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Abstract—We have previously developed a neurodynamical model of motion segregation in cortical visual area V1 and MT of the

dorsal stream. The model explains how motion ambiguities caused by the motion aperture problem can be solved for coherently

moving objects of arbitrary size by means of cortical mechanisms. The major bottleneck in the development of a reliable biologically

inspired technical system with real-time motion analysis capabilities based on this neural model is the amount of memory necessary for

the representation of neural activation in velocity space. We propose a sparse coding framework for neural motion activity patterns and

suggest a means by which initial activities are detected efficiently. We realize neural mechanisms such as shunting inhibition and

feedback modulation in the sparse framework to implement an efficient algorithmic version of our neural model of cortical motion

segregation. We demonstrate that the algorithm behaves similarly to the original neural model and is able to extract image motion from

real world image sequences. Our investigation transfers a neuroscience model of cortical motion computation to achieve

technologically demanding constraints such as real-time performance and hardware implementation. In addition, the proposed

biologically inspired algorithm provides a tool for modeling investigations to achieve acceptable simulation time.

Index Terms—Motion estimation, computational models of vision, recurrent information processing, motion aperture problem,

algorithms.

Ç

1 INTRODUCTION

IMAGE velocity or image motion describes the gradual
change of images in the presence of moving objects or a

moving observer. Technical applications, such as robotic
applications or human-computer interfaces require fast
solutions to generate accurate estimations of image motion.
Fast approaches often fail to disambiguate motion [1] and
accurate solutions often do not run in real time (see [2] for an
overview of different approaches). In particular, when dense
motion representation has to be estimated from ambiguous
motion configurations in the presence of only few trackable
features, many approaches fail to generate fast and accurate
results. Also, prior knowledge about what is expected to
happen in an image sequence, e.g., based on computations
from previous time steps or by top-down attention should
easily be included in a visual motion estimation scheme.
Biological systems share such properties, that instantaneous
measurements are combined with recurrent information
from previous time steps [3], [4], but with high-computa-
tional costs mostly caused by huge memory requirements or
complex numerical computations. Similar arguments con-
cerning the computational costs and the integration of prior
knowledge also apply for Bayesian frameworks [5], [6].
Moreover, it ismandatory for the accuracy of extracted image
motion to combine observations from different image
locations to overcome ambiguities which inherently cannot
be solvedbypurely local information (compareFig. 1).Global
integration is critical since it makes it impossible to

distinguish between differently moving objects. Thus, some
approaches use diffusion-schemes to propagate information
in space and time [7], [8]. To segregate image motion from
different regionswith differentmotions, local discontinuities
in the flow field can be utilized to steer the diffusion scheme
[9]. Similar concepts of integration and segregation were
introduced in [10] in a neural model of dense motion
estimation and segregation. This model also shares the
advantage of biological systems and Bayesian approaches
to be able to easily include additional information or prior
knowledge. In order tomake thatmodel suitable for technical
applications, we present here a biologically inspired algo-
rithm, which is based on the previously presented neural
model, but with significantly reduced requirements to
computational resources and near real-time capabilities.

1.1.1 Neural Model of Recurrent Motion Segregation

Here, we give a short overview of the neural model onwhich
the proposed algorithm is based and introduce some terms

related to neural modeling. Information concerning the

function ofneuralmechanisms in the neuralmodel are given
later with detailed explanations as algorithmic operations

(Section 2).
Visual information in the primate cortex is processed in

two different streams, the ventral and the dorsal stream
which mainly process form or motion information, respec-

tively [11]. Furthermore, the cortex can be divided into

different functional regions denoted as cortical areas with
different functional properties. Each area, in turn, contains

layers of neurons building a neural network with feedfor-
ward, lateral, and feedback connections to other layerswithin

the cortical area and to other cortical areas [12]. Relevant for

theneuralmodel are areasV1andMTalong thedorsal stream
which can be identified to play an important role for early

visual motion processing [13], [14], [15].
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The major contributions of the previously presented
neural model [10] are 1) the solution of the motion aperture
problem and 2) the separation of areas of different motion.
The motion aperture problem reflects the fact that motion
can locally be measured only orthogonal to an extended
contrast, the so-called normal flow [16] (compare Fig. 1a).
The model solves this problem by propagating information
along elongated contrasts and, thus, by combining motion
cues over large areas. Moreover, the neural model clusters
similar spatially connected velocities and, thus, segregates
regions of different motion from each other. The model
represents velocity locally by a full exhaustive coding and
sampling of velocity space with likelihoods (also referred
to as neural activity) for each represented velocity at each
location. In neural terms, this representation of motion as
likelihoods is called population code, where each indivi-
dual likelihood corresponds to the activity of one individual
model cell.1 In the model, the represented velocity for one
likelihood is called the preferred velocity of the correspond-
ing cell, which, in neural terms, is coupled to the tuning of
the cell. The spatial receptive field of a cell describes the
image region which directly influences the activity of a cell.
All activities of cells encoding information at one specific
image location (sharing the same spatial receptive field) is
called local population code and determines the estimated
velocity at this location. Moreover, inhibition of neural
activity plays an important role for the neural model and
algorithm which means that the likelihoods representing
neural activity are reduced by some amount. Divisive
inhibition, in contrast to subtractive inhibition, means that
the reduction of likelihoods is realized by a division and is
often used to normalize activities [3], [18].

In a nutshell, the overall approach is that individual cells
collect votes (or likelihoods) for the velocity they represent
and that information from preceding time steps and from a
spatial neighborhood are combined to generate the final
motion estimation at each location. Themodel is divided into

twomodules denoted asmoduleV1 andmoduleMT, according
to the cortical areas V1 and MT of the visual system in
primates (see [19] for an introductory overview and, e.g., [12]
for a more detailed information). Each module performs the
same basic operations, module V1 on a fine scale and model
MT on a coarse scale. The operations consist of 1) integration,
2) normalization, and 3) feedback modulation of neural
activity (sketched in Fig. 2). The basic idea is that context
information from the coarse representation is utilized to solve
ambiguities on the fine resolution. These improved estima-
tions on the fine scale again are recombined in the coarse
representation, which, in turn, is used to further disambig-
uate the representation on the fine scale in a recursive
manner. Details about the individual mechanisms employed
by the neural model are given in algorithmic terms later in
Section 2.3. The input activities for the neural network
represent the similarity of the structure at different locations
at different time steps according to the corresponding
velocity represented by a cell. This similarity is computed
by the scalar product of bandpass filtered image regions
(compare elaborated Reichardt detectors; [20]).

