
A Fast Bit-Vector Algorithm for Approximate String
Matching Based on Dynamic Programming

GENE MYERS

University of Arizona, Tucson, Arizona

Abstract. The approximate string matching problem is to find all locations at which a query of length
m matches a substring of a text of length n with k-or-fewer differences. Simple and practical
bit-vector algorithms have been designed for this problem, most notably the one used in agrep. These
algorithms compute a bit representation of the current state-set of the k-difference automaton for the
query, and asymptotically run in either O(nmk/w) or O(nm log s/w) time where w is the word size
of the machine (e.g., 32 or 64 in practice), and s is the size of the pattern alphabet. Here we present
an algorithm of comparable simplicity that requires only O(nm/w) time by virtue of computing a bit
representation of the relocatable dynamic programming matrix for the problem. Thus, the algorithm’s
performance is independent of k, and it is found to be more efficient than the previous results for
many choices of k and small m.

Moreover, because the algorithm is not dependent on k, it can be used to rapidly compute blocks
of the dynamic programming matrix as in the 4-Russians algorithm of Wu et al. [1996]. This gives rise
to an O(kn/w) expected-time algorithm for the case where m may be arbitrarily large. In practice this
new algorithm, that computes a region of the dynamic programming (d.p.) matrix w entries at a time
using the basic algorithm as a subroutine, is significantly faster than our previous 4-Russians
algorithm, that computes the same region 4 or 5 entries at a time using table lookup. This
performance improvement yields a code that is either superior or competitive with all existing
algorithms except for some filtration algorithms that are superior when k/m is sufficiently small.

Categories and Subject Descriptors: G.4 [Mathematics of Computing]: Mathematical Software; H.3.3
[Information Storage and Retrieval]: Information Search and Retrieval

General Terms: Algorithms, Designs

Additional Key Words and Phrases: Approximate string search, bit-parallelism, sequence comparison

1. Introduction

The problem of finding substrings of a text similar to a given query string is a
central problem in information retrieval and computational biology, to name but
a few applications. It has been intensively studied over the last twenty years. In
its most common incarnation, the problem is to find substrings that match the
query with k or fewer differences. The first algorithm addressing exactly this

This research was partially supported by NLM grant LM-04960.
Author’s present address: Celera Genomics Corporation, 45 West Gude Drive, Rockville, MD 20850.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery (ACM), Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1999 ACM 0004-5411/99/0500-0395 $5.00

Journal of the ACM, Vol. 46, No. 3, May 1999, pp. 395–415.

problem is attributable to Sellers [1980] although one might claim that it was
effectively solved by earlier work on string comparison (e.g., Wagner and Fischer
[1974]). Sellers algorithm requires O(mn) time where m is the length of the
query and n is the length of the text. Subsequently, this was refined to O(kn)
expected time by Ukkonen [1985], then to O(kn) worst-case time, first with
O(n) space by Landau and Vishkin [1988], and later with O(m2) space by Galil
and Park [1990].

Of these early algorithms, the O(kn) expected-time algorithm was universally
the best in practice. The algorithm achieves its efficiency by computing only the
region or zone of the underlying dynamic programming matrix that has entries
less than or equal to k. Further refining this basic design, Chang and Lampe
[1992] went on to devise a faster algorithm which is conjectured to run in
O(kn/=s) expected time where s is the size of the underlying alphabet from
which the strings are formed. Next, Wu et al. [1996] developed a particularly
practical realization of the 4-Russians approach [Masek and Paterson 1980] that
when applied to Ukkonen’s zone, gives an algorithm that runs in O(kn/log s)
expected time, given that O(s) space can be dedicated to a universal lookup
table. In practice, these two algorithms were always superior to Ukkonen’s zone
design, and each faster than the other in different regions of the (k, s)
input-parameter space.

At around the same time, another new thread of practice-oriented results
exploited the hardware parallelism of bit-vector operations. Letting w be the
number of bits in a machine word, this sequence of results began with an
O(nm/w) algorithm for the exact matching case and an O(nm log k/w)
algorithm for the k-mismatches problem by Baeza-Yates and Gonnet [1992],
followed by an O(nkm/w) algorithm for the k-differences problem by Wu and
Manber [1992]. These authors were interested specifically in text-retrieval appli-
cations where m is quite small, small enough that the expressions between the
ceiling braces is 1. Under such circumstances, the algorithms run in O(n) or
O(kn) time, respectively. Two years later, Wright [1994] presented an
O(n log2sm/w) bit-vector style algorithm where s is the size of the alphabet
for the pattern. Most recently, Baeza-Yates and Navarro [1996] have realized an
O(nkm/w) variation on the Wu/Manber algorithm, implying O(n) perfor-
mance when mk 5 O(w).

The final recent thrust has been the development of filter algorithms that
eliminate regions of the text that cannot match the query. The results here can
broadly divided into on-line algorithms and off-line algorithms1 that are permit-
ted to preprocess a presumably static text before performing a number of queries
over it. After filtering out all but a presumably small segment of the text, these
methods then invoke one of the algorithms above to verify if a match is actually
present in the portion that remains. The filtration efficiency (i.e., percentage of
the text removed from consideration) of these methods decreases as the mis-
match ratio e 5 k/m is increased, and at some point, dependent on s and the
algorithm, they fail to eliminate enough of the text to be worthwhile. For
sufficiently small e, the filter/verify paradigm gives the fastest results in practice.

1See, for example, Wu and Manber [1992], Ukkonen [1992], Chang and Lawler [1994], Pevener and
Waterman [1995], and Sutinen and Tarhio [1996] for on-line algorithms and Ukkonen [1993], Myers
[1994], and Cobbs [1995] for off-line algorithms.

396 GENE MYERS

However, improvements in verification-capable algorithms are still desirable, as
such results improve the filter-based algorithms when there are a large number
of matches, and also are needed for the many applications where e is such that
filtration is ineffective.

