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ABSTRACT Compressed Sensing (CS) has been proposed as a low-complexity ECG data compression

scheme for wearable wireless bio-sensor devices. However, CS decoding is characterized by high com-

putational complexity. As a result, it represents a burden to the computational and energy resources of

the network gateway node, where decoding is performed. In this paper, we propose a Fast Compressive

Electrocardiography (FCE) technique to address this problem. CS decoding in FCE is based on Weighted

Regularized Least-Squares (WRLS), rather than the standard approach based on ℓ1 norm minimization. The

WRLS formulation takes into account prior knowledge of ECG signal properties to estimate an optimally

compact and accurate representation of ECG signals. Numerical results show that decoding by FCE is

on average 33 times faster than the fastest tested CS-based ECG decoding technique. In addition, high-

quality ECG signal reconstruction by FCE is achieved at 32% higher compression ratio. Therefore, FCE

can contribute to improving the overall energy and computational resource efficiency of CS-based remote

ECG monitoring systems.

INDEX TERMS compressed sensing (CS), electrocardiogram (ECG), random demodulator, remote health

monitoring, wireless body-sensor network (WBSN).

I. INTRODUCTION

Remote health monitoring systems have recently gained sig-

nificant importance, due to their role in treatment, prevention

and early detection of diseases. Specifically, remote monitor-

ing of the heart Electrocardiogram (ECG) is of prime interest,

since it requires continuous and long-term monitoring [1],

[2]. Fig. 1 illustrates an overview of an exemplary remote

ECG monitoring system. In the context of a Wireless Body-

Sensor Network (WBSN), a wearable ECG sensor node

acquires, compresses, and wirelessly transmits the patient’s

ECG data. A gateway node receives, reconstructs and pro-

cesses the ECG signals to extract useful medical data, such

as heart rate, rhythm and various indicative intervals [3], [4].

It then forwards these data to a cloud-based database that

can be accessed by medical specialists. Recent works have

shown that ECG data processing and information extraction

at the gateway node is more energy-efficient than blindly

forwarding raw ECG data to the cloud. In addition, it reduces

the traffic load on the network [1], [5], [6]. The gateway node

maintains the option of forwarding selected abnormal ECG

segments to be examined by the medical specialist.

FIGURE 1: An overview of an exemplary remote ECG monitoring system.

Due to the restrictions on its size, weight and cost, the

sensor node has a limited battery capacity. The majority

of the energy consumed at the sensor node is referred to

wireless transmission, followed by digital signal processing

[7], [8]. Consequently, Compressed Sensing (CS) [9] has

been proposed as a low-complexity ECG data compression

scheme to improve the energy efficiency of the sensor node

[10]. CS encoding is simply achieved by linearly projecting

each frame of acquired ECG samples to a random sensing

matrix, yielding a smaller sized compressed frame. Standard
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CS decoding is based on solving an ℓ1 norm minimization

problem via convex optimization methods, or via greedy

algorithm implementations [11], [12]. The seminal work

in [13] compared CS-based ECG (CS-ECG) compression

to standard ECG compression based on Discrete Wavelet

Transform (DWT). The results confirmed the effectiveness of

CS-ECG in terms of energy efficiency, in return for reduced

reconstructed signal quality and higher decoding complexity.

Similar results were reported in [14]–[16].

Most of the recent works on CS-ECG systems focused on

improving the reconstructed signal quality through adapting

the CS encoder to the sensed ECG signal. This was mainly

achieved by optimizing the structure of the sensing matrix

to benefit from structural, temporal and statistical properties

of ECG signals. These works are well reviewed in the recent

survey of adapted CS techniques in [17]. However, only a few

works focused on performing this adaptation at the CS de-

coder side. In [18], the block-sparse structure and inter-block

correlations of ECG signals were exploited for improving

the reconstructed signal quality by using the Block-Sparse

Bayesian Learning (BSBL) algorithm [19].

In [20], a class of artificial neural networks called Re-

stricted Boltzmann Machines (RBM) were employed to cre-

ate a statistical model of the ECG signal sparsity pattern.

This model is plugged into the CS decoder to improve

compression ratio and reconstruction performance. However,

this approach has a large impact on increasing decoding com-

plexity. A Weighted ℓ1 Minimization (WLM) technique was

proposed in [21]. Prior knowledge of the wavelet coefficients

decay factors of ECG signals was incorporated into the ℓ1
minimization problem used for CS decoding. This enabled

the decoder to identify significant DWT coefficients more

accurately. Orthogonal Matching Pursuit (OMP) [22] is a

widely used fast CS decoding algorithm. Weighted OMP

(WOMP) in [23] adapted the WLM technique to OMP in

order to benefit from the speed advantage of OMP.

