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Chaos-based cryptography is widely investigated in recent years, especially in the field of random number
generators. The paper describes a novel pseudo-random bit generator (PRBG) based on chaotic logistic
maps. Three logistic maps are combined in the algorithmic process, and a block of 32 random bits is
produced at each iteration. The binary64 double precision format is used according to the IEEE 754-2008
standard for floating-point arithmetic. This generator provides a considerable improvement of an existing
generator in the literature. Rigorous statistical analyses are carefully conducted to evaluate the quality and
the robustness of the PRBG. The obtained results showed the relevance of the proposed generator, which
is suitable even for real-time applications.

Povzetek: V članku je opisan hitri psevdo-naključni generator za kriptiranje.

1 Introduction

The generation of pseudo-random bits (or numbers) plays a
critical role in various applications such as: statistical me-
chanics, numerical simulations, gaming industry, commu-
nication systems, cryptographic protocols and many oth-
ers [1]. In practice, the generation of such numbers with
randomness properties is an open problem and continues
to be investigated. There are two main classes of genera-
tors: software and physical generators.
For the software generators, the term “pseudo-random” is
applied to indicate that, the generator is defined as an algo-
rithm allowing to produce sequences of bits with random-
ness properties. From a single initial seed, these generators
will always produce the same outputs. The assets of such
generators are: a fast execution time, repeatability and re-
producibility of the pseudo-random sequences. The second
class of generators exploits physical random phenomena
for the generation, but is not discussed here.
Some basic techniques are often used for generating
pseudo-random numbers, such as: linear recurrence [2],
non-linear congruence [3], linear feedback shift register
(LFSR) [4], cellular automata [5], discrete logarithm prob-
lem [6], quadratic residuosity problem [7], etc. Gener-
ally, the security of a cryptographic generator is based
on the difficulty to solve the related mathematical prob-
lem. Beyond the security, such kind of generator is some-
times too slow due to heavy computational instructions.
For example, the Blum Blum Shub algorithm [7] has a

security proof, assuming the computational difficulty of
the quadratic residuosity problem. The algorithm is also
proven to be secure, relatively to the difficulty of integer
factorization problem. However, the generator is imprac-
tical unless extreme security is needed. The Blum-Micali
algorithm [6] presents also an unconditional security proof
based on the difficulty of the discrete logarithm problem,
but is also ineffective.
One interesting way to design pseudo-random generators
can be found in chaos theory [8, 9, 10]. Indeed, chaotic sys-
tems are characterized by their high sensitivity to initial pa-
rameters and some properties like ergodicity, mixing prop-
erty and high complexity [8, 11]. A secret parameter should
be sensitive enough to ensure the so-called avalanche prop-
erty. A small deviation in the initial conditions should
cause a large modification in the output, that makes chaotic
systems very attractive for pseudo-random number genera-
tion. These generators commonly use chaotic logistic maps
and produce large pseudo-random sequences. For a high
security level, it is necessary to combine several logistics
maps, in order to increase the complexity of the cryptosys-
tem. But, this is not always sufficient, because a rigorous
analysis is more appropriate to evaluate the randomness
level and the global security of the generator.
In this paper, a new PRBG combining three chaotic logis-
tic maps is presented. It provides a significant improve-
ment on security and performance, of the generator pro-
posed by Patidar et al. [12]. The proposed algorithm uses
the binary64 floating-point arithmetic and produces at each
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iteration a block of 32 random bits. The pseudo-random
sequences passed successfully the various statistical tests
related to the randomness and correlation. The assets of
the PRBG are: high sensitivity to initial seeds, high level
of randomness and fast execution time. The paper is struc-
tured as follows, in Sec. 2 the used chaotic logistic map and
the description of the Patidar’s algorithm are given. Sec-
tion 3, presents a detailed description of our algorithm and
a brief discussion about the floating-point representation.
The statistical analysis is given in Sec. 4. The security as-
pect of the PRBG is discussed in Sec. 5, before concluding.