In this paper, we present two verification-capable algorithms, inspired by the
4-Russians approach, but using bit-vector computation instead of table lookup.
First, we develop an O(nm/w) bit-vector algorithm for the approximate string
matching problem. This is asymptotically superior to prior bit-vector results, and
in practice will be shown to be superior to the other bit-vector algorithms for
many choices of m and k. In brief, the previous algorithms, except for that by
Wright, use bit-vectors to model and maintain the state set of a nondeterministic
finite automaton with (m 1 1)(k 1 1) states that (exactly) matches all strings
that are k-differences or fewer from the query. Our method uses bit-vectors in a
different way, namely, to encode the list of m (arithmetic) differences between
successive entries in a column of the dynamic programming matrix. Wright’s
algorithm also takes this angle of attack, but proceeds arithmetically instead of
logically, resulting in a less efficient encoding (three bits per entry versus one for
our method) and further implying an additional factor of log2s in time. Our
second algorithm comes from the observation that our first result can be thought
of as a subroutine for simultaneously computing w entries of a d.p. matrix in
O(1) time. We may thus embed it in the zone paradigm of the Ukkonen
algorithm, exactly as we did with the 4-Russians technique. The result is an
O(kn/w) expected-time algorithm which we will show in practice outperforms
both our previous work [Wu et al. 1996] and that of Chang and Lampe [1992] for
all regions of the (k, s) parameter space. It further outperforms a refinement of
the algorithm of Baeza-Yates and Navarro [1996] except for a few values of k
near 0, where it is slower by only a small percentage.

2. Preliminaries

We will assume that the query sequence is P 5 p1p2
. . . pm, that the text is T 5

t1t2
. . . tn, and that we are given a positive threshold k $ 0. Further, let

d(A, B) be the unit cost edit distance between strings A and B. Formally, the
approximate string matching problem is to find all positions j in T such that there
is a suffix of T[1 . . . j] matching P with k-or-fewer differences, that is, j such that
mingd(P, T[g . . . j]) # k.

The classic approach to this problem [Sellers 1980] is to compute an (m 1 1)
3 (n 1 1) dynamic programming (d.p.) matrix C[0 . . . m, 0 . . . n] for which it
will be true that C[i, j] 5 mingd(P[1 . . . i], T[g . . . j]) at the end of the
computation. This can be done in O(mn) time using the well-known recurrence:

C@i, j# 5 min$C@i 2 1, j 2 1# 1 ~if pi 5 t j then 0 else 1! , C@i 2 1, j# 1 1,

C@i, j 2 1# 1 1% (1)

subject to the boundary condition that C[0, j] 5 0 for all j. It follows that the
solution to the approximate string matching problem is all locations j such that
C[m, j] # k.

Another basic observation is that the computation above can be done in only
O(m) space because computing column Cj 5 ^C[i, j]& i50

m only requires knowing

397A Fast Bit-Vector Algorithm

the values of the previous column Cj21. This leads to the important conceptual
realization that one may think of a column Cj as a state of an automaton, and the
algorithm as advancing from state Cj21 to state Cj as it “scans” symbol t j of the
text. The automaton is started in the state C0 5 ^0, 1, 2, . . . , m& and any state
whose last entry is k-or-fewer is considered to be a final state.

Ukkonen [1986] showed that the automaton just introduced has a finite
number of states, at most 3m, in fact. This follows from the observation that the
d.p. matrix C has the property that the difference between adjacent entries in any
row or any column is either 1, 0, or 21. Interestingly, a more general version of
the lemma below was first proven by Masek and Paterson [1980] in the context of
the first 4-Russians algorithm for string comparison. Formally, define the
horizontal delta Dh[i, j] at (i, j) as C[i, j] 2 C[i, j 2 1] and the vertical delta
Dv[i, j] as C[i, j] 2 C[i 2 1, j] for all (i, j) [[1, m] 3 [1, n]. We have:

LEMMA 1. [MASEK AND PATERSON 1980; UKKONEN 1985]. For all i, j: Dv[i, j],
Dh[i, j] [{21, 0, 1}.

It follows that, to know a particular state Cj, it suffices to know the relocatable
column Dvj 5 ,Dv[i, j]. i51

m because C[0, j] 5 0 for all j. One now immedi-
ately sees that the automaton can have at most 3m states as there are only 3
choices for each vertical delta.

We can thus replace the problem of computing C with the problem of
computing the relocatable d.p. matrix Dv. One potential difficulty is that deter-
mining if Dvj is final requires O(m) time as one must determine whether
(iDvj[i] 5 C[m, j] # k. While this does not effect the asymptotics of most
algorithmic variations on the basic d.p. formulation, it is crucial to algorithms
such as the one in this paper that compute a block of vertical deltas in O(1) time,
and thus cannot afford to compute the sum over these deltas without affecting
both their asymptotic and practical efficiency. Fortunately, one can simulta-
neously maintain the value of Scorej 5 C[m, j] as one computes the Dv9js using
the fact that Score0 5 m and Scorej 5 Scorej21 1 Dh[m, j]. Note that the
horizontal delta in the last row of the matrix is required, but as we will see later,
the horizontal delta at the end of a block of vertical delta’s is a natural
by-product of the block’s computation. Figure 1 illustrates the basic dynamic

FIG. 1. Dynamic programming (d.p.) matrices for P 5 match and T 5 remachine.

398 GENE MYERS

programming matrix and its formulation in relocatable terms.

3. The Basic Algorithm

We seek to compute successive Dv9js in O(1) time using bit-vector operations.
We assume, for the entirety of this section, that the size of a machine word is w
and that m # w. We further assume that parallel bit operations, such as or, and,
and not, and simple arithmetic operations, such as addition and subtractions,
take the underlying RAM architecture constant time to perform on such words.
On most current machines, w is typically 32 or 64.

3.1. REPRESENTATION. The first task is to choose a bit-vector representation
for Dvj. We do so with two bit-vectors Pvj and Mvj, whose bits are set according
to whether the corresponding delta in Dvj is 11 or 21, respectively. Formally,

Pvj~i! ; ~Dv@i, j# 5 11!

Mvj~i! ; ~Dv@i, j# 5 21! (2)

where the notation W(i) denotes the ith bit of the integer or word W, and where
i is assumed to be in the range [1, w]. Note that the ith bits of the two vectors
cannot be simultaneously set, and that we do not need a vector to encode the
positions i that are zero, as we know they occur when not (Pvj(i) or Mvj(i)) is
true.

3.2. CELL STRUCTURE. The next task is to develop an understanding of how
to compute the deltas in one column from those in the previous column. To start,
consider an individual cell of the d.p. matrix consisting of the square (i 2 1,
j 2 1), (i 2 1, j), (i, j 2 1), and (i, j). There are two horizontal and two
vertical deltas 2 Dv[i, j], Dv[i, j 2 1], Dh[i, j], and Dh[i 2 1, j]-associated
with the sides of this cell as shown in Figure 2(a). Further, let Eq[i, j] be a bit
quantity which is 1 if pi 5 t j and 0 otherwise. Using the definition of the deltas
and the basic recurrence for C-values we arrive at the following equation for
Dv[i, j] in terms of Eq[i, j], Dv[i, j 2 1], and Dh[i 2 1, j]:

Dv@i, j# 5 C@i, j# 2 C@i 2 1, j#

5 min$C@i 2 1, j 2 1# 1 ~if pi 5 t j then 0 else 1! ,

C@i 2 1, j# 1 1, C@i, j 2 1# 1 1% 2 C@i 2 1, j#

FIG. 2. D.P. cell structure and input/output function.