The aforementioned adapted CS-ECG decoding tech-

niques achieved considerable gains in terms of minimizing

the reconstructed ECG signal error. However, the computa-

tional complexity of these techniques is at least as high as

standard CS decoding. In most cases, the patient’s smart-

phone plays the role of the WBSN gateway node, since

most patients are not expected to acquire specialized devices.

Thus, CS-ECG decoding at the gateway node could repre-

sent a considerable computational burden. This leads to fast

battery drainage, especially for the cases where long-term

monitoring is necessary. In addition, it may not be possible

reconstruct the signals in the real time, especially if large

ECG frame length was used [5], [6], [24].

In this paper, we propose a Fast Compressive Electro-

cardiography (FCE) technique, which mainly addresses the

problem of high decoding complexity of the state-of-the-art

CS-ECG systems. In addition, it contributes to improving

the reconstructed ECG signal quality. FCE is an adapted CS

decoding technique based on Weighted Regularized Least

Squares (WRLS). WRLS is known to be significantly less

complex than ℓ1 norm minimization [25]. In FCE, the WRLS

problem targets estimating a small set of Discrete Cosine

Transform (DCT) coefficients, which accurately represent the

sensed ECG signal. Prior knowledge of the decay profile

of these coefficients is exploited to assign their respective

weights. In addition, the values of tunable parameters in the

WRLS problem are optimized to maximize the reconstructed

signal quality. Nevertheless, FCE does not require any modi-

fication to the CS encoder.

CS decoding by FCE is achieved with significantly lower

computational complexity than all current CS-ECG decod-

ing techniques. This will be shown both analytically and

experimentally throughout this paper. As a result, the im-

pact of the ECG monitoring application on the patient’s

smartphone battery life can be minimized. In addition, real-

time ECG signal reconstruction can be practically feasible,

even for large signal frame sizes. Furthermore, we will show

that FCE achieves high-quality reconstruction at relatively

higher compression ratios, and hence more energy savings

are achievable at the sensor node.

The remaining part of this paper is organized as follows:

in Section II, we provide an essential background on CS.

We introduce the FCE technique in Section III. We then

present our numerical experiments and discuss their results

in Section IV. Finally, we draw our conclusions in Section V.

II. BACKGROUND

A. CS FRAMEWORK

In a digital CS paradigm as adopted in [13], the analog ECG

signal picked up by the ECG sensor is input to an ADC

operating at fs samples/second. The ADC outputs a frame

of N samples every sensing interval T = N/fs seconds.

Suppose the ECG frame is represented by a column vector

x ∈ R
N . CS encoding is a simple linear transformation,

which can be modeled by the following matrix equation:

y = Φx+ q (1)

where Φ ∈ R
M×N is the sensing matrix, y ∈ R

M is called

the measurements vector, and q ∈ R
M represents a bounded

error term (‖q‖2 ≤ ε) that may be present due to quantization

and additive noise. Compression performance is quantified

by the Compression Ratio (CR), which is defined as:

CR ,
N −M

N
× 100% (2)

From the basic theory of signal analysis [26], any signal

x ∈ R
N can expressed as a weighted sum of the columns

of an orthonormal (unitary) basis matrix Ψ ∈ R
N×N as

follows:

x = Ψu (3)

where u ∈ R
N is referred to as the representation of x in

the domain of the basis Ψ. A signal x is called s−sparse

in the domain of Ψ if the number of non-zero coefficients

(or those of considerable magnitude) in u is at most s, such

that s ≪ N . DWT bases have been reported to provide
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highly sparse representations of ECG signals compared to

other bases. Specifically, Daubechies wavelets (Db-4 and Db-

10) [13], [27], Symlets (Sym-6) [21] and Coiflets (Coif-5)

[28].

By combining (1) and (3), we can directly link the com-

pressed measurements vector y to the sparse vector u, as

follows:

y = ΦΨu+ q = Hu+ q (4)

where H = ΦΨ ∈ R
M×N is called the compression matrix.