1.1.2 Limitations and Complexity of the Computational

Implementation of the Neural Model of Motion

Segregation

The computational simulation of the neural model leads to
the following limitationsmaking the approach unsuitable for
many technical applications. 1) Limited range of detectable
velocities: The explicit sampling of the velocity space limits
the maximum speed to be represented and detected.
2)Memory requirement:Theexplicit representationof image
motion leads to a huge amount of memory needed to
represent the neural activity. The more velocities the model
candetect, themorememory is required.Assuming an image
sequence with 320� 200 pixels 15� 15 velocity tuned cells
present at each location and single-precision floating point
values (4 byte) to depict neural activity, the requiredmemory
to represent visual motion at a specific time step is
approximately 56 MB. 3) Runtime complexity: As a direct
consequence of 1) and 2), the runtime is also directly
dependent on themaximum speedwhich can be represented
by the model. In particular, the runtime complexity (and the
required memory) grows with the square of the maximum
speed to be detected.
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Fig. 1. Illustration of motion ambiguities showing that local information
does not necessarily reveal the true object motion. The example shows
a square moving to the lower right. The true object motion is indicated by
the outlined arrow, detectable local motion cues are indicated by small
arrows. (a) Local motion information at elongated contrasts contains
inherent ambiguities which makes it impossible to identify the true object
motion. (b) The combination of different ambiguous motion cues by, e.g.,
an intersection can reveal the true motion. (c) At locations with multiple
contrast orientations such as corners the detected motion is already
unambiguous.

1. In computational neuroscience approaches, formal neuron models are
investigated at different levels, ranging from a detailed representation with
the cell body, the structure of the dendritic tree (compartments), and the
axon of individual cells to a coarse representation of a unit representing a
cell or a cluster of cells without detailing the individual components [17]. In
this case, a model cells unit is considered as single unitary compartment
that is described by a membrane potential with changes as a function of the
current input and the state other cells connected to the target cells. Such a
single compartment model is utilized in [10].

Fig. 2. Sketch of the neural model that serves as a framework to derive
the fast algorithm. The model is divided into two modules which refer to
visual cortical areas, namely, V1 and MT. Each of the modules is
described by mechanisms of feedforward integration (bold arrows
between module boxes), lateral normalization (circular arrows within
module boxes), and feedback modulation (outlined arrow). The main
difference between both modules is the spatial scale of the operations: A
fine scale in module V1 and a coarse scale in module MT. As a
consequence, the second module combines adjacent motion cues from
the first module to solve ambiguities in a small neighborhood. Feedback
modulation from the second module, in turn, emphasizes or selects
individual motion cues from a set of ambiguous cues in the first module.



2 BIOLOGICALLY INSPIRED ALGORITHM OF

RECURRENT MOTION ESTIMATION AND

SEGREGATION

To overcome the drawbacks of the computational realization
of the neural model, we introduce an algorithmic representa-
tion of sparse motion hypotheses to reduce the required
memory. Then,wedevelopalgorithmic versions of theneural
mechanisms which work on the new representation. More-
over, the initial motion estimation is accelerated by introdu-
cing a simple similaritymeasure anda computational scheme
to efficiently extract relevant motion correspondences.

2.1 Motion Representation and Data Access

Motion is represented by sets of hypotheses for certain
velocities at each image location. A hypothesis thus contains
data about its image location ðx; yÞ, an integer valued velocity
vector ðvx; vyÞ, and a real valued weight w representing a
likelihood for this hypothesis in relation to other hypotheses
at the same location. The weight can also be interpreted as
confidence value, belief, or as neural activity.2 The spatial
location is implicitly encoded by the position in the array
where the hypotheses are stored. The array dimensions are
arranged as in the input images (see Fig. 3). We constrain the
amount of velocity hypotheses at each image location to a
maximum of hmax hypotheses.

With each hypothesis, we further store additional in-
formation for data access and the preservation of informa-
tion: 1) A combined velocity value vxvy :¼ vx þ vy � Iwidth,
which uniquely identifies the velocity in one single value and
which is used as a key for fast access (see Section 2.3). The lists
of hypotheses are sorted after this key, if not mentioned
otherwise. Sorting is implemented by using the Intro-Sort
algorithm that achieves OðN � logNÞ complexity where N is
the number of elements to be sorted [21] (implementation
available through the C++ standard template library at
http://www.sgi.com/tech/stl, 07/2005). Thus, sorting
of hypotheses has a complexity of Oðhmax � loghmaxÞ at

each image location. All hypotheses can be sorted in
Oðn loghmaxÞ ¼ Oðn lognÞ, where n is the maximum number
of all hypotheses at all locations. Such sorted arrays of
hypotheses for each image location allow to quickly search-
ing for the existence of a specific velocity at a given spatial
location. Therefore, we use a binary search algorithm (e.g.,
[22], which is implemented in OðloghmaxÞ). Moreover, if the
hypotheses at each location are sorted according to their
weightw instead of vxvy, we can directly select a subset of the
m most likely hypotheses for further processing by simply
using the firstm hypotheses of the array. 2) Since hypotheses
can also be represented on a subsampled spatial representa-
tion (see Section 2.3), we need copies of vx, vy, vxvy
(v0x; v

0
y; vxv

0
y) to store the velocity on the finest (original input)

resolution. Consequently, for the generation of a hypothesis,
we compute the combined value vxvy from vx and vy, we
determine the values v0x; v

0
y; vxv

0
y, and then store the hypoth-

esis at the corresponding array location.
The data representation generated for velocities that range

over the whole image requires a maximum of Iwidth � Iheight �
hmax hypotheses. Thus, the representation needs OðnÞ ¼
Oðnp � hmaxÞ bytes for the representation of the hypotheses
describing themotion correspondences between two frames,
where np is the total number of pixels of an input frame, hmax

the maximum amount of hypotheses at each image location,
and n the maximum number of all hypotheses. The constant
factor is 20 bytes, since we utilize single-precision floating
point variables (4 bytes) for the weights, integer variables
(4 bytes) for the combined velocity values, and short integer
variables (2 bytes) for the velocities. Assuming an image
sequence with 320� 200 pixels, the required memory to
represent amaximumamount of, e.g., five hypotheses at each
location at a specific time step is approximately 6.4 MB,
independent of the maximum speed to be represented.

2.2 Algorithmic Realization of Initial Motion
Estimation

The stage of initial motion estimation utilizes a discrete
similarity measure between image features, particularly the
Census transform [23]. The Census transform belongs to the
class of rank-order approaches where the gray value at the
center is compared with each value in a discrete neighbor-
hood to generate the feature vector. Our approach is based on
the algorithm proposed by [1], which uses the Census
transform and Hashtables. Differences between their ap-
proach and our initial motion estimation are given in the
discussion section.Thenovel aspect of our approach is that all
motion correspondences are represented in an efficient way
andnopre-selection basedon local image structure heuristics
is necessary for motion detection. As sketched in Fig. 4, the
Census transform is applied to the input frames and the
extracted feature vectors are converted to integer values
(called Census values). Since these values contain information
froma local neighborhood, eachof themrepresents a compact
description of local image structure.

