum of the weights.

Barash [13] shows that the two weight functions are actually equivalent to
a single weight function based on a distance defined on S×R. Using this ap-
proach, he relates the bilateral filter to adaptive smoothing. Our work follows a
similar idea and also uses S×R to describe bilateral filtering. Our formulation is
nonetheless significantly different because we not only use the higher-dimensional
space for the definition of a distance, but we also use convolution in this space.
Elad [11] demonstrates that the bilateral filter is similar to the Jacobi algorithm,
with the specificity that it accounts for a larger neighborhood instead of the clos-
est adjacent pixels usually considered. Buades et al. [14] expose an asymptotic
analysis of the Yaroslavsky filter [15] which is a special case of the bilateral fil-
ter with a step function as spatial weight. They prove that asymptotically, the
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Yaroslavsky filter behaves as the Perona-Malik filter, i.e. it alternates between
smoothing and shock formation depending on the gradient intensity. Durand and
Dorsey [3] cast their study into the robust statistics framework [16, 17]. They
show that the bilateral filter is a w -estimator [17] (p.116). This explains the
role of the range weight in terms of sensitivity to outliers. They also point out
that the bilateral filter can be seen as an extension of the Perona-Malik filter
using a larger neighborhood. Mrázek et al. [18] relate bilateral filtering to a large
family of nonlinear filters. From a single equation, they express filters such as
anisotropic diffusion and statistical estimators by varying the neighborhood size
and the involved functions. The main difference between our study and existing
work is that the previous approaches link bilateral filtering to another nonlinear
filter based on PDEs or statistics whereas we cast our study into a signal process-
ing framework. We demonstrate that the bilateral filter can be mainly computed
with linear operations, the nonlinearities being grouped in a final step.

Several articles [11, 14, 19] improve the bilateral filter. They share the same
idea: By exploiting the local “slope” of the image intensity, it is possible to better
represent the local shape of the signal. Thus, they define a modified filter that
better preserve the image characteristics e.g. they avoid the formation of shocks.
We have not explored this direction since the formulation becomes significantly
more complex. It is however an interesting avenue for future work.

The work most related to ours are the speed-up techniques proposed by
Elad [11] and Durand and Dorsey [3]. Elad [11] uses Gauss-Seidel iterations to
accelerate the convergence of iterative filtering. Unfortunately, no results are
shown – and this technique is only useful when the filter is iterated to reach the
stable point, which is not its standard use of the bilateral filter (one iteration
or only a few). Durand and Dorsey [3] linearize the bilateral filter and propose
a downsampling scheme to accelerate the computation down to few seconds or
less. However, no theoretical study is proposed, and the accuracy of the approx-
imation is unclear. In comparison, we base our technique on signal processing
grounds which help us to define a new and meaningful numerical scheme. Our
algorithm performs low-pass filtering in a higher-dimensional space than Durand
and Dorsey’s [3]. The cost of a higher-dimensional convolution is offset by the
accuracy gain, which yields better performance for the same accuracy.

3 Signal Processing Approach

We decompose the bilateral filter into a convolution followed by two nonlineari-
ties. To cast the filter as a convolution, we define a homogeneous intensity that
will allow us to obtain the normalization term W bf

p
as an homogeneous compo-

nent after convolution. We also need to perform this convolution in the product
space of the domain and the range of the input signal. Observing Equations (1),
the nonlinearity comes from the division by W bf and from the dependency on
the pixel intensities through Gσr(|Ip − Iq|). We study each point separately and
isolate them in the computation flow.
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3.1 Homogeneous Intensity

A direct solution to handle the division is to multiply both sides of Equation (1a)
by W bf

p
. The two equations are then almost similar. We underline this point by

rewriting Equations (1) using two-dimensional vectors:
⎛

⎝

W bf
p

Ibf
p

W bf
p

⎞

⎠ =
∑

q∈S

Gσs(||p − q||) Gσr(|Ip − Iq|)

⎛

⎝

Iq

1

⎞

⎠ (2)

To maintain the property that the bilateral filter is a weighted mean, we intro-
duce a function W whose value is 1 everywhere:

⎛

⎝

W bf
p

Ibf
p

W bf
p

⎞

⎠ =
∑

q∈S

Gσs(||p − q||) Gσr(|Ip − Iq|)

⎛

⎝

Wq Iq

Wq

⎞

⎠ (3)

By assigning a couple (WqIq, Wq) to each pixel q, we express the filtered
pixels as linear combinations of their adjacent pixels. Of course, we have not
“removed” the division since to access the actual value of the intensity, the
first coordinate (WI) has still to be divided by the second one (W ). This can be
compared with homogeneous coordinates used in projective geometry. Adding an
extra coordinate to our data makes most of the computation pipeline computable
with linear operations; a division is made only at the final stage. Inspired by this
parallel, we call the couple (WI, W ) the homogeneous intensity.