The reconstructed sparse vector û can be found by solving

the following convex optimization problem, which is known

as Basis Pursuit Denoising (BPDN) [29]:

û = arg min
u

‖u‖1 subject to ‖y −Hu‖2 ≤ ε (5)

where ‖u‖1 =
∑N−1

i=0 |ui| is the ℓ1 norm of the vector u.

Minimizing the ℓ1 norm serves as a proxy for promoting the

sparsity of the solution [29]. A plenty of methods can be used

for solving the BPDN problem efficiently, such as interior-

point methods [30] and Spectral Projected-Gradient (SPG)

method [31]. In addition, the solution can be approximated

by fast greedy iterative algorithms, such as OMP [22] and

Compressed Sampling Matching Pursuit (CoSaMP) [32]. CS

decoding algorithms are well reviewed in [11], [12].

Since (4) is an under-determined system of linear equa-

tions, it admits an infinite number of feasible solutions. In

order for (5) to yield an accurate estimate of the sparse

unknown vector, the compression matrix H should satisfy

a Restricted Isometry Property (RIP) [33]. The RIP is sat-

isfied with very high probability for sensing matrices with

iid random entries of Gaussian or Bernoulli (±1) distribu-

tions. This is valid over any orthonormal basis, provided

that M ≥ c0s log (N/s), where c0 is a numerical constant

[34]. Acquiring insufficient number of measurements leads

to considerable reconstruction error [35], [36].

The RIP provides strong recovery guarantees. However,

verifying the RIP for arbitrary compression matrices is highly

complicated. Alternatively, more computationally tractable

guarantees are provided by the mutual coherence of the

compression matrix, given by [37]:

µ(H) = max
1≤i 6=j≤N

|hT
i hj |

‖hi‖2‖hj‖2
(6)

where hi and hj are the i-th and the j-th columns of H

respectively. The equation y = Hu has a unique s-sparse so-

lution if µ < 1/(2s − 1), where
√

(N −M)/(N − 1)M ≤
µ ≤ 1 [38]. Extended guarantees for the noisy case in

(4) were provided in [39]. In general, a smaller value of µ
corresponds to higher probability of accurate reconstruction

of u by solving (5).

B. LOW-COMPLEXITY CS ENCODING

CS encoding is achieved in the digital domain by applying

the sensing matrix to the data vector, which requires O(MN)
operations. For large N , such process could be computa-

tionally demanding for the sensor node. In effort to reduce

the encoding complexity, the Random Sparse Binary Matrix

(RSBM) was proposed in [13], such that each column of the

sensing matrix contains exactly d ≪ N randomly located

1’s. It was shown that the mutual coherence of RSBMs with

DWT (db10) basis can be as low as the mutual coherence of

the Gaussian random sensing matrix (which is usually used

as a reference) for d ≥ 12 [13].

One of the fundamental strengths of CS is that its encoding

stage can be performed entirely in the analog domain. The

measurements vector can be directly acquired by an ADC

operating at a low sampling rate (which could go below

Nyquist rate). The Random Demodulator (RD) shown in Fig.

2 is one of the simplest and most energy-efficient analog CS

acquisition architectures [40]–[42]. The input analog signal

x(t) is multiplied by a continuous-time pseudo-random chip-

ping sequence p(t) = ±1 by using an analog mixer. The

chipping rate of p(t) is set to the original signal sampling

rate: fs chips per second. Assuming thatN is divisible byM ,

an integrator accumulates the product signal, and the output

is sampled every L = N/M > 1 chips, with resetting the

integrator. Thus, the ADC sampling rate is reduced to fs/L
samples per second.

FIGURE 2: Block diagram of the random demodulator (RD) architecture
[42].

CS encoding by the RD can also be modeled by (1)

[42]. Suppose every N chips of p(t) are divided into M
consecutive segments. Each segment is a row-vector of L
antipodal entries. The i-th segment is given by: pi =
{p(i,0), p(i,1), . . . , p(i,L−1)}, where i = 0, 1, . . . ,M −1. The

RD sensing matrix is hence modeled as a block-diagonal

matrix of these segments, which is expressed as [42]:

Φ = f−1
s · blkdiag(p0,p1, . . . ,pM−1) (7)

The RD was originally proposed for band-limited multi-tone

signals, which are sparse over the DFT basis. However, it was

found to be highly coherent with DWT bases (i.e. µ is large),

which made it a bad choice for CS-ECG systems [13].