For the generation of hypotheses from Census trans-
formed images, we sort the Census values of two succeeding
frames, which results in a compact representation of all
motioncorrespondences(basedonthecorrespondencesof the
Census values in the two frames). Sorting can be achieved in
Oðnp lognpÞ,wherenp is thenumberofpixels in the image (see
above). Further, the number of occurrences for all present
Census values can be computed inOðnpÞ. By linearlywalking
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2. The weight thus corresponds to the activity of a neural cell tuned to
the corresponding velocity. In contrast to the neural model, hypotheses are
allocated dynamically at runtime and are not fixed at the beginning of the
algorithm/simulation.

Fig. 3. Sparse motion representation. For each pixel, a maximum

number of hmax hypotheses can be stored (here hmax ¼ 5). Unused slots

are left blank.



through the sorted Census values of two frames, all motion
correspondences between these two frames can be deter-
mined. To reduce the amount of memory required for the
representation, we employ a selection process based on the
input correspondences and knowledge from previous ob-
servations if available: 1) At locations with less than hmax

motion correspondences, motion hypotheses are generated
for each available correspondence. Such locations with only
few motion ambiguities typically contain image structures
like corners or line-endings, but our approach does not
depend on the explicit detection of such image structures.
2) At locations with more than hmax motion correspondences
the algorithm ignores all correspondences, except if they
match expected motion hypotheses. Such expected hypoth-
eses are generated from context information later in the
algorithm and are fed back to the initial motion detection
stage. The presence of an expected correspondence in the
input canbe tested inOð1Þbydirectly comparing theexpected
Census value with the Census value at the specific image
location.We further ignore all correspondences representing
a velocity with speed greater that smax and completely ignore
motion cues when more than h0

max correspondences are
present (h0

max > hmax). Each selected motion correspondence
is then transformed into a motion hypothesis with weight
equal to 1.

In the first iteration, no expectations are present. As a
consequence, only less ambiguousmotion cueswith less than
hmax correspondences are selected to generate hypotheses to
be represented explicitly by the algorithm. All other more
ambiguous correspondences remain in the input signal as
subthreshold motion information. Through iterative proces-
sing, such correspondences may be selected at a later time.

2.3 Biologically Inspired Algorithm for Motion
Integration and Segregation

2.3.1 Overview

The algorithm is divided into two different modules, each
representing motion hypotheses on specific spatial scales.
The first module (corresponding to cortical area V1,
referred to as module V1) represents motion hypotheses on
the same scale/resolution on which they were detected. The
second module (module MT, corresponding to cortical area
MT) uses a coarser spatial resolution, where the accuracy of
spatial location as well as velocity is reduced by the factor 5
which is in accordance with physiological findings [24]. The
logic of the algorithm is that context information is
assembled in module MT by forward integration of

spatially adjacent local hypotheses from module V1. This
context information is interpreted as expectation signal
which is used to iteratively resolve ambiguities and to refine
the motion estimation and segregation process.

In contrast to motion estimation approaches based on
coarse-to-fine detection schemes, our approach has the
ability to represent arbitrary movements of fine (small)
structures. Such structures may not be represented in strong
low-pass filtered versions of the input images and, thus,
their corresponding image motion may not be extracted
correctly on coarse image scales. In turn, image velocities of
fine structures are typically overseen by coarse-to-fine
approaches which rely on the initial guesses of image
motion from coarser scales to compute the velocity on finer
scales [25]. In our algorithm, the maximum loss of motion
information caused by subsampling is defined by the
constant rate 1:5 between module V1 and MT. Approaches
with larger subsampling rates may oversee some important
features and, thus, fail to detect the motion of small objects.

In a nutshell, the functionality of both interacting
modules can be described as follows: raw motion estima-
tions are detected at each time step in the first module (as
described in Section 2.2). These motion cues typically are
highly ambiguous at many locations caused by the aperture
problem which leads to the presence of the true image
velocity together with many other possible interpretations.
In the second module, nearby motion hypotheses are
combined by averaging their weights, when they represent
the same velocities. Thus, assuming that motion of rigid
objects is constant in a small neighborhood, the true image
motion which has been measured at most locations of an
object will generate the largest weight. More generally, due
to the integration of weights from the previous stage we get
more reliable motion estimations that are indicated by the
motion hypotheses with the largest weights at each spatial
location of the second module. From this representation, a
prediction for the detected initial motion hypotheses at the
next time step (or frame) in the first module is computed. By
iteratively modulating the weights of these expected motion
cues in the first module, the system resolves motion
ambiguities over time. Furthermore, the predictive signal
is utilized for the selection process for the initial motion
detection. The detailed mechanisms of the iterative compu-
tation will be explained below.

2.3.2 Basic Operations and Mechanisms

1. Recurrent modulation. Recurrent excitatory modu-
lation aims to enhance the likelihood of motion
estimates that form the elements of a representation
which match an expected signal, while leaving the
likelihood of the rest of the representation un-
changed. In our framework of sparse velocity cues,
this is achieved by modulating the weight (wIN ) of
the sparsely represented input velocities by utilizing
a soft gating mechanism described in (1):

wIN � ð1þ C � wFBÞ; ð1Þ

where wFB is the expectation, or feedback signal
which acts as a spatial reentry mechanism [4] (we set
C ¼ 100). The function of feedback modulation
allows selective enhancement of the bottom-up
activities (hypothesis weights wIN in (1)) which
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Fig. 4. Census transformation at one specific location (black pixel in the

center). We use 16 surrounding pixel values to compute the Census

value c describing the local structure around the central pixel b. Each pixel

value ai is compared to the value of the central pixel. According to this

comparison, individual bits of the resulting census value are changed

(see equation in figure). A threshold of 6 (assuming 255 gray levels) is

employed to determine if two luminance values are approximately equal.

Additionally, the input images are blurred with a Gaussian ð� ¼ 1Þ.The

resulting Census value c lies within 0 � c < 43; 046; 721 ¼ 316.



receive top-down same-velocity activity wFB at the
same location while leaving other inputs intact that
receive no feedback enhancement (see Table 1).
Because the feedback signal is of lower spatial
resolution than the input signal, the weights are
interpolated.3 The complexity of the entire operation
of recurrent modulation is Oðnp � hmax � loghmaxÞ ¼
Oðn � loghmaxÞ, since for each hypothesis (np � hmax)
the feedback signal has to be tested for a matching
velocity (binary search, OðloghmaxÞ).