Although Equation (3) is a linear combination, this does not define a linear
filter yet since the weights depend on the actual values of the pixels. The next
section addresses this issue.

3.2 The Bilateral Filter as a Convolution

If we ignore the term Gσr(|Ip − Iq|), Equation (3) is a classical convolution by a
Gaussian kernel: (W bf Ibf, W bf) = Gσs⊗(WI, W ). But the range weight depends
on Ip−Iq and there is no summation on I. To overcome this point, we introduce
an additional dimension ζ and sum over it. With the Kronecker symbol δ(ζ)
(1 if ζ = 0, 0 otherwise) and R the interval on which the intensity is defined, we
rewrite Equation (3) using

[

δ(ζ − Iq) = 1
]

⇔
[

ζ = Iq
]

:
⎛

⎝

W bf
p

Ibf
p

W bf
p

⎞

⎠ =
∑

q∈S

∑

ζ∈R

Gσs(||p− q||) Gσr(|Ip − ζ|) δ(ζ − Iq)

⎛

⎝

Wq Iq

Wq

⎞

⎠ (4)

Equation (4) is a sum over the product space S×R. We now focus on this space.
We use lowercase names for the functions defined on S×R. The product GσsGσr

defines a Gaussian kernel gσs,σr on S×R:

gσs,σr : (x ∈ S, ζ ∈ R) �→ Gσs(||x||) Gσr(|ζ|) (5)

From the remaining part of Equation (4), we build two functions i and w:

i : (x ∈ S, ζ ∈ R) �→ Ix (6a)

w : (x ∈ S, ζ ∈ R) �→ δ(ζ − Ix) Wx (6b)
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The following relations stem directly from the two previous definitions:

Ix = i(x, Ix) and Wx = w(x, Ix) and ∀ζ �= Ix, w(x, ζ) = 0 (7)

Then Equation (4) is rewritten as:
⎛

⎝

W bf
p

Ibf
p

W bf
p

⎞

⎠ =
∑

(q,ζ)∈S×R

gσs,σr(p − q, Ip − ζ)

⎛

⎝

w(q, ζ) i(q, ζ)

w(q, ζ)

⎞

⎠ (8)

The above formula corresponds to the value at point (p, Ip) of a convolution
between gσs,σr and the two-dimensional function (wi, w):

⎛

⎝

W bf
p

Ibf
p

W bf
p

⎞

⎠ =

⎡

⎣gσs,σr ⊗

⎛

⎝

wi

w

⎞

⎠

⎤

⎦ (p, Ip) (9)

According to the above equation, we introduce the functions ibf and wbf:

(wbf ibf, wbf) = gσs,σr ⊗ (wi, w) (10)

Thus, we have reached our goal. The bilateral filter is expressed as a convolution
followed by nonlinear operations:

linear: (wbf ibf, wbf) = gσs,σr ⊗ (wi, w) (11a)

nonlinear: Ibf
p

=
wbf(p, Ip) ibf(p, Ip)

wbf(p, Ip)
(11b)

The nonlinear section is actually composed of two operations. The functions
wbf ibf and wbf are evaluated at point (p, Ip). We name this operation slicing.
The second nonlinear operation is the division. In our case, slicing and division
commute i.e. the result is independent of their order because gσs,σr is positive
and w values are 0 and 1, which ensures that wbf is positive.

3.3 Intuition

To gain more intuition about our formulation of the bilateral filter, we propose
an informal description of the process before discussing further its consequences.

The spatial domain S is a classical xy image plane and the range domain
R is a simple axis labelled ζ. The w function can be interpreted as the “plot
in the xyζ space of ζ = I(x, y)” i.e. w is null everywhere except on the points
(x, y, I(x, y)) where it is equal to 1. The wi product is similar to w. Instead of
using binary values 0 or 1 to “plot I”, we use 0 or I(x, y) i.e. it is a plot with a
pen whose brightness equals the plotted value.