399A Fast Bit-Vector Algorithm

5 min5C@i 2 1, j 2 1# 1 ~1 2 Eq@i, j#!
C@i 2 1, j 2 1# 1 Dv@i, j 2 1# 1 1
C@i 2 1, j 2 1# 1 Dh@i 2 1, j# 1 16 2 ~C@i 2 1, j 2 1#

1 Dh@i 2 1, j#!

5 min$2Eq@i, j#, Dv@i, j 2 1#, Dh@i 2 1, j#% 1 ~1 2 Dh@i 2 1, j#!.

(3a)

Similarly:

Dh@i, j# 5 min$2Eq@i, j# , Dv@i, j 2 1# , Dh@i 2 1, j#% 1 ~1 2 Dv@i, j 2 1#! .
(3b)

It is thus the case that one may view Dvin 5 Dv[i, j 2 1], Dhin 5 Dh[i 2 1, j],
and Eq 5 Eq[i, j] as inputs to a cell, and Dvout 5 Dv[i, j] and Dhout 5 Dh[i, j]
as its outputs.

3.3. CELL LOGIC. The next observation is that there are three choices for
each of Dvin and Dhin and two possible values for Eq. Thus, there are only a
finite number, 18, possible inputs for a given cell. This gave rise to the key idea
that one could compute the numeric values in a column with Boolean logic,
whereas all but one of the previous methods use a bit vector to implement a set
over a finite number of elements. Wright [1994] also pursued the idea of
computing the difference vectors but chose to think of them as (mod 4) numbers
packed in a word with a padding bit separating each so that the numbers could
be arithmetically operated upon in parallel. In contrast, we are viewing the
computation purely in terms of Boolean logic. We experimented with different
encodings and different formulations, but present here only our best design.

As Figure 2(b) suggests, we find it conceptually easiest to think of Dvout as a
function of Dhin modulated by an auxiliary Boolean value Xv capturing the effect
of both Dvin and Eq on Dvout. With a brute force enumeration of the 18 possible
inputs, one may verify the correctness of the table in Figure 2(c) which describes
Dvout as a function of Dhin and Xv. In the table, the value 21 is denoted by M
and 11 by P, in order to emphasize the logical, as opposed to the numerical,
relationship between the input and output. Let Pxio and Mxio be the bit values
encoding Dxio, that is, Pxio [(Dxio 5 11) and Mxio [(Dxio 5 21). From the
table, one can verify the following logical formulas capturing the function:

Xv 5 Eq or Mvin

Pvout 5 Mhin or not ~Xv or Phin!

Mvout 5 Phin and Xv
(4a)

Studying the relationship between Dhout and Dvin modulated by Xh [(Eq or
(Dhin 5 21)), gives the following symmetric formulas for computing the bits of
the encoding of Dhout.

Xh 5 Eq or Mhin

Phout 5 Mvin or not ~Xh or Pvin!

Mhout 5 Pvin and Xh
(4b)

400 GENE MYERS

3.4. ALPHABET PREPROCESSING. To evaluate cells according to the treatment
above, one needs the Boolean value Eq[i, j] for each cell (i, j). In terms of
bit-vectors, we will need an integer Eqj for which Eqj(i) [(pi 5 t j). Computing
these integers during the scan would require O(m) time and defeat our goal.
Fortunately, in a preprocessing step, performed before the scan begins, we can
compute a table of the vectors that result for each possible text character.
Formally, if s is the alphabet over which P and T originate, then we build an
array Peq[s] for which:

Peq@s#~i! ; ~ pi 5 s! . (5)

Constructing the table can easily be done in O(us u 1 m) time and it occupies
O(us u) space (continuing with the assumption that m # w). We are assuming, or
course, that s is finite, as it invariably is in search applications over standard
machine character sets (e.g., ASCII or the ISO standards). At a small loss in
efficiency, our algorithm can be made to operate over infinite alphabets. We
leave this as an exercise or refer the reader to Wu et al. [1996, page 57].

3.5. THE SCANNING STEP. The central inductive step is to compute Scorej and
the bit-vector pair (Pvj, Mvj) encoding Dvj, given the same information at
column j 2 1 and the symbol t j. In keeping with the automata conception, we
refer to this step as scanning tj. The basis of the induction is easy as we know:

Pv0~i! 5 1
Mv0~i! 5 0
Score0 5 m

(6)

That is, at the start of the scan, the Score variable is m, the Mv bit-vector is all
0’s, and the Pv bit-vector is all 1’s.

The difficulty presented by the induction step is that given the vertical delta on
its left side, the only applicable formulas, namely (4b), give the horizontal delta
at the bottom of the cell, whereas the goal is to have the vertical delta on its right
side. To achieve this requires two stages, as illustrated in Figure 3:

FIG. 3. The two stages of a scanning step.

401A Fast Bit-Vector Algorithm

(1) First, the vertical delta’s in column j 2 1 are used to compute the horizontal
delta’s at the bottom of their respective cells, using formula (4b).

(2) Then, these horizontal delta’s are used in the cell below to compute the
vertical deltas in column j, using formula (4a).

In between the two stages, the Score in the last row is updated using the last
horizontal delta now available from the first stage, and then the horizontal deltas
are all shifted by one, pushing out the last horizontal delta and introducing a
0-delta for the first row. We like to think of each stage as a pivot, where the pivot
of the first stage is at the lower left of each cell, and the pivot of the second stage
is at the upper right. The delta’s swing in the arc depicted and produce results
modulated by the relevant X values. For the moment, we will assume Xh and Xv
are known, deferring their computation til the next subsection.

The logical formulas (4) for a cell and the schematic of Figure 3, lead directly
to the formulas below for accomplishing a scanning step. Note that the horizontal
deltas of the first stage are recorded in a pair of bit-vectors, (Phj, Mhj), that
encodes horizontal deltas exactly as (Pvj, Mvj) encodes vertical deltas, that is,
Phj(i) [(Dh[i, j] 5 11) and Mhj(i) [(Dh[i, j] 5 21).

Phj~i! 5 Mvj21~i! or not ~Xhj~i! or Pvj21~i!!
Mhj~i! 5 Pvj21~i! and Xhj~i!