2. Weight normalization. The weight normalization is
necessary to guarantee that the weights of the
hypotheses stay in certain bounds. This is realized
by dividing the weight of each hypothesis at each
location by the sum of weights of all hypotheses
represented at the corresponding location. In other
words, the total weight energy is conserved at each
location. A small constant (0.001) is added to this sum
of weights to prevent divisions by zero. We would
like to highlight the role of the weight normalization.
The conservation of energy leads to weakening the
weights of ambiguous sets of hypotheses when
multiple motions cues are present at one location.
Consequently, an enhancement by, e.g., recurrent
modulation, is generated at the cost of inhibiting the
remaining weights. The complexity of this operation
is OðnÞ.

3. Subsampling. Motion hypotheses represented in
module V1 are spatially subsampled to build the
representation in module MT. Therefore, hypotheses
are pooled in a spatial neighborhood defined by a
Hanning filter (e.g., [26]) of 4 ��sþ 1 pixel width
with respect to the spatial resolution in module V1,
where �s is the spatial subsampling distance. The
weights of theHanning filter are normalized such that
the coefficients sum to one. First, the subsampled
output of the linear Hanning filter is computed. The
result is a new list of weighted hypotheses at each
subsampled image location, which may contain
multiple hypotheses for the same velocity. After
sorting, such multiple hypotheses are converted to
single hypotheses by adding their weights. Because
hypotheses fromdifferent locations are combined, the
maximum number of hypotheses at each location
may increase. By selecting a subset of hypotheseswith
maximumweights, the number of hypotheses is again
reduced to a maximum of hmax velocities. The
velocities of the resulting hypotheses are adjusted
such that they represent rounded, integer valued
subsampled velocities corresponding to the reduced
resolution. These adjusted velocities are stored in

addition to the velocity on the finest scale. The overall
complexity of this operation is Oðns � ks � hmax �
logðks � hmaxÞÞ, where ks is the (constant) size of the
kernel (the number of nonzero entries) and ns denotes
the number of subsampled locations. Note that
ns � np, where np equals the number of pixels of
the input image.

4. Velocity blur. Velocity blur reduces the sharpness of
the algorithmic response to a specific velocity by
pooling over similar hypotheses. This is necessary to
allow small motion variations within one segmented
object.Without such operation, the slightest change in
velocityatneighboring locationswould lead toasharp
segregation of the motion signal into different spatial
regions. The resulting velocities are dependent on the
velocity of the input hypothesis and a filter kernel in
the velocity domain. The output corresponds to the
linear filtering (convolution) of the input in velocity
space.Since thenumberofhypothesesmayincreaseby
this operation (similar as for the linear filtering in the
subsamplingoperation),weselect thehmaxhypotheses
with maximum weights. The complexity of this
operation is Oðnp � kv � hmax � logðkv � hmaxÞÞ, where kv
is the (constant) size of the kernel in velocity space (the
number of nonzero entries).

5. Nonlinear enhancement. This operation simply
squares the weights of all hypotheses. The effect of
the operation is that the relative differences of the
hypotheses’ weight coefficients are enhanced. The
complexity of this operation is OðnÞ.

6. Interpolation of subsampled hypotheses. To extract
the expected correspondences for the initial motion
detection, the feedbacksignal fromthe secondmodule
has to be interpolated in order to expand the spatial
resolution that matches the one of the first module
(this operation is basically the same as in constructing,
e.g., a Laplacian pyramid representation; [27]). There-
fore, for each pixel in module V1 the interpolated
hypotheses are generated by interpolation of the four
nearest locations of the subsampled representation in
module MT. The complexity of this operation is
Oðnp � hmaxÞ.

7. Predictive shift. The proposed algorithm is supposed
to work with sequences of images with moving
objects. Thus, the predictions from a previous time
step have to be adjusted to match the input signal at a
later time step.This is achievedby shifting the location
of each hypothesis according to its velocity, i.e., a
hypothesis that encodesavelocityof threepixels to the
left is shifted by three pixels to the left in space.
Becausemore than hmax hypotheses may bemoved to
a specific location, the algorithm combines hypoth-
eses representing identical velocities and chooses the
hmax hypotheses with maximum weights. The com-
plexity of this operation isOðnp � hmax � logðnp � hmaxÞÞ.

2.3.3 Algorithm

The algorithm is divided into two parts corresponding to

modules V1 and MT, processed consecutively, and repeated

iteratively (Fig. 5). As noted above, the differences between

both modules are the spatial resolution of the representation

and thedifferent input signals. 1)ModuleV1 computes initial

motion estimates from two successive frames of the input
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3. In order to achieve qualitatively good results at reasonable computa-
tional speed, we employed here a bilinear interpolation scheme.

TABLE 1
Function and Effect of Excitatory Feedback Modulation

Only if both input (a) and expectations (b) are in resonance, the feedback
multiplication has an excitatory effect. Else, the input is left unchanged.



sequence.Due to the spatially localized filteringemployed for
motion estimation, module V1 achieves a high spatial
accuracy but generates low quality velocity estimations.
Contrarily, 2) Module MT subsamples the output from
module V1 which implies spatial pooling and which leads to
larger apertures. Accordingly, the second module is less
affected by the aperture effect and generates better velocity
estimations, but with less spatial accuracy. After each
iteration, the hypotheses in model MT are shifted in space
according to their velocity to track the represented motion
cue. Thus, the signal from module MT can be interpreted as
predictor for the input expected in module V1.

After initial motion detection in module V1, the like-
lihoods of the generated hypotheses are modulated by the
reentry, or expectation, signal received frommodule MT. As
described in [10], this feedback modulation combines the
high spatial accuracy of the first module with the improved
velocity information of the second module by giving those
hypotheses in module V1 a bias which match the feedback
signal. Module MT does not receive any predictive modula-
tion (therefore, in the current model implementation there is
no feedback modulation step incorporated in the algorithm
formoduleMT). Furthermore, the feedback signal fromMT is
employed to select subthreshold motion correspondences at
locations with very ambiguous motion cues.

Within each module, the (modulated) input is nonli-
nearly enhanced, filtered, and normalized. The filtering step
in module V1 consists only of a lowpass in velocity space,
while module MT also applies a spatial subsampling which
implies spatial lowpass filtering. The nonlinearity on one
hand gives those hypotheses an extra advantage, which
already have a higher likelihood compared to other
hypotheses at a given location. The normalization on the
other hand keeps the output in certain bounds and leads to
flat likelihood distributions in the presence of ambiguities
and to strong peaks for unambiguous motion cues where
only a few hypotheses are likely to be present. The
combined action of these mechanisms in both modules
together with iterative feedback modulation implements a
biased competition [28] and generates a context-dependent

winner-takes-all behavior by gradually evolving a winning
velocity hypothesis at each location.