2 Background

2.1 The chaotic logistic map
Frequently used in chaos theory as well as in chaos-based
cryptosystems, the form of the logistic map is given by:

F (X) = βX(1−X), (1)

with β between 3.57 and 4.0 [13]. Its chaotic behavior has
been widely studied and several generators have already
used such logistic map for generating pseudo-random num-
bers [14, 15, 16, 17]. To avoid non-chaotic behaviour (is-
land of stability, oscillations, ...), the value of β should be
near 4.0, which corresponds to a highly chaotic behaviour.
The logistic map is used under the iterative form:

Xn+1 = βXn(1−Xn),∀n ≥ 0, (2)

where the starting seed X0 is a real number belonging to
the interval ]0, 1[. All the computed elements Xn are also
real numbers in ]0, 1[.

2.2 About the algorithm of Patidar
Patidar et al. [12] have proposed a PRBG based on two lo-
gistic maps. The algorithm starts from random independent
initial seeds X0, Y0, belonging to ]0, 1[. The chosen value
of β is 4 and the two logistic maps are given by:

Xn+1 = 4Xn(1−Xn),∀n ≥ 0, (3)
Yn+1 = 4Yn(1− Yn),∀n ≥ 0. (4)

The main idea of the algorithm is very simple and consists
to compare the outputs of both the logistic maps in the fol-
lowing way:

g(Xn+1, Yn+1) =

{
1 if Xn+1 > Yn+1

0 if Xn+1 ≤ Yn+1

Even if the idea is interesting, the algorithm presents sev-
eral weaknesses:

1. Only one bit is generated after each iteration, that cor-
responds to a very low throughput according to the
relevance of the logistic maps.

2. The sequences produced with nearby seed values are
extremely correlated.

3. The seed space has a much lower entropy than 128,
due to the existing correlation between the pseudo-
random sequences. Therefore, the generator presents
weak or degenerate seeds.

4. At a given iteration n, in the case of eventual colli-
sion between Xn+1 and Yn+1 (which is possible), the
output bit will always be 0 until the end of the output
sequence.

The algorithm proposed in this paper also combines sev-
eral chaotic logistic maps, but is designed to avoid all those
weaknesses and then ensure a better security.

3 The proposed PRBG

3.1 Floating-point representation
As we know, digital computers use binary digits to repre-
sent numbers. In the case of real numbers, there are two
representation formats: fixed-point and floating-point for-
mats. To represent integers or real numbers with a fixed
precision, it is more suitable to adopt the first format. The
second format can support a much wider range of values.
Nowadays, the floating point arithmetic is standardized
by IEEE/ANSI [18]. Two different floating-point formats
are defined: single precision (binary32) and double preci-
sion (binary64). In this paper, we only focus on binary64
floating-point format, which is generally used to achieve
a higher simulation precision for the study of chaotic sys-
tems.
Binary64 has two infinities, two kinds of NaN (i.e. Not a
Number) and the set of finite numbers. Each finite number
is described by three fields: s a sign represented on one bit
(1 indicating negative), e a biased exponent represented on
11 bits and m a mantissa represented on 52 bits (see Fig-
ure 1). The bits of the mantissa can be divided into two
blocks of 20 bits and 32 bits and the treatment is applied on
the block of 32 bits (mantissa1).

3.2 Description of the algorithm
As in the paper of Patidar et al., our algorithm uses the same
type of chaotic logistic map given by Eq. 1. In our case, the
value of β is fixed to 3.9999 that corresponds to a highly
chaotic case [19, 20]. Indeed, the Lyapunov exponent [21,
22] measures the chaotic behavior of a function and the
corresponding Lyapunov exponent of the logistic map for
β = 3.9999 is 0.69 very close to its maximum which is
0.59. The chaotic logistic map is used under the iterative
form:

Xn+1 = 3.9999Xn(1−Xn),∀n ≥ 0, (5)

where the starting seed X0 is a real number that belongs to
]0, 1[. All the computed elementsXn are also real numbers
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Figure 1: Floating-point representation in binary64 format.

in ]0, 1[.