(Stage 1)

Scorej 5 Scorej21 1 ~1 if Phj~m!! 2 ~1 if Mhj~m!! (7)

Phj~0! 5 Mhj~0! 5 02

Pvj~i! 5 Mhj~i 2 1! or not ~Xvj~i! or Phj~i 2 1!!

Mvj~i! 5 Phj~i 2 1! and Xvj~i!
(Stage 2)

At this point, it is important to understand that the formulas above specify the
computation of bits in bit-vectors, all of whose bits can be computed in parallel
with the appropriate machine operations. In this paper, we use the C program-
ming language to do so. In C, the operation u is bitwise-or, & is bitwise-and, ˆ is
bitwise-xor, ˜ is prefix-unary bitwise-not, and ,,1 is suffix-unary shift-left-by-
one. Thus, we can, for example, express the computation of all of Phj as ‘Ph 5
Mv u ˜ (Xh u Pv)’ and the computation of all of Mvj as ‘Mv 5 (Ph ,,5 1)
& Xv’ .

3.6. THE X-FACTORS. The induction above is incomplete, in that we did not
show how to compute the bits of the bit-vectors Xvj and Xhj. We have
immediately from their definition in (4) that:

Xvj~i! 5 Peq@t j#~i! or Mvj21~i!
Xhj~i! 5 Peq@t j#~i! or Mhj~i 2 1! ,

(8)

where we are using the precomputed table Peq to lookup the necessary Eq bits.
Computing Xvj at the beginning of the scan step is not problematic, the vector
Mvj21 is input to the step. On the other hand, computing Xhj requires the value

2In the more general case where the horizontal delta in the first row can be 21 or 11 as well as 0,
these two bits must be set accordingly.

402 GENE MYERS

of Mhj which in turn requires the value of Xhj! We thus have a cyclic
dependency that must be unwound. Lemma 2 gives such a formulation of Xhj

which depends only on the values of Pvj21 and Peq[t j].

LEMMA 2. Xhj(i) 5 ?k # i, Peq[tj](k) and @x [[k, i 2 1], Pvj21(x).3

PROOF. Observe from formulas (4b) that for all k, Mhj(k) is true iff Pvj21(k)
and Xhj(k) are true. Combining this with Eq. (8), it follows that Mhj(k) [
((Pvj21(k) and Peq[tj](k)) or ((Pvj21(k) and Mhj(k 2 1)). Repeatedly applying this
we obtain the desired statement by induction:

Xhj~i! 5 Peq@tj#~i! or Mhj~i 2 1!

5 Peq@tj#~i! or ~Pvj21~i 2 1! and Mhj~i 2 2!!

or ~Pvj21~i 2 1! and Mhj~i 2 2!!

5 Peq@tj#~i! or Pvj21~i 2 1! and Peq@tj#~i 2 1!)
or ~Pvj21~i 2 1! and Pvj21~i 2 2! and Peq@tj#~i 2 2!!

or ~Pvj21~i 2 1! and Pvj21~i 2 2! and Mhj~i 2 3!!

5 . . .
5 ?k # i, Peq@tj#~k! and @x [@k, i 2 1#, Pvj21~x! ~as Mhj~0! 5 0!.

e

So the last remaining obstacle is to determine a way to compute the bit-vector
Xh in a constant number of word-operations. Basically, Lemma 2 says that the
ith bit of Xh is set whenever there is a preceding Eq bit, say the kth and a run of
set Pv bits covering the interval [k, i 2 1]. In other words, one might think of
the Eq bit as being “propagated” along a run of set Pv bits, setting positions in
the Xh vector as it does so. This brings to mind the addition of integers, where
carry propagation has a similar effect on the underlying bit encodings. Figure 4
illustrates the idea. First, consider just the effect of adding P and E together,
where P has the value of Pvj21 and E that of Peq[t j]. Each bit in E initiates a
carry-propagation chain down a run of-set P-bits that turns these bits to 0’s
except where an E-bit is also set. In the figure, this possibility is labeled “A False
Start” because we observe that the carry propagation can proceed beyond the

3In the more general case where the horizontal delta in the first row can be 21 or 11 as well as 0,
Peq[t j](1) must be replaced with Peq[t j](1) or Mhj(0).

FIG. 4. Illustration of Xv computation.

403A Fast Bit-Vector Algorithm

end of a run of set P-bits because of set E-bits. Therefore, one must first turn off
all E-bits not covered by a run of set P-bits, that is, form E&P, and then add this
to P. One can then capture all the bits in P that got toggled during the carry
propagation by taking the exclusive or of the result with P. Finally, one can or in
the E-bits to capture those that were either not covered by a run of set P-bits, or
that were not the initiators of a carry propagation chain. In summary we claim
that:

Xhj 5 ~~~Peq@t j#&Pvj21! 1 Pvj21!ˆPvj21! uPeq@t j# (10)

and verify this formally in Lemma 3.

LEMMA 3. If X 5 (((E&P) 1 P)ˆ P)uE, then X(i) 5 ?k # i, E(k) and @k [
[k, i 2 1], P(x).

PROOF. Consider the transducer for addition shown in Figure 5 immediately
above. A transition of the form a, b/c is taken when the corresponding bits of the
operands are a and b, and the bit c results. It follows that a 1 is output when in
the Carry-state iff the bits of the operands are equal. The opposite is output if the
transducer is in the No Carry-state. Furthermore, one is in the Carry-state when
processing bit i iff there is a previous bit position k, for which the bits of both
operands are set and where at least one of the operands bits is set in all positions
between k and i. Putting this together leads to the following formal logical
description of the effect of addition:

~Q 1 P!~i! 5 ~?k , i, Q~k! and P~k! and @x [@k, i 2 1# , ~Q~ x! or P~ x!!!

; ~Q~i! ; P~i!! .

Replacing Q by E&P in this expression and then applying some simple logical
inferences leads to the conclusion that, if Y 5 (E&P) 1 P, then:

Y~i! 5 ~?k , i, E~k! and @x [@k, i 2 1# , P~ x!! ; ~E~i! or not P~i!! .

Next we use the inferences that ((A [B) xor (P) iff (A [(B xor P)) and that
((E or not (P) xor P) iff not (E and P), to conclude that, if Y 5 ((E&P) 1
P)ˆ P, then:

Y~i! 5 ~?k , i, E~k! and @x [@k, i 2 1# , P~ x!! ; not ~E~i!! and P~i!).