The main difference to the neural model described in [10]
is the selection of expected motion correspondences in the
initial motion estimation. This gives the algorithm an extra
advantage in computational speed since very ambiguous
motion cues are not explicitly represented and remain
hidden in the input as subthreshold signal.

2.3.4 Interpretation of Algorithmic Output

At each location andat each time step, the estimatedmotion is
represented as a set of weighted hypotheses. Such a set of
hypotheses at one location can be interpreted as local neural
population code representing distributed neural activity
(average spike rates) by means of local likelihoods for
individual velocities (see Fig. 6). Such interpretation is
consistent with the tuning of cells in macaque area MT to
differentdirections and speeds (e.g., [29]).One single velocity
at each location is computed by the weighted sum of the
velocity vectors of all hypotheses, weighted by the corre-
sponding likelihoods (population vector estimator; [30]).

3 RESULTS

The parameterization of the algorithm was held constant for
all experiments if not mentioned otherwise. We used
hmax ¼ 5, h0

max ¼ 1000, and smax ¼ 30; the Census value
was computed as described in Fig. 4. The image sequences
for the different experiments are described in the corre-
sponding paragraphs. The algorithm was run on a standard
PC (Intel Centrino 1.7Ghz with 1GB RAM). The estimated
image velocities are shown using a color code and in some
cases the direction is indicated by oriented lines (see, e.g.,
Fig. 7). For the color code, the direction of motion is
encoded as hue, and the speed as saturation.

3.1 Results with Artificial Motion Sequences

Fig. 7 shows the results of the algorithm processing a
synthetic scenewith twonon-overlappingobjects (a rectangle
and a bar) moving in different directions. The example
illustrates that initially (t ¼ 0) only unambiguous motion
cues are selected to be represented by the algorithm,
particularly in module V1. Iteratively, subthreshold corre-
spondences implicitly encoded in the input pattern are
selected by the expectation signal generated by module MT.
This exampledemonstrates that themotion apertureproblem
can be solved by the algorithm in a scale invariant manner by
recurrent information processing. Moreover, it shows that
reliable motion cues near structures such as corners are
estimated without the necessity to employ specific feature
detectors to explicitly detect those structures. The runtime
time of the algorithm for this sequence (120� 120 pixel) was
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Fig. 5. Overview of the algorithm. The same operations (mechanisms)

are employed in both modules. The only differences are their input

signals and the spatial scale on which they operate.

Fig. 6. Example of an extracted ambiguous population code; activities
shown as luminance and arranged in velocity space. Here, a set of
25 hypotheses describes two blobs of possible velocities. A weaker blob
around the zero-velocity (in the center) and a blob of stronger activities
(weights) for rightward motion (on the right).



between 100-200 ms/frame (with increasing number of
selected hypotheses more time is required).

Fig. 8 illustrates thepropagationofmotion information ina
more complex artificial sequence with real-world textures
and shows a quantitative analysis of the detected optic flow
(Fig. 8d). In module MT, we obtain a flow field of approx.
100 percent density with a median angular error of 3:3� after
13 iterations. The density in module V1 is smaller (about

43 percent) with higher errors (median error: 6:1� after
13 iterations; data not shown)due to outliers generatedby the
selection process. In the subsampling process in module MT
such isolated erroneous motion cues are eliminated through
competition since no coherent support is available from
neighboring locations. Compared to technical approaches
which yield optic flow estimation with 100 percent density
the algorithm compares well [2]. Recent approaches [8], [31],
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Fig. 7. Example processing a synthetic stimulus showing two moving objects: A box moving to the lower right and a bar moving to the left. Detected
motion direction is indicated for both modules as colored modulation of the input frames (color code: see inlay). For module MT, the detected velocity
is shown at selected locations (white discs) as black lines pointing in the direction of motion. The temporal development of motion estimations is
shown from left to right. Initially, only unambiguous motion cues are selected at corners or line endings. Over time, motion information is propagated
along object boundaries.

Fig. 8. Example processing the Yosemite sequence showing the propagation of motion cues. (a) The initial motion detection yields only very sparse
unambiguous motion estimations in the image region covered by the sky. This high ambiguity in the sky is caused by the low contrast which leads to
many identical Census values. (a), (b), and (c) The initially sparsely detected motion cues propagate over time and disambiguate motion information.
Estimated velocities in module MT are shown for t ¼ 1; . . . ; 8 and t ¼ 13; color code: see inlay for t ¼ 1). (d) Temporal development of the average
and the median angular error of the entire flow field in module MT, excluding locations where no hypothesis are present (e.g., at some locations in
the sky) or where the groundtruth or the detected velocity has zero speed. The inlay shows the angular errors at each image location for t ¼ 13 which
are utilized to compute the shown mean and median error (dark = large errors). The median error of 3:3� (after 13 iterations) illustrates the accuracy
of the model excluding outliers with errors up to 180�, which typically occur at region boundaries along the horizon (compare inlay). The density of
estimated flow in module MT is > 99% for t � 3.



however, perform better but do not show the advantages of
the sparse voting scheme (sparse population coding) coupled
with the ability of the neural model to easily include
expectations by a modulatory expectation signal.

3.2 Results with Real-World Motion Sequences

With the sameparameterization, the algorithmalsoprocesses
real-world images. The Hamburg Taxi-Sequence (Fig. 9)
shows a street with three cars: a taxi turning right into the
street at the junction, and two cars coming from the left and
the right, respectively, partly occluded by a tree. The initial
motion estimations are very noisy and contain a lot of false
motion estimates. After the third iteration, the motion signal
is alreadystabilizedand indicates themotionof the three cars.
This example illustrates the different spatial resolutions in
both modules: in module V1 the image structure is clearly
visible in the motion signal, while in module MT there are
large blobs indicating the presence of moving objects. The
required computation time of the algorithm for this sequence
(256� 191 pixel) was 700-1,400 ms/frame.