Our algorithm takes into account the various weaknesses
of the algorithm proposed by Patidar et al. Thus, to have
a large space of output sequences, three logistic maps are
used during the generation process. The same value of β is
used for each one and the corresponding equations are:

Xn+1 = 3.9999Xn(1−Xn),∀n ≥ 0, (6)
Yn+1 = 3.9999Yn(1− Yn),∀n ≥ 0, (7)
Zn+1 = 3.9999Zn(1− Zn),∀n ≥ 0. (8)

For each computed value Xn, Yn and Zn, a binary64
floating-point representation is used as shown in Figure 1.
The algorithmic principle is simple and consists at each it-
eration, to apply a xor operation on the 32 bits of mantissa1
of the three output elements Xn, Yn and Zn. Thus, the al-
gorithm allows to produce 32 random bits per iteration and
therefore increase the throughput of the generator. The op-
erating principle of the algorithm is shown in Figure 2. As
one can see, the seeds from which the generation process
starts are Xk, Yk and Zk. Indeed, for nearby seed values,
the elementsXn, Yn and Zn are almost identical in the first
rounds. Thus, to completely decorrelate the beginning of
the pseudo-random sequences, it is necessary to start the
generation only at the kth iteration. The number of prelim-
inary rounds k and the way to choose the initial seeds are
presented in Sec. 3.3. The implementation of the algorithm
in C language is simple: just include the file ieee754.h
and use the defined functions for extracting the bits of man-
tissa1 for each computed element Xn, Yn and Zn.

3.3 The choice of initial parameters
3.3.1 Initial seed selection

To improve the randomness quality of the generated se-
quences, the choice of the initial seed values should not be
neglected. The coefficient values of the elements Xn, Yn
and Zn, belong to ]0, 1[. Due to symmetric structure of the
logistic map, it is necessary to choose the starting seeds in
one of the two half-intervals (here ]0, 2−1[) to avoid similar
trajectories. In binary64 floating-point format, the com-
puted term (1 −X) is equal to 1.0 for any X in ]0, 2−53[,
then for a seed value in ]0, 2−53[, the computed value of
Eq. 2 is equivalent to βXn. To avoid such problem, initial
seed values must be chosen in ]2−53, 2−1[.
The three initial seeds must be different, then the differ-
ence δ[2] between the values should be representable in bi-

nary64. The value of δ[2] is in the worst case 2−53, which
corresponds to log10(253) (≈ 15.955) decimal digits. To
have a significant difference we choose δ[10] = 10−15,
which corresponds to δ[2] = 2−49.8289. Thus, to avoid
identical trajectories, the difference between each initial
seed should be at least δ[2] = 2−49.8289.

3.3.2 Number of preliminary rounds

In the case where the values of initial seeds (X0, Y0 andZ0)
are very close, the beginnings of chaotic trajectories are al-
most similar. To avoid such problem, it is necessary to ap-
ply some preliminary rounds before starting to produce the
random bits. Thus, it is necessary to see at which number of
iterations, the difference δ[2] begins to be propagated. We
consider that the initial seed is X0 = δ[2] = 2−49.8289, and
the obtained trajectory with the Eq. 5 is shown in Figure 3.
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Figure 3: Trajectory of the chaotic logistic map given in
Eq. 5, for n = 135 and X0 = 2−49.8289.

One can see that, the trajectory starts to oscillate almost
from the 30th iteration. Thus, the generation of random bits
will begin from the iteration 30. That allows to decorrelate
the outputs of the PRBG, and then increase the sensitivity
related to the initial seeds.

4 Statistical analysis

The quality of the output sequences produced by any PRBG
is the crucial element. Indeed, the sequences should present
individually a high level of randomness and be decorrelated
with each other, whatever the initial seed values. Therefore,
a statistical analysis should be carefully conducted to prove
the quality of the pseudo-random sequences.
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Figure 2: The operating principle of the proposed PRBG.