The last step requires the inference ((A [B) or E) and ((not B) f E) is
equivalent to (A or E). That is, if Y 5 (((E&P) 1 P)ˆ P) uE, then it follows

FIG. 5. The addition automation.

404 GENE MYERS

that:

Y~i! 5 ~?k , i, E~k! and @x [@k, i 2 1# , P~ x!! or E~i! ,

which is just a slight restatement of the conclusion of the lemma. e

3.7. THE COMPLETE ALGORITHM. It now remains just to put all the pieces
together. Figure 6 gives a complete specification in the style of a C program to
give one a feel for the simplicity and efficiency of the result. At the right of each
basic code block is the formula(s) justifying it.

The table Peq is built before the scan as specified in formula (5). Two
bit-vectors, Pv, and Mv, and integer Score are maintained during the scan and at
the completion of scanning the jth character contain the values of Pvj, Mvj, and
Scorej, respectively. These variables are set according to formula (6) to correctly
initiate the scan. To scan the symbol t j, the algorithm uses five intermediate
bit-vectors Eq, Xv, Xh, Ph, and Mv in the interior of the scan loop. First, Xh and
Xv are computed to have the values of Xhj and Xvj according to formulas (8) and
(10) using the variable Eq to factor the common subexpression Peq[t j]. Then Ph
and Mh are computed to hold the horizontal deltas for the jth column (formula
(4b)), Score is updated to the value of Scorej using formula (7), and Pv and Mv
are updated to hold the vertical deltas in column j. Finally, the value of Score is
checked to see if there is a match.

The correctness of the algorithm follows directly from the treatment leading
to this point. Moreover, the complexity of the algorithm is easily seen to be
O(ms 1 n) where s is the size of the alphabet s. Indeed only 17 bit operations
are performed per character scanned. This is to be contrasted with the Wu/
Manber bit-vector algorithm [Wu and Manber 1992], which takes O(ms 1 kn)

FIG. 6. The basic algorithm.

405A Fast Bit-Vector Algorithm

under the prevailing assumption that m # w. The Baeza-Yates/Navarro bit-
vector algorithm [Baeza-Yates and Navarro 1996] has this same complexity under
this assumption, but improves to O(ms 1 n) time when one assumes m #
2=w 2 2 (e.g., m # 9 when w 5 32 and m # 14 when w 5 64).

Finally, consider the case where m is unrestricted. Such a situation can easily
be accommodated by simply modeling an m-bit bit-vector with m/w words. An
operation on such bit-vectors takes O(m/w) time. It then directly follows that the
basic algorithm of this section runs in O(ms 1 nm/w) time and O(sm/w)
space. This is to be contrasted with the previous bit-vector algorithms [Wu and
Manber 1992; Baeza-Yates and Navarro 1996] both of which take O(ms 1
knm/w) time asymptotically. This leads us to say that our algorithm represents a
true asymptotic improvement over previous bit-vector algorithms.

4. Extensions

4.1. LIMITED REGULAR EXPRESSIONS. The first extension is that our bit-
vector algorithm can accommodate limited regular expressions as introduced in
Wu and Manber [1992] and Baeza-Yates and Gonnet [1992]. Conceptually, a
limited regular expression is a sequence of sets of symbols, where a symbol of the
text is considered to match position i of the pattern iff it is in the ith set.
Typically, a subset of the egrep-syntax is used to specify the patterns (see Wu et
al. [1996]), including the wild-card, ‘.’, which matches any symbol. To effect the
extension, all that is required is that the Peq table be set up to model the
potential text symbol matches. That is, if pi now denotes the set of symbols
matching the ith position of the query, then one sets Peq[t](i) [(t [pi).

4.2. THE BLOCKS MODEL. In order to efficiently extend our basic algorithm
to the general case where there is no restriction on the length of the pattern, we
must understand how to encapsulate its result into modules or blocks that can be
pieced together to solve larger problems. Just as we thought of the computation
of a single cell as realizing an input/output relationship on the four deltas at its
borders, we may more generally think of the computation of a u 3 v rectangular
subarray or block of cells as resulting in the output of deltas along its lower and
right boundary, given deltas along its upper and left boundary as input. This is
the basic observation behind Four Russians approaches to sequence comparison
[Masek and Paterson 1980; Wu et al. 1996], where the output resulting from
every possible input combination is pretabulated and then used to effect the
computation of blocks as they are encountered in a particular problem instance.

Along these same lines, we can think of our basic algorithm as effecting the
O(1) computation of 1 3 m blocks under the special circumstances that the
horizontal input delta is always 0. More generally, we can use our result to effect
the computation of 1 3 w blocks where the horizontal input delta may also be
21 or 11. The diagram at the left of Figure 7 depicts such a block and further
terms it a level b block because it extends from row (b 2 1)w to row bw. By
restricting our attention to only blocks on O(m/w) levels, we are still able to
cover any desired region of a d.p. matrix, and only O(sm/w) Eq-vectors need be
precomputed for them.

Consider an n-sequence by m-sequence comparison problem for which an
algorithm computes a region or zone of the dynamic programming matrix. There

406 GENE MYERS

are several such algorithms [Ukkonen 1985; Chao et al. 1992a; 1992b] and
several others that compute small parts of such a matrix as a subprocedure.4

Figure 7 at right shows a d.p. matrix and a hypothetical zone that might be
computed by such an algorithm. The point of the figure is that we can take any
such underlying computation and perform it in fewer steps by computing the
region w cells at a time. Apart from the fact that any such tiling involves at most
bmax 5 m/w levels, there are several points to note:

(1) Almost invariably the computation can proceed in a column sweep so that
only bmax vertical delta vectors need be maintained at any one time, that is,
one can speak of the current vertical delta at level b.

(2) Blocks at the boundaries of the matrix have deltas of either 0 or 1 depending
on the underlying computation. Figure 7 depicts 0-deltas on the upper
boundary and 1-deltas on the left boundary of the matrix.

(3) Blocks that have no predecessor at the same level in the previous column can
usually assume 1-deltas for their vertical inputs, as this conservatively models
values greater than those in the zone.

(4) Blocks in the last level may extend beyond the last row by W 5 w 2 m (mod
w) cells. The easiest way to handle this is to pad the length m sequence with
W extra wild-card symbols (see Limited Regular Expressions above). Under
these circumstances, the value of the interior horizontal delta in row m, then
appears at the output of the level-bmax block W columns later. This delay in
output requires that one also pad the length n sequence with W wild-card
symbols, and that one extend a tiling W columns beyond the end of the zone
when in this last level. Figure 7 illustrates this.