In Fig. 10, we present the results of processing the Flower
Garden sequence used by [32] with 360� 240 pixel resolu-
tion. This sequence contains image motion strongly influ-
enced by the motion parallax caused by an observer moving
to the right. Objects near to the observer (e.g., a tree in the
front) are strongly influenced by his translation which leads
to fast image motion to the left while objects farer away (e.g.,
some houses) are less affected which leads to slower image
motion to the left. Furthermore, the ground has continuously
changing depth values in the vertical direction which
generates a vertical speed gradient. The results show that
the different speeds are successfully detected by the algo-
rithm and that particularly the tree is segregated from the

background. The illustration also shows that for representing

a velocity or speed gradient more than five hypotheses are

necessary in order to take advantage of the interpolation

properties. These interpolation properties depend on blur-

ring velocity space and, thus, on being able to represent the

blurred and thus flattened hypotheses distributions. Fig. 10c

demonstrates that 25 hypotheses in the second module are

enough to generate smoothly interpolated speeds and, thus,

to represent and detect the speed gradient induced by the

smoothly varying depth of the ground.
Fig. 11 shows another real-world sequence that contains

flow information from self motion of a moving car and a

pedestrian crossing the street. We make similar observa-

tions concerning the spatial resolution and the temporal

development as for the Hamburg Taxi sequence. The results

demonstrate the motion separation capabilities of the

algorithm by segregating the foot passenger and a traffic

sign from the background differing with their motion from

the background motion. The background motion itself is an

expanding flow pattern induced by the self-movement of

the car. The runtime of the algorithm for this sequence

(320� 200 pixel) was approximately 1,000-1,600 ms/frame.

Fig. 12 shows further frames of the same sequence, when an

independently moving car from the left comes into sight.

This car is detected very fast, which demonstrates that our

algorithm is able to react on novel motion patters not

initially expected by the feedback signal. After only two

cycles of iteration, module MT has built an updated

representation and, in turn, enhances and stabilizes this

object by modulatory feedback.
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Fig. 9. Example processing a real-world sequence (the Hamburg Taxi Sequence; obtained from http://i21www.ira.uka.de (07/2005), H.-H. Nagel,
KOGS/IAKS Universität Karlsruhe). Detected direction of motion is color coded (see inlay). The algorithm stabilizes after three iterations and tracks
the three cars over time: Estimations from module V1 and MT shown at different time steps from left to right arranged in two lines. This example
illustrates the different spatial resolutions of both modules. Spatial motion localization is very fine in module V1, while module MT shows only coarse
blobs of motion.



3.3 Interpretation of Algorithmic Population Codes

The algorithm represents motion as distributed sets of

motion hypotheses and the operations on the hypotheses

are based on neural mechanisms. Thus, the output of the

algorithm can be interpreted as a neural population code

where the likelihoods represent neural activity and no

neural activity is assumed for velocities where no hypoth-

eses are present. Such interpretation of the data can help

visualizing the detected hypotheses and their likelihoods at

individual locations. Fig. 13 shows the results of the

algorithm processing a sequence of a textured rectangle

slanted in space moving over a textured plane in the

background. Here, we utilized a value of 25 for hmax in

module MT to allow a larger amount of hypotheses to be

represented at each location (module V1 still uses hmax ¼ 5).

The resulting optic flow pattern contains a motion gradient

due to the perspective projection of the slanted object. The

extracted population codes illustrate the detected motion
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Fig. 10. Example processing a real world sequence (the Flowergarden Sequence; obtained from http://www-bcs.mit.edu/people/jyawang/demos/
garden-layer/layer-demo.html (07/2005); Wang and Adelson, 1994). The sequence shows a tree in front of houses passing to the left caused by a
translation to the right of the observer. The motion parallax leads to slower motions for objects farther away from the observer than for near objects.
(a) Detected direction of motion in module V1 at different time steps is color coded (red = leftward motion). Different speeds are visible through the
color saturation (pink is slower than fully saturated red). (b) and (c) Detected speed in module MT is shown as luminance ([black, white] is mapped on
approx. [0, 7] pixel/frame) and as profile plots for the selected columns and rows. The dotted lines indicate position of the selected row/column in the
column/row profile plot, respectively. The dashed lines in the profile plots illustrate the detected speeds from projections of the moving ground.
(b) With hmax ¼ 5 different regions of segregated motion are detected on the ground where the depth increases continuously (compare dashed
lines). (c) With hmax ¼ 25 for module MT (module V1 still uses hmax ¼ 5), speed is smoothly interpolated in the second area which then is able to
detect and represent continuous speed gradients (compare dashed lines).

Fig. 11. Example processing a real world sequence showing the self-motion of a car with a pedestrian crossing the street. The image sequence has
been gathered within project 23-7532-24-12-19/2 (see Acknowledgements). The isolated pedestrian is segregated from the expanding flow field. The

expanding flow field is induced by self-motion and generates a gradual change of velocity over the entire image. The street panel also segregates

from the background, because it differs in velocity since it has a significantly different image depth.



hypotheses and clearly show the smooth gradient in the

field of velocities. The increased number of hypotheses

(hmax) in module MT hardly affects the computational

performance because of the low resolution in module MT.

4 DISCUSSION

We first discuss the differences of the biologically inspired

algorithm and the underlying neural model [10] and to

another neural model of motion integration [33], [34]. Then,

we compare the proposed algorithm to the approach

presented by [1] and to other related approaches.

4.1 Comparison of the Proposed Algorithm with
Neural Models

We presented a biologically inspired algorithm of motion

integration and segregation based on a sparse representation

of motion hypotheses in velocity space and neurally inspired

interactions between hypotheses. Here, we discuss the

differences between the algorithm and the neural model

proposed in [10] from which the algorithm is derived and to
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Fig. 12. Continued example processing the real world sequence shown in Fig. 11: Detected motion in module MT. The algorithm is able to detect the

car newly appearing from the left of the sequence. The new object is detected from the second frame it appeared and completely stabilizes after

eight frames.



the neural model proposed by [33], [34]. There exists a bunch
of neural models which contain operations also utilized in
[10] and in the proposed algorithm, such as, e.g., a stage of
activity normalization [3], [18]. The approach of Nowlan and
Sejnowski [33], [34] is of special interest in the context of the
presented algorithm because it describes a selection process
similar to the selectionprocess implemented in our approach.
Adetailed discussion about differences of [10] to other neural
models of motion perception is given in [10].

The differences between the biologically inspired

algorithm and the corresponding neural model imple-

mentation are consequences of the sparse algorithmic
representation of visual motion and its initial detection.

1. First, the input stage in the algorithm produces
binary decisions whether certain velocities are
present while the neural model generates gradual
likelihoods/activities between 0 and 1 for individual
velocities. A consequence of this binary similarity
(match/nonmatch) is that ambiguities arising from
transparent motion cannot be well detected in the
input stage of the algorithm. This is different for the
neural model where gradual similarity in the input
image allows extracting meaningful likelihoods for
transparent motion.4

2. Second, in the presence of high ambiguities the
algorithm selects raw input velocity hypotheses prior
to the feedbackmodulationusing thehypotheses from
the feedback signal as predictor (see Section 2.2). This
leads to a much stronger influence of the feedback

signal on the motion estimation process than in the
neuralmodel. Thealgorithm’s initialmotiondetection
stage only detects motion expected from prior
observations or motion with ambiguities up to a
maximum level of uncertainty. This uncertainty is
expressed here by the number of different possible
correspondences that represent different velocities.
Contrarily, the neural model detects every velocity to
which any of the model cells is tuned.