4.1 Randomness evaluation
The analysis consists in evaluating the randomness level
of the sequences generated by the PRBG. In the literature,
various statistical tests exist for analysing the randomness
level of sequences. The NIST (National Institute of Stan-
dards and Technology of the U.S. Government) proposes
a battery of tests that can be applied on the binary se-
quences [23]. One can also find other known libraries such
as TestU01 [24] or the DieHARD suites [25]. Here, the se-
quences are evaluated through statistical tests suite NIST.
Such suite consists in a statistical package of fifteen tests
developed to quantify and to assess the randomness of bi-
nary sequences, produced by pseudo-random number gen-
erators. Here, we define three approaches for testing the
randomness level of sequences. Let N be the total num-
ber of generated sequences and the binary size of each se-
quence isM = 32×B, withB the number of 32-bit blocs.
The three approaches are:

1. APP-1 (individual sequences): the produced se-
quences are individually tested and the results are
given as ratio of success relatively to a threshold deter-
mined from the total number (N ) of tested sequences.
Such approach indicates the global randomness level
of the tested sequences.

2. APP-2 (concatenated sequence): all the individual se-
quences are concatenated to form a new single se-
quence. The randomness level of the constructed se-
quence is analysed through the NIST tests. The con-
structed sequence should pass the tests whether the
original sequences are truly decorrelated and random.

3. APP-3 (resulting sequences): all the sequences are
superimposed on each other (forming a matrix), and
new sequences are constructed from columns. Thus,
B resulting sequences of binary size 32×N are con-
structed, by collecting for each position 1 ≤ j ≤ B,
the 32-bit bloc of each sequence. If the original se-
quences are really random, the resulting sequences

should also be random (with B as large as N ) and
then pass the NIST tests. Such approach is very inter-
esting, in the case of generating sequences by nearby
seed values, and allows to detect some hidden linear
structures between the original sequences.

These approaches are used to analyse a subset of gener-
ated sequences. In the case of very distant initial seed
values, the corresponding chaotic trajectories are different,
and allow to produce good pseudo-random sequences. The
worst case occurs when closed seed values are used, be-
cause that can lead to highly correlated output sequences.
That is why, the analysis is achieved on sequences gen-
erated from nearby initial seed values. Here, a subset
of N = 16000 pseudo-random sequences is produced,
where the binary size of each sequence is 32000 (i.e.
B = 1000). We choose arbitrarily, one starting seed value
X0 = 0.24834264038461704925, and then Y0 = X0 +δ[2]
and Z0 = Y0 + δ[2], with δ[2] = 2−49.8289. These three
seeds allow to generate one pseudo-random sequence. The
other sequences, are generated from X0, Y0 and by incre-
menting of δ[2] the last seed value Z0 in a simple loop.
In the case of Patidar’s algorithm, only two initial seeds are
needed to produce a pseudo-random sequence. Here, the
first two seeds values are given by: X ′0 = Y0 and Y ′0 = Z0.
For generating the other sequences, the same strategy is ap-
plied and consists to make a loop by incrementing of δ[2]
the seed Y ′0 . It should be noted that, for a better compar-
ison, the same coefficient β (i.e. 3.9999) is used for the
logistic map in the Patidar’s algorithm.
The results of NIST tests obtained for the two algorithms
are presented in Table 4.1 and Table 4.1. For approach
APP-1 (resp. APP-3), the acceptable proportion should
lie above 98.76% (resp. 98.00% ) and does not concern
the tests Random Excursions-(Variant). For APP-2, a se-
quence passes a statistical test for pvalue ≥ 0.01 and fails
otherwise. For the tests Non-Overlapping and Random
Excursions-(Variant), only the smallest percentage of all
sub-tests is given. For individual sequences, the Universal
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test is not applicable due to the size of initial sequences.
One can remark that, for the proposed PRBG, all the tested
sequences pass successfully the NIST tests. These results
show clearly the quality of the tested sequences. For Pati-
dar’s algorithm, individually, the sequences are not enough
random, because there are many tests that are not success-
ful, for example: Runs, Overlapping or even Serial tests.
The results of approaches APP-2 and APP-3 show that,
the tested sequences are extremely correlated. One should
know that, in the article of Patidar et al., each sequence is
produced from a randomly chosen initial seed belonging
to ]0, 1[, then the seeds were too different from each other.
That is why this problem has not been detected.