Then using these two functions wi and w, the bilateral filter is computed as
follows. First, we “blur” wi and w i.e. we convolve wi and w with a Gaussian
defined on xyζ. This results in the functions wbf ibf and wbf. For each point
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Fig. 1. Our computation pipeline applied to a 1D signal. The original data (top row)
are represented by a two-dimensional function (wi, w) (second row). This function is
convolved with a Gaussian kernel to form (wbf ibf, wbf) (third row). The first component
is then divided by the second (fourth row, blue area is undefined because of numerical
limitation, wbf

≈ 0). Then the final result (last row) is extracted by sampling the
former result at the location of the original data (shown in red on the fourth row).

of the xyζ space, we compute ibf(x, y, ζ) by dividing wbf(x, y, ζ) ibf(x, y, ζ) by
wbf(x, y, ζ). The final step is to get the value of the pixel (x, y) of the filtered
image Ibf. This directly corresponds to the value of ibf at (x, y, I(x, y)) which
is the point where the input image I was “plotted”. Figure 1 illustrates this
process on a simple 1D image.

4 Fast Approximation

We have shown that the bilateral filter can be interpreted as a Gaussian filter in
a product space. Our acceleration scheme directly follows from the fact that this
operation is a low-pass filter. (wbf ibf, wbf) is therefore essentially a band-limited
function which is well approximated by its low frequencies.

Using the sampling theorem [20] (p.35), it is sufficient to sample with a rate
at least twice shorter than the smallest wavelength considered. In practice, we
downsample (wi, w), perform the convolution, and upsample the result:

(w↓i↓, w↓) = downsample(wi, w) (12a)

(wbf
↓ ibf

↓ , wbf
↓ ) = gσs,σr ⊗ (w↓i↓, w↓) (12b)

(wbf
↓↑ ibf

↓↑, w
bf
↓↑) = upsample(wbf

↓ ibf
↓ , wbf

↓ ) (12c)
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The rest of the computation remains the same except that we slice and divide
(wbf

↓↑ ibf
↓↑, w

bf
↓↑) instead of (wbf ibf, wbf), using the same (p, Ip) points. Since slicing

occurs at points where w = 1, it guarantees wbf ≥ gσs,σr(0), which ensures that
we do not divide by small numbers that would degrade our approximation.

We use box-filtering for the prefilter of the downsampling (a.k.a. average
downsampling), and linear upsampling. While these filters do not have perfect
frequency responses, they offer much better performances than schemes such as
tri-cubic filters.

4.1 Evaluation

To evaluate the error induced by our approximation, we compare the result
Ibf
↓↑ from the fast algorithm to Ibf obtained from Equations (1). For this pur-

pose, we compute the peak signal-to-noise ratio (PSNR) considering R = [0; 1]:

PSNR(Ibf
↓↑) = −10 log10

(

1
|S|

∑

p∈S

∣

∣

∣Ibf
↓↑(p) − Ibf(p)

∣

∣

∣

2
)

.

We have chosen three images as different as possible to cover a broad spec-
trum of content. We use (see Figure 4):

– An artificial image with various edges and frequencies, and white noise.
– An architectural picture structured along two main directions.
– And a photograph of a natural scene with a more stochastic structure.

The box downsampling and linear upsampling schemes yield very satisfying
results while being computationally efficient. We experimented several sampling
rates (ss, sr) for S ×R. The meaningful quantities to consider are the ratios
(

ss

σs
, sr

σr

)

that indicate how many high frequencies we ignore compared to the

bandwidth of the filter we apply. Small ratios correspond to limited approxima-
tions and high ratios to more aggressive downsamplings. A consistent approxi-
mation is a sampling rate proportional to the Gaussian bandwidth (i.e. ss

σs
≈ sr

σr
)

to achieve similar accuracy on the whole S×R domain. The results plotted in
Figure 2 show that this remark is globally valid in practice. A closer look at
the plots reveals that S can be slightly more aggressively downsampled than R.
This is probably due to the nonlinearities and the anisotropy of the signal.
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Fig. 2. Accuracy evaluation. All the images are filtered with (σs = 16, σr = 0.1). The
PSNR in dB is evaluated at various sampling of S and R (greater is better). Our ap-
proximation scheme is more robust to space downsampling than range downsampling.
It is also slightly more accurate on structured scenes (a,b) than stochastic ones (c).
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The PSNR isolines are plotted in gray. Exact computation takes about 1h. • Right:
Accuracy-versus-time comparison. Both methods are tested on the architectural picture
(1600×1200) with the same sampling rates of S×R (from left to right): (4;0.025) (8;0.05)
(16;0.1) (32,0.2) (64,0.4).