3. Third, the algorithm allows a maximum of hmax

hypotheses to be present at each location which is
achieved by a selection of the hmax most likely
hypotheses (see, e.g., the subsampling operation in
Section 2.3). This selection process is comparable to a
dynamic threshold operation of neural activity,
which is not contained in the neural model. Cutting
off small activities in the neural model means to
suppress ambiguous motion. This is a consequence
of normalization which leads to small activities for
ambiguous motion configurations.

To sum up, the maximum ambiguity which can be
represented explicitly by the algorithm is limited by hmax

and is generally much smaller than the maximum ambi-
guity which can be represented by the neural model. More
ambiguous motion cues are represented as subthreshold
signal in the input to the algorithm. Such ambiguous
motion cues can only be selected and therefore enhanced if
they are predicted from previous observations at neighbor-
ing locations. Moreover, the biologically inspired algorithm
generally allows a much larger range of velocities to be
detected than the neural model, requires less memory, and
is computationally much faster. Altogether, this makes the
algorithm feasible for applications in computer vision and
at the same time provides a fast solution for early motion
processing for neural modeling.
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Fig. 13. Extracted population code. (a) Image sequence including a vertical velocity gradient (see text). The true direction of motion is indicated by

the white arrow. (b) Color coded detected motion directions in module MT and the speed profiles of the selected column. (c) Extracted population

codes at selected locations within the entire field of view. A velocity gradient is visible within the object (the object indicated by its outline). At object

boundaries, multiple motion cues are detected which indicates an uncertainty at these locations.

4. Moreover, the neural model as described in [10] aims to extract one
winner at each location which is conflicting with the presence of multiple
transparent motion cues. For processing transparent motion, additional
mechanisms of mutual competition are needed to allow a nonconflicting
local coexistence of multiple velocities as described in, e.g., [35], or as
implemented as extension of our neural model in [36].



The major differences between the motion algorithm
proposed in this paper and the approach presented by
Nowlan and Sejnowski [33], [34] are two-fold and consist
1) of the motion detection and representation and 2) of the
refinement of initial estimations. In [33], [34], the authors
describe amodel ofmotion integration that utilizes an explicit
selection signal that is computed to determine the regions in
the visual field where velocity estimations are most reliable.
Motion-sensitive cells are thengatedby this signal toproduce
the final estimate. Instead of using the computational
operation of the soft-maximum as in Nowlan’s model we
employ a nonlinear enhancement of activities coupledwith a
divisive normalization. Although similar in the computa-
tional effect, our approach allows easily separating and, thus,
understanding the effects of the nonlinear enhancement and
the normalization. Moreover, similarly as for the model on
which thealgorithm isbased [10],Nowlan’s approachutilizes
a dense coding of velocities limited in themaximum speed to
be detected, whereas the proposed algorithm employs a
sparse voting scheme in velocity space and an inital motion
detection for arbitrary speeds. This allows our algorithm to
process sequenceswithmoredifferent velocities present than
neural implementations while using less computational
resources. Compared to the selection process described in
[34], the concept of iterative selection and feedback modula-
tion proposed in this paper is fundamentally different.
Nowlan’s model is a strict feed-forward model, whereas
our approachutilizes an iterative refinement over time taking
into account the history of motion measurements from
previous time steps. Instead of gating the initial hypotheses
with some selection signal as in [34], our algorithm gradually
modifies the weights of detected hypotheses to evolve the
final estimate by means of recurrent modulation coupled
with normalization. The recurrence of the algorithm pre-
sented in this paper allows combining information from
distant locations without losing much of the spatial accuracy
from the initial motion detectors.

4.2 Comparison to the Approach of Stein (2004)

Thegeneration of the input signal for thepresentedalgorithm
is based on the Census Transform [23] and contains
components also used in [1]. The differences to the presented
algorithm are 1) that the approach of [1] utilizes a rule-based
combination of motion hypotheses with a short temporal
memory of 2-3 frameswithout spatial interaction. They refine
thedetectedhypothesesusinga temporal analysis ofdetected
motion without combining information across space. Unlike
[1], our algorithm realizes a biologically inspired approach
also capable of solving ambiguous motion hypotheses by
employing spatial coherence of detected hypotheses. We
utilize information from previous time steps through feed-
back modulation and from a spatial neighborhood through
spatial pooling. Moreover, decisions whether some hypoth-
eses should be rejected or not are solved in a soft manner
instead of a rule-based decision. On one hand, in the absence
of evidence from prior hypotheses, a detected hypothesis
may be regarded as significant if it represents an unambig-
uous estimation.On theotherhand, if an expectedhypothesis
is not detected at one time, information from previous
observations cannot generate (invent) illusory motion cues.
Only if both, input correspondences and feedback hypoth-
eses are in resonance, feedback modulation amplifies the
expectedmotion patterns (see Table 1). 2) The approach of [1]

employs a list of signatures (Census values) to classify
potentially meaningful image patches based on their struc-
tural appearance. Basically, this list represents a fast
approximation to a standard corner detector, such as [37],
[38]. In contrast, our algorithm does not need to explicitly
detect those structures. We extract the information about the
relevanceofmotion cues solelybasedon the ambiguitywhich
is reflected by the number of detected correspondences.

In addition, [1] uses a hash table (see, e.g., [22]) to
efficiently store and retrieve the motion correspondences
instead of the fixed array utilized in our approach. On one
hand,wecouldalsouseahash table, but themaximumgain in
complexitywouldbe logðhmaxÞ. On the other hand, in order to
get the advantage in complexity the hash table requires a
large amount of memory. This amount depends of the
number of possible census values (compare Fig. 4) which in
the presented examples is much larger than the memory
required by the array representation of the presented
algorithm.

4.3 Comparison to Other Approaches

The selection of the hypotheses and the computation of the
hypotheses’ weights can be related to Maximum Likelihood
methods (e.g., [39]), Bayesian approaches [5], [6], and to the
Condensation algorithm [40].