4.2 Correlation evaluation

A part of the correlation evaluation has already been done
by applying the NIST tests (APP-2 and APP-3). Here, two
additional methods are used to analyse the correlation be-
tween the pseudo-random sequences. Firstly, the correla-
tion between sequences is evaluated globally by computing
the Pearson’s correlation coefficient [26] and secondly, by
using the Hamming distance.

4.2.1 Pearson’s correlation coefficient

The analyse consists to compute the Pearson’s correlation
coefficient between each pair of sequences, and to present
the distribution of the values through a histogram. Con-
sider a pair of sequences such as: S1 = [x0, . . . , xB−1]
and S2 = [y0, . . . , yB−1]. Therefore, the corresponding
correlation coefficient is:

CS1,S2 =

B−1∑
i=0

(xi − x) · (yi − y)[
B−1∑
i=0

(xi − x)2
]1/2

·
[
B−1∑
i=0

(yi − y)2
]1/2 , (9)

where xi and yi are 32-bit integers, x =
B−1∑
i=0

xi/B and

y =
B−1∑
i=0

yi/B, the mean values of S1 and S2, respectively.

Two uncorrelated sequences are characterized by CS1,S2
=

0. The closer the value of CS1,S2
is to ±1, the stronger the

correlation between the two sequences. In the case of two
independent sequences, the value of CS1,S2 is equal to 0.
Here we use the same subsets of 16000 sequences, and the
coefficients CS1,S2

are computed. For the two algorithms,
the histograms are shown in Figure 4. For the proposed
PRBG, around 99.56% of the coefficients have an absolute
value smaller than 0.09, then only a small correlation is
detected. In the case of Patidar’s PRBG, around 99.26%
of the coefficients have an absolute value greater than 0.33,
that means the sequences are highly correlated.
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Figure 4: Histogram of Pearson’s correlation coefficient
values on interval [−0.1, 0.1] (resp. [−0.5, 0.5]), for the
proposed (resp. Patidar’s) PRBG.

4.2.2 Hamming distance

Another type of correlation based on the bits of produced
pseudo-random sequences is analysed. Given two binary
sequences S = [s0, . . . , sM−1] and S′ = [s′0, . . . , s

′
M−1]

of same length (M ), the Hamming distance is the number
of positions where they differ. The distance is given as:

d(S, S′) =

M−1∑
j=0

(sj ⊕ s′j). (10)

For truly random binary sequences, the value of d(S, S′)
should be around M/2, that corresponds to the proportion
0.50. This distance is computed between each pair of gen-
erated sequences (N = 16000), and all values are repre-
sented through a histogram. For the two algorithms, the
histograms are shown in Figure 5. One can see that for our

Prop−PRBGProp−PRBG
Pat−PRBG

 

 

 

 

 

 

 

 

 

        
 0

 10

 20

 30

 40

 50

 60

 70

 80

 0.25  0.3  0.35  0.4  0.45  0.5  0.55  0.6  0.65

F
re

qu
en

cy
 (

in
 %

)

Hamming distance

Figure 5: Histogram of Hamming distances on interval
[0.48, 0.52] (resp. [0.25, 0.30]), computed between each
pair of sequences for the proposed (resp. Patidar’s) PRBG.

algorithm, all the proportions of computed Hamming dis-
tances are around the mid-value 0.50 and almost 99.95% of
the coefficients belong to ]0.49, 0.51[. In the second case,
the values are around 0.28, and near 99.83% of the coef-
ficients belong to ]0.26, 0.30[. The results show that, the
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Test Name Proposed PRBG
APP-1 APP-2 APP-3

r1 (in %) Result pvalue Result r2 (in %) Result
Frequency 99.16 Success 0.378240 Success 99.50 Success
Block-Frequency 99.10 Success 0.905858 Success 98.80 Success
Cumulative Sums (1) 99.17 Success 0.447272 Success 99.40 Success
Cumulative Sums (2) 99.12 Success 0.259837 Success 99.30 Success
Runs 98.90 Success 0.654035 Success 99.20 Success
Longest Run 98.90 Success 0.717020 Success 98.70 Success
Rank 98.86 Success 0.239335 Success 99.00 Success
FFT 98.76 Success 0.485387 Success 99.00 Success
Non-Overlapping 99.30 Success 0.012842 Success 98.20 Success
Overlapping 99.00 Success 0.935098 Success 98.80 Success
Universal - - 0.196700 Success 98.60 Success
Approximate Entropy 98.91 Success 0.199988 Success 99.00 Success
Random Excursions 97.56 Success 0.012412 Success 98.60 Success
Random Ex-Variant 97.56 Success 0.024851 Success 97.62 Success
Serial (1) 98.92 Success 0.379823 Success 99.30 Success
Serial (2) 99.05 Success 0.856303 Success 99.20 Success
Linear Complexity 98.84 Success 0.098641 Success 99.00 Success