Figure 3-left shows the running times for the architectural picture with the
same settings. In theory, the gain from space downsampling should be twice the
one from range downsampling since S is two-dimensional and R one-dimensional.
In practice, the nonlinearities and caching issues induce minor deviations. Com-
bining this plot with the PSNR plot (in gray under the running times) allows
for selecting the best sampling parameters for a given error tolerance or a given
time budget. As a simple guideline, using sampling steps equal to σs and σr pro-
duce results without visual difference with the exact computation (see Fig. 4).
Our scheme achieves a speed-up of two orders of magnitude: Direct computation
of Equations (1) lasts about one hour whereas our approximation requires one
second. This dramatic improvement opens avenues for interactive applications.

4.2 Comparison with the Durand-Dorsey speed-up

Durand and Dorsey also describe a linear approximation of the bilateral filter [3].
Using evenly spaced intensity values I1..In that cover R, their scheme can be
summarized as (for convenience, we also name Gσs the 2D Gaussian kernel):

ι↓ = downsample(I) [image downsampling] (13a)

∀ζ ∈ {1..n} ω↓ζ(p) = Gσr(|ι↓(p) − Iζ |) [range weight evaluation] (13b)

∀ζ ∈ {1..n} ωι↓ζ(p) = ω↓ζ(p) ι↓(p) [intensity multiplication] (13c)

∀ζ ∈ {1..n} (ωιbf
↓ζ , ω

bf
↓ζ) = Gσs ⊗ (ωι↓ζ , ω↓ζ) [convolution on S ] (13d)

∀ζ ∈ {1..n} ιbf
↓ζ = ωιbf

↓ζ / ωbf
↓ζ [normalization] (13e)

∀ζ ∈ {1..n} ιbf
↓↑ζ = upsample(ιbf

↓ζ) [layer upsampling] (13f)

IDD(p) = interpolation(ιbf
↓↑ζ)(p) [nearest layer interpolation] (13g)

Without downsampling (i.e. {Ii} = R and Steps 13a,f ignored), the Durand-
Dorsey scheme is equivalent to ours because Steps 13b,c,d correspond to a con-
volution on S×R. Indeed, Step (13b) computes the values of a Gaussian kernel
on R. Step (13c) actually evaluates the convolution on R, considering that ι↓(p)
is the only nonzero value on the ζ axis. With Step (13d), the convolution on S,
these three steps perform a 3D convolution using a separation between R and S.
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The differences comes from the downsampling approach. Durand and Dorsey
interleave linear and nonlinear operations: The division is done after the convo-
lution 13d but before the upsampling 13f. There is no simple theoretical base to
estimate the error. More importantly, the Durand-Dorsey strategy is such that
the intensity ι and the weight ω are functions defined on S only. A given pixel
has only one intensity and one weight. After downsampling, both sides of the
discontinuity may be represented by the same values of ι and ω. This is a poor
representation of the discontinuities since they inherently involve several values.
In comparison, we define functions on S×R. For a given image point in S, we
can handle several values on the R domain. The advantage of working in S×R
is that this characteristic is not altered by downsampling. It is the major reason
why our scheme is more accurate than the Durand-Dorsey technique, especially
on discontinuities.

Figure 3-right shows the precision achieved by both approaches relatively to
their running time, and Figure 4 illustrates their visual differences. There is no
gain in extreme downsampling since nonlinearities are no more negligible. Both
approaches also have a plateau in their accuracy i.e. beyond a certain point, pre-
cision gains increase slowly with sampling refinement but ours reaches a higher
accuracy (≈ 55dB compared to ≈ 40dB). In addition, for the same running time,
our approach is always more accurate (except for extreme downsampling).

4.3 Implementation

All the experiments have been done an Intel Xeon 2.8GHz using the same code
base in C++. We have implemented the Durand-Dorsey technique with the
same libraries as our technique. 2D and 3D convolutions are made using FFT.
The domains are padded with zeros over 2σ to avoid cross-boundary artefacts.
There are no other significant optimizations to avoid bias in the comparisons.
A production implementation could therefore be improved with techniques such
as separable convolution. Our code is publicly available on our webpage. The
software is open-source, under the MIT license.