In effort to address this problem, other analog CS-ECG

encoding architectures were proposed such as the Ran-

dom Demodulator Pre-Integrator (RMPI) [43], [44], Spread-

spectrum Random Demodulator Pre-Integrator (SRMPI) [45]

and Compressed Sensing Analog Front-End (CS-AFE) [46].

All these architectures are more or less based on using several

RD channels in parallel. Thus, the implementation size, en-

ergy consumption and cost incurred with such architectures

is at least several times higher than the RD.
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III. PROPOSED TECHNIQUE

A. MOTIVATION

Consider an ECG signal frame of N samples selected ar-

bitrarily from the MIT-BIH arrhythmia database [47], [48].

Fig. 3 compares the magnitudes of its DWT representation

coefficients to their DCT counterparts. We observe that al-

though the DCT representation is less sparse than the DWT

representation (i.e. has more non-zeros), significant DCT

coefficients are concentrated within the lower 30% of indices.

This is referred to the energy compaction property of DCT

[26], [49]. Based on this property, the DCT representation of

a finite sequence is often more concentrated at low indices

compared to other transforms. In addition, ECG signals can

be well approximated by the first k < N coefficients of

the DCT representation, where approximation error rapidly

decays with k. This is referred to the exponential coefficient

magnitude decay profile, which can be observed in Fig. 3.

FIGURE 3: Normalized coefficient magnitudes versus coefficient index
for DWT (Sym-6 wavelet with 3 levels of decomposition) and DCT basis
representations. ECG frame length is N = 1024 taken from record no. 123
of the MIT-BIH arrhythmia database.

Based on the above discussion, it is possible to reconstruct

the ECG signal with arbitrarily small error by targeting es-

timating a sufficient number of low-index DCT coefficients.

In addition, since the coefficients within the low-index region

are non-sparse, computationally demanding ℓ1 minimization

approach is no more necessary. It can be replaced by sim-

pler and more flexible ℓ2 norm minimization. However, the

success of this approach is bound to proper exploitation of

the prior knowledge of the coefficient decay profile, as to be

shown next.

B. METHOD

Let the basis matrix Ψ be set as the orthonormal inverse

DCT-2 matrix, whose elements are given by [26], [49]:

ψi,j =
β(j)√
N

cos

(

(2j + 1)iπ

2N

)

, i, j = 0, 1, . . . , N − 1

(8)

where β(j) = 1 for j = 0, and equals
√
2 otherwise. Thus,

for a given value of k < N , the ECG signal can be expressed

as:

x =
[

Ψk Ψ̃k

]

[

uk

ũk

]

= Ψkuk + Ψ̃kũk (9)

where Ψk ∈ R
N×k is the collection of the first k columns of

Ψ, and Ψ̃k ∈ R
N×(N−k) is the collection of the remaining

columns of the matrix. Similarly, uk ∈ R
k consists of the

first k entries of u, while ũk ∈ R
N−k consists of the

remaining entries.

Based on (9), the measurements vector can be written as

y = Φ(Ψkuk + Ψ̃kũk)+q. Suppose we choose k such that

‖ΦΨ̃kũk‖2 ≪ ‖ΦΨkuk‖2. Hence, we may treat the term

v = ΦΨ̃kũk ∈ R
M×1 as a small additive error/noise vector

as follows:

y = ΦΨkuk + v + q = Hkuk + (v + q) (10)

where Hk = ΦΨk ∈ R
M×k consists of the first k columns

of H. By targeting estimating the non-sparse vector uk, we

have eliminated the need for estimating the support (non-

zeros locations) of the entire vector u. Thus, uk can be

simply estimated by posing the following Least Squares (LS)

problem:

ûk = arg min
uk

‖y −Hkuk‖22 (11)

The solution of above problem is given by [25]:

ûk = (HT
kHk)

−1HT
k y, k ≤M (12)

The solution in (12) is only valid when the system of

equations in (10) is fully determined or over-determined,

i.e. for k ≤ M . There is no closed-form expression of the

solution for the under-determined case: k > M . However,

for high compression ratios (i.e. M ≪ N ), there is a high

probability that k > M . Thus, it is of high importance to find

an optimal solution for all values of k, especially for k > M .