Table 1: The results of NIST tests for the proposed PRBG on the 16000 sequences. The ratio r1 (resp. r2) of pvalue
passing the tests are given for APP-1 (resp. APP-3). For the approach APP-2 the corresponding pvalue is given.

Test Name Patidar’s PRBG
APP-1 APP-2 APP-3

r1 (in %) Result pvalue Result r2 (in %) Result
Frequency 99.84 Success 0.000000 Failure 02.80 Failure
Block-Frequency 99.99 Success 0.989313 Success 16.00 Failure
Cumulative Sums (1) 99.80 Success 0.000000 Failure 03.10 Failure
Cumulative Sums (2) 99.74 Success 0.000000 Failure 03.00 Failure
Runs 29.25 Failure - - 00.60 Failure
Longest Run 00.00 Failure 0.000000 Failure 00.00 Failure
Rank 98.83 Success 0.442618 Success 04.00 Failure
FFT 98.70 Success 0.000000 Failure 00.00 Failure
Non-Overlapping 75.96 Failure 0.000000 Failure 71.80 Failure
Overlapping 00.00 Failure 0.000000 Failure 99.00 Success
Universal - - 0.000000 Failure 00.40 Failure
Approximate Entropy 00.00 Failure 0.000000 Failure 00.00 Failure
Random Excursions 98.55 Success - - 50.00 Failure
Random Ex-Variant 97.82 Success - - 93.75 Success
Serial (1) 95.10 Failure 0.000000 Failure 00.00 Failure
Serial (2) 98.99 Success 0.000000 Failure 00.00 Failure
Linear Complexity 98.81 Success 0.283356 Success 99.00 Success

Table 2: The results of NIST tests for the PRBG of Patidar et al., on the 16000 sequences. The ratio r1 (resp. r2) of pvalue
passing the tests are presented for the approach APP-1 (resp. APP-3). For APP-2 the corresponding pvalue is given.
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sequences are correlated for the Patidar’s PRBG, then the
algorithm is not enough sensitive to initial seed values. For
more sensitivity, one must choose very different seed val-
ues, which reduces considerably the key space and then the
security of the PRBG.

4.3 Seed sensitivity
A small deviation from the initial seeds, should cause a
large variation in the output sequences. Actually, in the
NIST tests (APP-2 and APP-3, Sec. 4.1) and the corre-
lation evaluation (Sec. 4.2), the sensitivity related to the
seeds was indirectly analysed. To make an additional anal-
ysis, a large size of pseudo-random sequences is consid-
ered. Here, the number of 32-bit blocs is B = 10000000,
then the binary size M = 320000000. A pseudo-random
sequence (Seq1) is produced using the seed values: X0 =
0.32164872553014364784, Y0 = X0 + δ[2] and Z0 =
Y0 + δ[2]. Two others sequences (Seq2 and Seq3) are pro-
duced by adding the value of δ[2] on the last seed value Z0.
Between each pair of sequences, the correlation analysis
is done by computing the linear correlation coefficient of
Pearson, the correlation coefficient of Kendall [27] and the
Hamming distance. The same analysis is applied on the
Patidar’s algorithm with the starting seeds X ′0 = Y0 and
Y ′0 = Z0. The results are given in Table 4.3 and show that:
our algorithm is highly sensitive to initial seeds, whereas
in the case of the Patidar’s algorithm, the sensitivity is ex-
tremely weak.