For the sake of completeness and rigor, Figure 8 details a library that will
maintain and manipulate blocks for a block-based approach as just described.
The library assumes the client algorithm will proceed in a column sweep, and so
has a statically allocated pair of bit-vectors arrays, P[1 . . . bmax] and M[1 . . .
bmax], to encode the current vertical delta at each possible level. Moreover, Eq
bits will be provided by the precomputed array Peq[s][1 . . . bmax] for which

4See, for example, Ukkonen [1992], Myers [1994], Chang and Lawler [1994], and Sutinen and Tarhio
[1996].

FIG. 7. Block-based dynamic programming.

407A Fast Bit-Vector Algorithm

Peq[s][b](i) [(p(b21)w1i 5 s). The procedure Init_Block establishes all
the vertical deltas of the level-b block to be vin . The function Advance_Block ,
takes the current level-b vertical delta vector, horizontal delta hin , and symbol
t , as input. It computes the output of the block under such conditions, making
the resulting vertical delta the current one, and returning the horizontal output
delta, hout , as its functional result. The only fine point in the adaptation of the
inner loop of the basic algorithm in Figure 6 to this purpose, is the observation
that the horizontal input should be reflected into the vectors Ph, Mh, and Eq as
detailed in footnotes 2 and 3 in the previous section on the basic algorithm.

In conclusion, one can improve the speed of any zone-based d.p. algorithm for
approximate matching by a factor of w given that (1) the algorithm can be
arranged to operate in a column (or row) sweep, (2) appropriate input delta’s
can be found for internal boundaries of the block tiling, and (3) one can
effectively determine, from looking only at the level boundaries, whether the
tiling contains the zone or not. We generally find these conditions to be true and
we illustrate (3) for the O(kn) expected-time algorithm of Ukkonen in the
following discussion.

4.3. A BLOCK-BASED ALGORITHM FOR APPROXIMATE STRING MATCHING. Uk-
konen improved the expected time of the standard O(mn) d.p. algorithm for
approximate string matching, by computing only the zone of the d.p. matrix
consisting of the prefix of each column ending with the last k in the column. That
is, if xj 5 max{i: C(i, j) # k} then the algorithm takes time proportional to the
size of the zone Z(k) 5 ø j50

n {(i, j): i [[0, xj]}. It was shown in Chang and
Lampe [1992] that the expected size of Z(k) is O(kn). Computing just the zone
is easily accomplished with the observation that xj 5 max{i: i # xj21 1 1 and
C(i, j) # k}. Note that while some entries outside of the zone are computed in
the event that xj # xj21, the time for these can be charged to the corresponding
entries in column j 2 1. Another subtlety is that entries outside of the zone are
not necessarily computed correctly but always have a value greater than k.
However, values in the zone are correct, and so the algorithm correctly reports
the positions of k-matches.

A block-based algorithm for this O(kn) expected-time algorithm was devised
and presented in an earlier paper of ours [Wu et al. 1996] where the blocks were
computed in O(1) time using a 4-Russians lookup table. What we are proposing
here, is to do exactly the same thing, except to use our bit-vector approach to

FIG. 8. The block-based library.

408 GENE MYERS

compute 1 3 w blocks in O(1) time. As we will see in the next section, this
results in almost a factor of 4-5 improvement in performance, as the 4-Russians
table lookups were limited to 1 3 5 blocks and the large tables involved result in
much poorer cache coherence, compared to the bit-vector approach where all the
storage required typically fits in the on-board CPU cache.

In order for the block-based algorithm to tile Z(k), it must know the value of
C(bw, j) at each active level-b boundary. This is accomplished by keeping an
auxiliary array Score[0 . . . bmax] such that Score[b] j 5 C(bw, j) for any
currently active blocks b in column j. Doing so is simply a matter of accumulating
the horizontal delta returned by Advance_Block for block b, just as the basic
algorithm accumulates the horizontal deltas in the last row. These Score values
are then used to guide the tiling of the block-based algorithm that computes the
blocks in levels 1 through yj of column j, where yj is computed from yj21 as
follows:

yj 5 5
yj21 1 1 if Score@b# j21 5 k and yj21 , bmax and

~Peq@t j#@ yj21 1 1#~1! or Score@b# j , k!

max$b;b # yj21 and otherwise
C~bw, j! , k 1 w%

(11)

The induction is started by initializing blocks 1 through y0 5 k/w in column 0.
During the scan, we found it worthwhile to avoid computing the block at level
yj21 1 1 in column j, unless it is certain that Z(k) properly intersects it.
Furthermore, note that one can only ask to remove a block when the score at its
level is greater or equal to k 1 w, rather than as soon as it does not intersect the
zone because determining this would require an O(w) test. While this leads to a
slightly larger area than necessary being computed, it is still the case that the
area covered by blocks is properly contained within the zone Z(k 1 w) and so yj

is O(k/w) in expectation by the theorem of Chang and Lampe [1992]. Thus, our
block-based algorithm finds approximate k-matches in O(kn/w) expected time.
For completeness, we detail the algorithm in Figure 9 using subroutines of the
block-based library in Figure 8.

5. Some Empirical Results

In this final section, we try to give some sense of the performance of our basic
algorithm for the case where m # w and our block-based algorithm for the case
of unrestricted m. All trials were run on a Dec Alpha 4/233 with 196Mb of
memory and a 512Kb cache running the DEC UNIX 3.2 operating system. All
algorithms considered were coded in ANSI-C and compiled under the GNU C
compiler with the -O option on. Bit-vectors were modeled as 64-bit unsigned
long integers. The Alpha architecture is optimized for this greater word length,
and actually performs unsigned long loads, stores, and bit-ops more efficiently
than it does so for unsigned int s.

We report on two sets of comparisons. The first is a study of our basic
bit-vector algorithm, the bit-vector algorithm of Wu and Manber [1992] (and its
specialization by Baeza-Yates and Gonnet [1992] for the case where k 5 0), and
a refinement of the bit-vector algorithm of Baeza-Yates and Navarro [1996]. The

409A Fast Bit-Vector Algorithm

earlier result of Wright [1994] is not included as preliminary experiments
indicated that it was noncompetitive even in the case of binary alphabets. In this
first series of trials, we limit patterns to the case where m is not greater than 64,
the number of bits in a bit-vector. The second set of experiments involves all
verification-capable algorithms that work when k and m are unrestricted. In this
case, we need only consider our block-based algorithm and the results of Chang
and Lampe [1992] and Wu et al. [1996] and the refinement of Baeza-Yates and
Navarro [1996], as all other competitors are already known to be dominated in
practice by these algorithms [Wu et al. 1996]. Comparisons against the class of
filter algorithms are not made in this preliminary study. It is true that they
outperform all verification-capable algorithms for sufficiently small mismatch
ratio k/m. Where, exactly, the line gets drawn is deferred to a broader study.
Nonetheless, note that any filter algorithm needs a verification-capable algorithm
as a subcomponent and hence benefits from a faster algorithm of this genre.