To alleviate this problem, we employ Weighted Regularized

Least-Squares (WRLS) [25], which adds a second objective

to (11). The trade-off between the two objectives is controlled

by the regularization parameter λ > 0, as follows:

ûk = arg min
uk

‖y −Hkuk‖22 + λ‖Wkuk‖22 (13)

In the above formulation, we target minimizing the energy

of a weighted version of uk as a second objective, where

Wk = diag(w0, w1, . . . , wk−1) is a k×k diagonal weighting

matrix. The weighting matrix will enable us to incorporate

the coefficients decay information into the WRLS problem,

in order to further improve decoding performance. The prob-

lem in (13) has a closed-form solution given by [25]:

ûk = (HT
kHk + λW2

k)
−1HT

k y, 1 ≤ k ≤ N (14)

This solution is valid for all feasible values of k and M , due

to the presence of the diagonal matrix W2
k within the matrix

inversion.

Proper design of the weighting matrix require a mathemat-

ical model of the coefficients magnitude decay profile. The

root-mean-square (RMS) values of the DCT coefficients of

ECG signals are plotted versus their index in Fig. 4. These

values were computed over the collection of full-length

4 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3035423, IEEE Access

records no. 100, 112, 123, 200 and 222 of the MIT-BIH

database. We modeled these data by the following function:

f(i) = exp [−a1 sin(b1q(i) + c1)− a2 sin(b2q(i) + c2)]
(15)

where q(i) = (i + 1)/N for all i = 0, 1, . . . , N − 1. The

coefficients are given by: a1 = 13.7, b1 = 1.35, c1 = 0.06,

a2 = 0.65, b2 = 20.45 and c2 = 1.42. This model was

produced by fitting the sum of two sine functions to the log

of the data points, with higher weights assigned to low-index

coefficients due to their significance. The curve produced by

the above model is also shown in Fig. 4.

Minimizing the energy of the term Wkuk in (13) implies

that the weighting coefficients should equalize the decaying

magnitude profile of uk. This can be achieved by setting

the i-th entry of the weighting matrix diagonal wi as the

normalized reciprocal of f(i), which is expressed as:

wi =
f(i)−1

√

f(0)−2 + f(1)−2 + . . .+ f(k − 1)−2
(16)

where the purpose of denominator in the above expression is

to normalize the weighting coefficients vector to have a unit-

norm. Based on the above setup, the last remaining step is

to determine the optimum values of k and λ that minimize

the reconstruction error, which is to be done numerically in

Section IV-C.

FIGURE 4: RMS values of DCT coefficients versus coefficient index
computed MIT-BIH database records no. 100, 112, 123, 200 and 222 at
N = 512. All frames were normalized to have a unit norm prior to
calculation.

C. COMPUTATIONAL COMPLEXITY ANALYSIS

The computational complexity of FCE decoding can be cal-

culated by analyzing (14). To simplify the analysis, we may

recast (14) as determining the LS solution of Guk = b,

where G = HT
kHk + λW2

k is a symmetric and positive

definite k × k matrix (since Wk is a diagonal matrix), and

b = HT
k y is a k× 1 vector. The solution of this equation can

be efficiently and stably found by using Cholesky decompo-

sition method [25]. The main computational tasks associated

with this process are listed as follows:

• Computing Hk = ΦΨk requires O(dkN) and O(kN) op-

erations for RSBM and RD sensing matrices, respectively.

• Computing G = HT
kHk + λW2

k requires O(k2M) oper-

ations, mainly due to the first term of the right-hand side.

• Computing b = HT
k y requires O(kN) operations.

• Given G and b, computing uk by using Cholesky decom-

position requires O(k3) operations [25].

Asymptotically, O(k2M) dominates if k < M , while O(k3)
dominates if k > M .

On the other hand, the asymptotic complexity of solving

the BPDN problem by using the SPG-L1 and BSBL algo-

rithms is O(M2N) [31], [50]. WLM approach presents a

slight modification to BPDN and has the same complexity

[21]. On the other hand, the OMP and WOMP algorithms

complexity is O(sMN) [11], [22]. Since k < N , we expect

that FCE reconstruction should theoretically run faster than

SPG-L1 and BSBL, and to be comparable in speed to OMP

and WOMP. However, a major strength of FCE in this context

is that while all CS reconstruction algorithms require multi-

ple iterations to converge [11], [12], solving (14) is achieved

in a single iteration, which makes it significantly faster. This

will be verified by the numerical results presented in Section

IV-E.