4.4 Speed analysis
Another important aspect for any PRBG is the execution
time of the algorithm. Indeed, in real-time applications,
the temporal constraint about the performance of a process
is as considerable as the final results of the process. The
speed evaluation is achieved on a work computer with pro-
cessor: Intel(R) Xeon(R) CPU E5410 @ 2.33 GHz × 4.
The source code is compiled using GCC 4.6.3 on Ubuntu
(64 bits). The results are presented in Table 4.4 and one
can see that, with no optimization option (-O0), the pro-
posed algorithm enables to produce around 2.62 Gbits per
second. However, with the classical optimization option (-
O1), the throughput is approximately 80 Gbits per second.

PRBG Speed (Gbits/s)
-O0 -O1

Proposed 2.62 80.00
Patidar’s 0.06 1.18

Table 4: Comparison of speed between the two algorithms
by using the options “-O0” and “-O1”.

The Table 4.4 presents the approximative throughput of
some known pseudo-random number generators. One can
remark that, the throughput of our generator is almost in
the same order than CURAND.

Generator Speed (Gbits/s)
GT120 GPU GTX260 GPU

(4 cores) (27 cores)
MTGP11213 41.88 340.42
CURAND 96.97 533.33

Table 5: The approximative throughput in Gbits/s for
MTGP11213 (Mersenne Twister for Graphic Processor)
and CURAND (NVIDIA CUDA Random Number Gener-
ation library).

5 Security analysis
Some points related to the security of the PRBG are dis-
cussed here, such as: the size of the seed space, the period
length of the logistic map and some basic-known attacks
(brute-force attack and differential attack).

5.1 Seed space
Given today’s computational resources, a seed space of size
smaller than 2128 is not secure enough. A robust PRBG
should have a large key space, to allow a large choice for
the pseudo-random number generation. In order to enlarge
the key space, three chaotic logistic maps are used during
the generation process. Each logistic map needs to be ini-
tialized with a seed corresponding to a binary64 floating-
point number, selected from ]2−53, 2−1[. Knowing that the
difference between each seed value is 2−49.8289, this allows
to have 248.8289 possible choices of initial seeds. Thus, the
total number of choices for the three initial seeds is:

248.8289 × [248.8289 − 1]× [248.8289 − 2],

or about 2146.50. In the case of Patidar’s algorithm, the
entropy of the seed space is much smaller than 128. Indeed,
the algorithm uses only two logistic maps and possesses a
weak sensitivity, that requires to choose very distant seeds
to produce secure outputs.

5.2 Period length of the logistic map
The period length is a fundamental indicator of any PRBG.
A generator should have a reasonably long period before
its output sequence repeats itself, for avoiding attacks. The
length of the period will indicate the maximal secure size
for the producible pseudo-random sequences. The idea is
to determine the cycle formed by each chaotic trajectory
according to the different starting seed values. In a period-
p cycle, Xk = F p(Xk) for some Xk, where F p is the pth
iterate of F , e.g., F 3(X) = F (F (F (X))) for p = 3.
The GNU MPFR library [29] is used to vary the bits of the
mantissa for analysing the cycles of the logistic map. The
Figure 6 shows the length of cycles, when the bits of man-
tissa vary between 10 and 25. In this case, the logistic map
has very small cycle lengths. The Figure 7 indicates at the
the same time the corresponding occurrences.
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PRBG Tests Seq1/Seq2 Seq1/Seq3 Seq2/Seq3

Proposed
algorithm

Pearson Corr. Coef. −0.000460 0.000210 −0.000536
Kendall Corr. Coef. −0.000127 −0.000377 −0.000201
Hamming Distance 0.499985 0.499986 0.500010

Patidar’s
algorithm

Pearson Corr. Coef. 0.328897 0.328990 0.328856
Kendall Corr. Coef. 0.245210 0.242712 0.242441
Hamming Distance 0.333467 0.333379 0.333313

Table 3: Comparison using the Pearson’s and Kendall’s correlation coefficients, and also Hamming distance (in propor-
tion) between each pair of sequences (Seq1, Seq2 and Seq3), produced from slightly different seeds.