Our preliminary study thus involves seven algorithms, the two in this paper and
those in Chang and Lampe [1992], Baeza-Yates and Gonnet [1992], Wu and
Manber [1992], Wu et al. [1996], and Baeza-Yates and Navarro [1996]. We took
the following steps to make the comparisons as fair as possible. First, the
common components of reading and scanning the text and preprocessing the
pattern were the same for all implementations. Thus, differences in times are all
due to the difference in the body of the scan loop and not to issues such as how
the I/O is performed. The code for the algorithm of Chang and Lampe [1992]
was obtained from the authors and then further improved by us. The code for
our earlier 4-Russians work was written by this author and was, of course,
certainly his best effort. On the Alpha, this code ran best with a block size of 5,
and this is the size used in the trials below. The code for the bit-vector methods
of Baeza-Yates and Gonnet [1992], Wu and Manber [1992], and Baeza-Yates
and Navarro [1996] was written by us exactly as detailed in the author’s papers. It
was then further optimized to remove all common subexpressions, minimize

FIG. 9. Block-based Ukkonen algorithm.

410 GENE MYERS

loads and stores to memory, and move the evaluation of any constant terms in a
loop to the start of the loop. We even went so far as to study the assembly code
produced for the innermost loop of each algorithm to make sure that there were
no obvious optimizations missed by the compiler. In one case [Baeza-Yates and
Navarro 1996], we discovered that making three global variables local permitted
the compiler to better use the available registers. Finally, over all cases, the
inner-most loop averaged only 20 lines of code and so it was not difficult to give
each implementation thorough consideration.

All the implementations, scanned data sets, and command-line scripts for all
trials are available via anonymous ftp from the subdirectory myers.grep at
ftp.cs.arizona.edu . We make this available not only for those interested in
using our software, but also those who wish to perform further studies or to
verify our methodology. There are two implementation details that deserve
mention. The first is that our implementation of the Baeza-Yates and Navarro
[1996] bit-vector algorithm does not include the filter that does not begin to run
the underlying bit-vector algorithm until the character being scanned is one of
the first k 1 1 characters in the pattern. We do so, because this filter
optimization is orthogonal and applicable to all of the algorithms being consid-
ered here. We want to get a sense of how the basic algorithms compare, such
orthogonal optimizations can be layered on later. Secondly, we should mention
that, in our implementation of our block-based algorithm, we (1) in-lined all the
calls to Init_Block and Advance_block , (2) special-cased the Advance_
block in line 13, and (3) otherwise optimized the code as noted above for our
implementations of Wu and Manber [1992] and Baeza-Yates and Navarro [1996].

The expected-time complexity of each algorithm, A, is of the form

Q~ fA~m, k, s!n! ,

where fA is a function of the indicated parameters. Our experiments are aimed at
empirically measuring fA for each algorithm A. Each trial is designed to measure
fA for a given choice of the parameters. A trial consists of 10 runs of the program
over a text of one million characters generated by random selection with equal
probability from an alphabet of size s, and a pattern that is a similarly generated
sequence of m characters over the same alphabet as the text. The times
measured for trials varied from 4 seconds to the 100’s of seconds, and the system
clock consistently measured run times to an accuracy of 0.1 seconds on our
dedicated machine. Thus, the error in the time obtained from each trial is at
most about 2.5%.

For the first set of experiments where m # 64, the algorithm of Baeza-Yates
and Navarro [1996], as originally reported, only applies for (m 2 k)(k 1 2) #
64 when a single word of bits is available. Partitioning the underlying automaton
into blocks, each with few enough states to fit in a word, permits its application
to larger m and k. Moreover, just as we compute only the blocks covering a zone
of the d.p. matrix, one can compute just those blocks of the automaton with
active states during the text scan to arrive at an O(nk2/=sw) expected-time
variation of the basic algorithm. In the case where k # w 2 2 5 62, the
automaton can also be partitioned in a way that leads to better code than when k
is larger. The information for this refinement was communicated to us by the
authors [Baeza-Yates and Navarro 1999], and we use it here in order to present

411A Fast Bit-Vector Algorithm

their work in the best possible light. We refer to this variation as the “Linked-
BYN” algorithm in the following discusion.

Our first set of experiments compare the three bit-vector algorithms for the
case where m # 64, and the results are shown in Figure 10. At left we show our
best estimate for fA for each algorithm. For our basic algorithm, fA is a constant.
We confirmed this by performing 90 trials with different values of k and m and
observing that the time was constant save for a small variation due to semi-
stochastic operating system fluctuations. The same is true of the basic Baeza-
Yates and Navarro [1999] when (m 2 k)(k 1 2) # 64. For the linked-variation,
fA depends on k and s, so we ran experiments for every possible k and for s
equal to every power of 2. Finally, from theoretical considerations we know that
the Wu and Manber algorithm should perform linearly in k. A least-squares
regression line fits the results of 90 trials very well, but we note that the fit is off
by roughly 9% for the first two values of k (see Figure 10). We hypothesize that
this is due to the effect of branch-prediction in the instruction pipeline hardware.
Figure 10 depicts the values of k and m for which each method is superior to the
others. In the zone where the Baeza-Yates and Navarro algorithm requires no
automata linking it is 12% faster than our basic algorithm, and for k 5 0 the
specialiation of the algorithm of Manber and Wu for this case by Baeza-Yates
and Gonnet [1992] is 59% faster. In the remaining region, either our algorithm
or the linked-BYN algorithm is superior depending on k and s. Our algorithm is
always superior in the light grey region, and superior in a medium grey region
when s is less than the alphabet size labeling the block.

Our second set of experiments are aimed at comparing verification-capable
algorithms that can accommodate unrestricted choices of k and m. We argued
previously that such a study need only involve our block-based algorithm and
those of Chang and Lampe [1992], Wu et al. [1996], and the linked variation of
Baeza-Yates and Navarro [1996]. All these are zone-based algorithms and when
m is suitably large, the zone never reaches the last row of the d.p. matrix/
automaton, so that the running time does not depend on m. Thus, we set m 5
400 for all trials and ran 107 trials with (k, s) [{0, 1, 2, . . . , 6, 8, 10, . . . ,
20, 24, 28, . . . , 60} 3 {2, 4, 8, 16, 32} ø {64, 68, 72, . . . , 120} 3 {32}.
The one exception is the linked-BYN algorithm which we did not run for k . 62
as for such k the approach requires additional partitioning which further

FIG. 10. Performance summary and legions of superiority for bit-vector algorithms.