5 Discussion

Dimensionality Our separation into linear and nonlinear parts comes at the
cost of the additional ζ dimension. One has to be careful before increasing the
dimensionality of a problem since the incurred performance overhead may exceed
the gains, restricting our study to a theoretical discussion. We have however
demonstrated that this formalism allows for a computation scheme that is several
orders of magnitude faster than a straightforward application of Equation (1).
This advocates performing the computation in the S×R space instead of the
image plane. In this respect, our approach can be compared to the level sets [21]
which also describe a better computation scheme using a higher dimension space.

Note that using the two-dimensional homogeneous intensity does not increase
the dimensionality since Equation (1) also computes two functions: W bf and Ibf.

Comparison with Generalized Intensity Barash also uses points in the S×R
space that he names generalized intensities [13]. Our two approaches have in
common the global meaning of S and R: The former is related to pixel positions
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sampling (σs, σr) (4,0.025) (8,0.05) (16,0.1) (32,0.2) (64,0.4)

downsampling 1.3s 0.23s 0.09s 0.07s 0.06s

convolution 63s 2.8s 0.38s 0.02s 0.01s
nonlinearity 0.48s 0.47s 0.46s 0.47s 0.46s

Table 1. Time used by each step at different sampling rates of the architectural image.
Upsampling is included in the nonlinearity time because our implementation computes
ibf

↓↑ only at the (x, Ix) points rather than upsampling the whole S×R space.

and the latter to pixel intensities. It is nevertheless important to highlight the
differences. Barash handles S×R to compute distances. Thus, he can express
the difference between adaptive smoothing and bilateral filtering as a difference
of distance definitions. But the actual computation remains the same. Our use
of S ×R is more involved. We not only manipulate points in this space but
also define functions and perform convolutions and slicing. Another difference
is our definition of the intensity through a function (i or ibf). Barash associates
directly the intensity of a point to its R component whereas in our framework,
the intensity of a point (x, ζ) is not its ζ coordinate e.g. in general ibf(x, ζ) �= ζ.
In addition, our approach leads to a more efficient implementation.

Complexity One of the advantage of our separation is that the convolution is
the most complex part of the algorithm. Using | · | for the cardinal of a set, the
convolution can be done in O (|S| |R| log(|S| |R|)) with fast Fourier transform
and multiplication in the frequency domain. Then the slicing and the division
are done pixel by pixel. Thus they are linear in the image size i.e. O (|S|). Hence,
the algorithm complexity is dominated by the convolution. This result is verified
in practice as shown by Table 1. The convolution time rapidly increases as the
sampling becomes finer. This validates our choice of focussing on the convolution.

6 Conclusions

We have presented a fast approximation technique of the bilateral filter based
on a signal processing interpretation. From a theoretical point of view, we have
introduced the notion of homogeneous intensity and demonstrated a new ap-
proach of the space-intensity domain. We believe that these concepts can be
applied beyond bilateral filtering, and we hope that these contributions will in-
spire new studies. From a practical point of view, our approximation technique
yields results visually similar to the exact computation with interactive run-
ning times. This technique paves the way for interactive applications relying on
quality image smoothing.

Future Work Our study translates almost directly to higher dimensional data
(e.g. color images or videos). Analyzing the performance in these cases will
provide valuable statistics. Exploring deeper the frequency structure of the S×R
domain seems an exciting research direction.
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Fig. 4. We have tested our approximated scheme on three images (first row): an ar-
tificial image (512 × 512) with different types of edges and a white noise region, an
architectural picture (1600 × 1200) with strong and oriented features, and a natural
photograph (800×600) with more stochastic textures. For clarity, we present represen-
tative close-ups (second row). Full resolution images are available on our website. Our
approximation produces results (fourth row) visually similar to the exact computation
(third row). A color coded subtraction (fifth row) reveals subtle differences at the edges
(red: negative, black: 0, and blue: positive). In comparison, the Durand-Dorsey approx-
imation introduces large visual discrepancies: the details are washed out (bottom row).
All the filters are computed with σs = 16 and σr = 0.1. Our filter uses a sampling rate
of (16,0.1). The sampling rate of the Durand-Dorsey filter is chosen in order to achieve
the same (or slightly superior) running time. Thus, the comparison is done fairly, using
the same time budget.