The basic idea of the Maximum Likelihood method
(e.g., [39]) is that some solutions are more likely to result
from a given observation than others. An estimator which
selects the most likely solution based on some given
likelihood function is called a maximum likelihood estima-
tor. In our algorithm, we select the hmax most likely
solutions based on the similarity measure defined by the
feedforward processing (initial motion detection and linear
filtering in the spatial and velocity domain). Thus, the
resulting hypotheses of our algorithm without iterative
feedback (e.g., after the first iteration) can be interpreted as
the result of a Maximum Likelihood estimator. The
employed likelihood function of our model is given by
the model operations described in Section 2.3.

Theonlydifference betweenBayesian approaches and the
Maximum Likelihood method is that a posterior probability
is utilized in addition to the observed likelihoods or
probabilities. [6] argued that the integration of top-down
knowledge (contextual priors) and bottom-up observations
in thevisual cortex canbedescribed in aBayesian framework.
Concluding, the weights of the expected hypotheses gener-
ated inmoduleMTofour algorithmact as contextual prior for
the observations in module V1. The contextual prior is
computed by (1þ C � expected likelihood) and is 1) uni-
formlydistributed across velocity space if no expectations are
present or, else, 2) contains increased likelihoods for pre-
dicted motion cues. However, this interpretation strictly
holds only if observations at different time steps originate
from independent random processes.

Theproposed algorithmshares several propertieswith the
Condensation algorithm [40]. Both approaches, the Con-
densation algorithm and the proposed biologically inspired
algorithm, realize a hypotheses and test cycle to track and
stabilize hypotheses. In contrast toKalman filtering [41], both
approaches represent sparse hypotheses together with
corresponding likelihoods without any premises to the
underlying tracked distribution of likelihoods. Here, we
present the individual steps of the Condensation algorithm
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and discuss their similarities and correspondences to in-
dividual mechanisms implemented by the algorithm de-
scribed in this paper (compare Fig. 14). The major difference
between our approach and the Condensation algorithm is
that our algorithm computes the diffusion of information and
deterministically selects samples based on the combined
bottom-up and top-down likelihoods, both in a deterministic
fashion.On the contrary, theCondensation algorithmutilizes
random processes to achieve these operations.

1. Drift. The drift of individual hypotheses in the
Condensation algorithm is described by the given
dynamic model (e.g., a shift describing image
velocity). It realizes a prediction of the expected
next observation based on the preceding observa-
tion. This operation directly corresponds to the
predictive shift in our algorithm.

2. Diffusion. The diffusion described by the Conden-
sation algorithm is realized as Brownian motion of
discrete state parameters of individual hypotheses.
Each parameter changes its value according to a
normally distributed random sample. This diffusion
process can be compared by the blurring operations
in the spatial and the velocity domain described by
our algorithm. Here, the combination of similar
velocities within a certain neighborhood realizes an
(isotropic) diffusion of information. In contrast to the
Condensation algorithm the outcome of the diffu-
sion step in the proposed approach is deterministic
and directly computed by discrete sampling and
combination of data instead of a stochastic diffusion
based on random noise.

3. Measurement. The measurement step of the Con-
densation algorithm computes likelihoods for all
individual hypotheses to occur under the given
observations. This corresponds to the computation
of weights of individual expected motion hypoth-
eses in the proposed biologically inspired algorithm.
Unlike the Condensation algorithm, we also gener-
ate unexpected sets of hypotheses at any location if
they are unambiguous enough. Thus, our approach

guarantees that all input signals are detected if they
contain distinct motion information.

4. Factored Sampling. The sampling of hypotheses
described in the Condensation algorithm differs
from the selection process in the proposed approach.
Instead of randomly choosing new hypotheses based
on the previous likelihoods we select only those
hypotheses which have the highest likelihoods. In
contrast to the Condensation algorithm we do not
allow to select identical hypotheses multiple times.
Furthermore, we only allow integer velocities to be
represented. Thus, the outcome of our algorithm
contains always a minimum number of different
hypotheses. This advantage ensures that the pro-
posed algorithm can detect changes in the input
velocities, which may be overlooked when the
sampled hypotheses are all nearly identical.

Concluding, our algorithm shares several properties of
the Condensation approach for detection and tracking of
visual motion. The common properties further clarify the
functional aspects of the individual mechanisms. Unlike the
Condensation algorithm, the proposed architecture guaran-
tees not to overlook any unambiguous input, even if it is not
expected. Furthermore, the biologically inspired algorithm
contains the normalization mechanism which goes beyond
the capabilities of the Condensation algorithm and, together
with the other mechanisms, realizes the disambiguation of
ambiguous motion patterns and the segregation of regions
of different motion.

5 CONCLUSION

We presented a simple and fast algorithm computing low-
level motion processing in a neural fashion. The proposed
algorithm iteratively solves ambiguities by spatiotemporal
combination of available information. The outcome of the
algorithm can be interpreted as neural population code and,
moreover, the modular design of the framework allows for
easy extension of the algorithm by other modules for
further information processing. Furthermore, we identified
similarities of the presented approach to the Condensation
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Fig. 14. Comparison of the presented algorithm with the Condensation algorithm. The proposed approach shares many properties of the

condensation algorithm. Left: Sketch of the presented algorithm. In addition to Fig. 2 and, thus, in addition to the neural model we included the
selection of initial hypotheses. Right: The sketch of the Condensation algorithm, redrawn after [40]. Center: Operation/mechanism of the presented

algorithm and algorithmic equivalent in the Condensation algorithm.



algorithm, which both realize a prediction and test cycle to
find and track a hypothesis of enhanced likelihood.

The outstanding properties of the algorithm are that
1) computational complexity does not depend on the
maximum speed to be detected, which often influences some
kind of search range. 2) The proposed approach solves the
aperture problem for objects of arbitrary size while preser-
ving the spatial localization of motion cues to spatially
segment the motion information. 3) The algorithm is
demonstrated to react on changes in the input, such as novel
objects entering the field of view.

Although the implementationdoesnot run in real-time the
algorithm represents a step towards it. We achieve computa-
tion speeds of 100ms-2,000ms per frame, depending on the
complexity of the presented input information and, thus, the
required representational load of the estimated motion
responses. Additional spatial sparseness on one handwould
highly increase the computation speed, but, on the other
hand, would not generate dense optic flow estimations.
Furthermore, the framework leaves enough space for further
optimizations, such as, e.g., the heuristics utilized by [1] to
select unambiguous motion cues. Our implementation is
solely based on standard C and C++ libraries (using the GCC
compiler). Thus, libraries taking advantage of hardware
optimizations in CPUs (Intel Integrated Performance Primi-
tives—IPP;http://www.intel.com,07/2005)orGPUs (Open-
VIDIA : GPU accelerated Computer Vision Library; http://
openvidia.sourceforge.net, 07/2005) for signal processing
would further increase the computation speed by a signifi-
cant amount.
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