D. COMPARISON TO WEIGHTED ℓ1 MINIMIZATION

TECHNIQUE

At this point, it is necessary to to compare our proposed

FCE technique to WLM [21], which bears some similarity

in approach to FCE. The main observation that drove the

WLM technique was the rapid decay of the DWT detail

coefficients with increased resolution level. This can be ob-

served by referring back to the DWT representation shown in

Fig. 3. Consequently, an N × N diagonal weighting matrix

W = diag(w0, w1, . . . , wN−1) was plugged into the ℓ1
minimization part of the BPDN objective function. This aims

to incorporate the prior information about the coefficients

decay over each resolution level. The WLM problem is given

by the following form [21]:

û = arg min
u

1
2‖y −Hu‖22 + λ‖Wu‖1 (17)

The above formulation is an alternative form of the BPDN

problem in (5), called the lasso problem [29].

By comparing the above problem to (13), we note that

both FCE and WLM employ a diagonal weighting matrix to

exploit prior knowledge of coefficients decay characteristics.

However, we highlight the factors that distinguish FCE from

WLM as follows:

1) Solution characteristics: WLM targets reconstructing a

sparse DWT representation vector of length N , while FCE

targets reconstructing a dense vector comprising the first k
coefficients of the DCT representation.

2) Weighting matrix and regularization function: the WLM

weighting matrix is designed to assign higher weights to

significant coefficients, which leads ℓ1 minimization to con-

verge at a solution with minimum number of non-zeros.

On the other hand, FCE weighting matrix is designed to

assign low weights to significant coefficients. This leads the

weighted optimum solution to have low energy. Hence, it can

be approached via ℓ2 norm minimization.

VOLUME 4, 2016 5
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3) Degrees of freedom: the performance of WLM is tuned

solely by the parameter λ, while FCE is tuned by both λ and

k. In addition, since k determines the size of the WRLS prob-

lem, selecting a smaller k contributes to increasing decoding

speed.

4) Path to solution: any CS decoding algorithm used to solve

the WLM problem requires multiple iterations to converge

[11], [12], while FCE has a closed-form solution.

The above factors have lead FCE to achieve improvements

over WLM in terms of reconstruction quality and speed. The

same arguments apply to the WOMP technique [23], which

is an adaptation of WLM to the OMP algorithm. We verify

the advantages of FCE over WLM and WOMP and other

decoding techniques through numerical experiments in the

next section.

IV. RESULTS AND DISCUSSION

A. EXPERIMENTAL SETUP

ECG data used in all numerical experiments shown in this

paper were extracted from the MIT-BIH arrhythmia database

[47], [48]. The database includes a library of 30 minutes long

ECG records of patients. The ECGs were sampled at a 360

Hz with 16-bit resolution, i.e. the length of each record is

approximately 65×104 samples. The records are labeled 100

to 124 and 200 to 234. We arbitrarily selected records number

100, 112, 123, 200 and 222 for our experiments. The first

75% of each record data were used for selecting the optimum

FCE parameters: k and λ in Section IV-C. The remaining

25% were used for producing decoding performance results

in Section IV-D. This ensures unbiased evaluation of the

decoding performance. On the other hand, the entire available

data were used for measuring average execution time of CS

decoding in Section IV-E.

Prior to CS encoding, the ECG signals were filtered by 4-

pole Butterworth high-pass and low-pass filters. The filters’

cutoff frequencies are 0.5 Hz and 40 Hz, respectively, as

specified for ambulatory ECG monitoring [51], [52]. Due

to their impact on minimizing the CS encoder complexity,

we selected RSBM with d = 12 and RD sensing matri-

ces for CS encoding in our experiments. The acquired CS

measurements were quantized using 11 bits to better emulate

realistic systems. For DWT basis, we used Symlet-6 wavelet

with 6 levels of decomposition, following the setting used for

WLM and WOMP in [21], [23]. Available ECG records were

divided into frames of length N each. Presented results are

the average of randomized trials performed on all available

frames independently. Each trial uses a different random

instance of the sensing matrix.

Numerical results for CS-ECG decoders included in our

experiments were produced by the following publicly avail-

able MATLAB-based solvers: SPGL1 solver for BPDN [53],

BSBL_BO solver for BSBL [54], l1-ls solver for the lasso

formulation used in WLM [55], and OMP solver from

Sparselab toolbox [56] for WOMP, with applying relevant

modifications according to [23]. Finally, all numerical exper-

iments were performed by using MATLAB 2018a running

on a desktop computer equipped with an octa-core Intel i7-

10700 processor operating at 2.9 GHz, and 16 GB of DDR4

RAM operating at 3.2 GHz.