412 GENE MYERS

degrades its performance. For each of the five choices of s, Figure 11 has a
graph of time as a function of k, one curve for each algorithm. In the case of the
4-Russians algorithm [Wu et al. 1996], tables were built for evaluating the d.p.
matrix in 1 3 5 blocks, the size at which the best performance is obtained as
described in the original paper on this approach. From Figure 11, it is immedi-
ately clear that our block-based algorithm is superior to the others for all choices

FIG. 11. Timing curves for the O(kn/w) block-based algorithm (“This”) versus Chang/Lampe
(“ChaLa”), Wu/Manber/Myers (“WMM”) with log s 5 5, and linked-Baeza-Yates/Navarro (“BYN”),
with alphabet sizes (a) s 5 2, (b) s 5 4, (c) s 5 8, (d) s 5 16, and (e) s 5 32.

413A Fast Bit-Vector Algorithm

of k and s, except for a few values of k near 0 where the linked-BYN algorithm
has a slight edge as expected from the previous experiment. The factor by which
our algorithm is superior varies inversely with s. We imagine that the Chang and
Lampe may eventually overtake our algorithm for very large s but we were only
able to confirm that it does not do so for s 5 95, the number of printable ASCII
characters and the largest setting possible for our software. Finally, note the
discrete stair-step pattern of our algorithm due to discrete increases in the
average number of blocks needed to cover each column of Z(k).

While the study above is not exhaustive, it clearly shows that our bit-vector
idea for approximate string matching leads to algorithms that are the best in
practice for a wide range of operating conditions.

ACKNOWLEDGMENTS. The author is indebted to Marie-France Sagot for helpful
conversations during the early development of this result, and to Will Evans,
Toni Pitassi, and Maria Bonet for the suggestion that addition looked like it
might provide the way to compute Xh quickly.

REFERENCES

BAEZA-YATES, R. A., AND GONNET, G. H. 1992. A new approach to text searching. Commun. ACM
35, 74 – 82.

BAEZA-YATES, R. A., AND NAVARRO, G. 1996. A faster algorithm for approximate string matching.
In Proceedings of the 7th Symposium on Combinatorial Pattern Matching. Lecture Notes in
Computer Science, Vol. 1075. Springer-Verlag, New York, pp. 1–23.

BAEZA-YATES, R. A. AND NAVARRO, G. 1999. Analysis for algorithm engineering: Improving an
algorithm for approximate pattern matching. Unpublished manuscript.

CHAO, K. M., HARDISON, R. C., AND MILLER, W. 1992. Recent developments in linear-space
alignment methods: A survey. J. Comput. Biol. 1, 271–291.

CHANG, W. I., AND LAMPE, J. 1992. Theoretical and empirical comparisons of approximate string
matching algorithms. In Proceedings of the 3rd Symposium on Combinatorial Pattern Matching.
Lecture Notes in Computer Science, vol. 644. Springer-Verlag, New York, pp. 172–181.

CHANG, W. I. AND LAWLER, E. L. 1994. Sublinear expected time approximate matching and
biological applications. Algorithmica 12, 327–344.

CHAO, K. M., HARDISON, R. C., AND MILLER, W. 1992. Recent developments in linear-space
alignment methods: A survey. J. Comput. Biol. 1, 271–291.

CHAO, K. M., PEARSON, W. R., AND MILLER, W. 1992. Aligning two sequences within a specified
diagonal band. Comput. Appl. BioSciences 8, 481– 487.

COBBS, A. 1995. Fast approximate matching using suffix trees. In Proceedings of the 6th Symposium
on Combinatorial Pattern Matching. Lecture Notes in Computer Science, vol. 937. Springer-Verlag,
New York, pp. 41–54.

GALIL, Z., AND PARK, K. 1990. An improved algorithm for approximate string matching. SIAM
J. Comput. 19, 989 –999.

LANDAU, G. M., AND VISHKIN, U. 1988. Fast string matching with k differences. J. Comput. Syst.
Sci. 37, 63–78.

MASEK, W. J., AND PATERSON, M. S. 1980. A faster algorithm for computing string edit distances.
J. Comput. Syst. Sci. 20, 18 –31.

MYERS, E. W. 1994. A sublinear algorithm for approximate keywords searching. Algorithmica 12,
345–374.

PEVZNER, P., AND WATERMAN, M. S. 1995. Multiple filtration and approximate pattern matching.
Algorithmica 13, 135–154.

SELLERS, P. H. 1980. The theory and computations of evolutionary distances: Pattern recognition.
J. Algorithms 1, 359 –373.

SUTINEN, E., AND TARHIO, J. 1996. Filtration with q-samples in approximate string matching. In
Proceedings of the 7th Symposium on Combinatorial Pattern Matching. Lecture Notes in Computer
Science, vol. 1075. Springer-Verlag, New York, pp. 50 – 63.

UKKONEN, E. 1985. Finding approximate patterns in strings. J. Algorithms 6, 132–137.

414 GENE MYERS

UKKONEN, E. 1992. Approximate string-matching with q-grams and maximal matches. Theoret.
Comput. Sci. 92, 191–211.

UKKONEN, E. 1993. Approximate string matching over suffix trees. In Proceedings of the 4th
Symposium on Combinatorial Pattern Matching. Lecture Notes in Computer Science, vol. 684.
Springer-Verlag, New York, pp. 228 –242.

WAGNER, R. A., AND FISCHER, M. J. 1974. The string to string correction problem. J. ACM 21,
168 –173.

WU, S., AND MANBER, U. 1992. Fast text searching allowing errors. Commun. ACM 35, 10, 83–91.
WU, S., MANBER, U., AND MYERS, G. 1996. A subquadratic algorithm for approximate limited

expression matching. Algorithmica 15, 50 – 67.
WRIGHT, A. H. 1994. Approximate string matching using within-word parallelism. Soft. Pract.

Exper. 24, 337–362.

RECEIVED SEPTEMBER 1997; REVISED OCTOBER 1998; ACCEPTED NOVEMBER 1998

Journal of the ACM, Vol. 46, No. 3, May 1999.

415A Fast Bit-Vector Algorithm

	mc039900395p