In binary32 format, the obtained smallest (resp. longest)
cycle length is equal to 1 (resp. 3055). Also, the logis-
tic map has numerous pathological seeds (corresponding in
minimum cycles of length 1) and globally the cycle lengths
are too small. Therefore, the binary32 format is not appro-
priate and must be avoided, when implementing a PRBG
with such logistic map. Besides, this result is consistent
with that published by Persohn and Povinelli [30].
For binary64 format, the cycle lengths are much longer.
Due to the large size of the binary format, it is difficult
to analyse all the corresponding trajectories. Only a rea-
sonable set of randomly chosen seeds is considered. The
length of the smallest cycle is 2169558 (≈ 221.04), while
for the longest cycle is 40037583 (≈ 225.25). Here, the
computed cycle lengths are in the same order as those given
in [28], and no pathological seed was found. This format
was not studied by Persohn and Povinelli, and it is a format
that benefits to the logistic map. Also, the used parameter
λ (equal to 4) does not provide the best chaotic behavior.
In our case, combining three chaotic logistic maps allows
to increase the length of the global resulting cycle, which
is given by the LCM of the three cycle lengths. Also, the
value of β (here 3.9999) plays a crucial role, because it pro-
vides a better chaotic behavior of the logistic map. How-
ever, for a maximum security level, it might be better to
limit the length of sequences to the smallest cycle length.
The best way to avoid the problem of short period and use
efficiently this PRBG, is to generate pseudo-random bit se-
quences of only small sizes. However in case of need,
long sequences can be constructed by concatenating sev-
eral ones.

5.3 Brute-force attack

In theory, a brute-force attack [8] is an attack that can be
used against any kind of PRBG. Such attack is usually uti-
lized, when it is not easy (or possible) to detect any weak-
ness in the algorithm, that would make the task easier. The
strategy of the attack is simple and consists to check sys-
tematically all possible keys until the original key is found.
On average, just half of the size of key space needs to be
tested to find the initial seeds. A large key space allows
to frustrate such kind of attack. Nowadays a key space of
size larger than 2128 is computationally secure enough to
resist to such attack. The proposed PRBG has a key space
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length of longest (resp. smallest) cycles, when varying
mantissa bits between 10 and 25.
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Figure 7: Representation of the length of cycles and their
total numbers, when the bits of the mantissa vary between
10 and 25.

of size 2146.50 and we consider that, such attack can not
succeed on the generator. In the case of Patidar’s PRBG,
the entropy of the key space is logically much smaller than
128. Thus, such attack can be envisaged for breaking the
generator.

5.4 Differential attack

As a chosen-plaintext attack, the principle of such tech-
nique of cryptanalysis is to analyse the effect of a small
difference in input pairs (i.e. seeds), on the difference of
corresponding output pairs (i.e. sequences) [31]. This strat-
egy allows to get the most probable key, that was used to
generate the pseudo-random sequence. The initial differ-
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ence may be in the form of a subtraction modulus or a xor
difference and the diffusion aspect is measured by a differ-
ential probability. The proposed algorithm is designed to
avoid such attack. Indeed, the initial seeds are chosen in
the interval ]2−53, 2−1[ and the bit-generation starts only
at the 30th iteration. The results of the statistical analysis
(Sec. 4) showed also that, even with a small difference on
the seeds, the pseudo-random sequences are highly decor-
related from each other. Thus, we consider that the pro-
posed PRBG should resist to the differential cryptanalysis.
On the other side, the attack can be possible on the Pati-
dar’s PRBG, because the algorithm is not sensitive enough
to the initial seed values.

6 Conclusion
A chaos-based PRBG, combining three chaotic logistic
maps under binary64 floating-point arithmetic was pre-
sented. It provides significant improvements of an existing
generator. The principle consists at each iteration, to ap-
ply a bitwise xor operator on the 32 least significant bits
of mantissa, from the computed elements of logistic maps.
The algorithm is fast and allows to produce pseudo-random
sequences formed of 32-bit blocks. The assets of the PRBG
are: the simplicity of implementation, a high randomness
level for outputs, a high sensitivity related to the initial
seeds and a fast execution time, allowing to use the algo-
rithm even in real-time applications.
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