B. RECONSTRUCTED SIGNAL QUALITY METRICS

The reconstruction quality in ECG compression literature is

quantified by either the Percentage Root-mean-square Differ-

ence (PRD) or the Average Reconstruction Signal-to-Noise

Ratio (ARSNR). The PRD is defined as [13], [57]:

PRD ,

√

Ex

(‖x− x̂‖22
‖x‖22

)

× 100% (18)

The associated ARSNR in dB is defined as:

ARSNR , 10 log10 Ex

( ‖x‖22
‖x− x̂‖22

)

(19)

Based on the perception of a medical specialist, the relation-

ship between the PRD/ARSNR and the visual quality of the

reconstructed ECG signal is shown in Table 1 [58].

TABLE 1: Reconstructed ECG signal quality grades and the corresponding
PRD and ARSNR values as perceived by a medical specialist [58].

Quality Grade PRD ARSNR

Very good (VG) 0 ∼ 2% ≥ 34 dB

Good (G) 2 ∼ 9% 21 ∼ 34 dB

Indeterminable > 9% < 21 dB

C. OPTIMUM FCE PARAMETERS SELECTION

In this section, we perform numerical experiments to deter-

mine optimal values of the parameters k and λ in (14) that

maximize the ARSNR. Fig. 5 depicts the ARSNR versus

k/N for λ = {0.01, 0.1, 1, 10} at CR of 60% and 80%. We

first notice that the ARSNR increases gradually with k, and

then saturates at the peak achievable ARSNR. We also notice

that very small values of λ (λ = 0.01, 0.1) lead to high

performance variability, especially around k = M . This is

referred to the fact that for k =M and λ ≈ 0, the solution in

(14) will converge to ûk ≈ H−1
k y, i.e. this solution assumes

y ≈ Hkuk, which is inaccurate by referring to (10). On the

other hand, a large value of λ = 10 leads to higher stability,

since the regularizing term helps leading to the optimum

solution, whilst peak ARSNR is reached at a larger value

of k. We favor choosing a small k to minimize the problem

size (and hence the computational task). Hence, our choice

of the optimum value of k would be the smallest value that

achieves the peak ARSNR. Therefore, we can deduce that an

intermediate value λ = 1 is optimal.

Table 2 lists the optimum k values: k∗ (normalized to

N and M ) that maximize the ARSNR for a set of CRs.

We observe that for CR = 75% and above, k∗ > M .

This emphasizes the contribution of the regularizing energy

minimization term in (13), which enabled improving recov-

ery performance at high CR. Finally, we highlight that the

values of k∗ may vary for different system settings, such
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FIGURE 5: ARSNR versus k/N for CR = 60% and 80%. The results were
produced by solving (14) for each value of k at N = 512 by using RSBM
sensing matrix.

as the sampling rate, prefiltering cutoff frequencies and the

measurements noise level. Hence, they should be fine-tuned

by the system designer according to system specifications.

TABLE 2: A list of numerically calculated optimum values of the parameter
k that maximize the ARSNR at λ = 1.

CR k∗/N k∗/M CR k∗/N k∗/M

40% 0.35 0.58 70% 0.32 1.07

50% 0.35 0.70 75% 0.29 1.16

55% 0.34 0.76 80% 0.25 1.25

60% 0.33 0.83 85% 0.22 1.47

65% 0.32 0.91 90% 0.18 1.80

D. RECONSTRUCTED SIGNAL QUALITY

Fig. 6 depicts ARSNR against CR for FCE and a set of

related CS-ECG decoding techniques. The results are shown

for RSBM and RD sensing matrices. We first notice that the

ARSNR associated with FCE is significantly higher than all

other alternatives for both RSBM and RD sensing matrices.

This is valid up to CR of 80%, after which WLM and WOMP

achieve comparable performance for RSBM sensing matrix.

However, at this CR range, the resulting ARSNR is too low

to be practically useful. FCE performance is particularly

superior for RD sensing matrix, where all tested CS-ECG

decoding techniques achieved poor performance. This agrees

with the discussion in Section II-B. We also notice that FCE

achieves an ARSNR above 40 dB at CR ≤ 70%. As a result,

FCE is particularly useful in operation modes that target

high-quality reconstruction in return for lower CR.

Table 3 compares the maximum CR achievable by each

technique for “Very Good" (VG) and “Good" (G) recon-

structed signal quality grades, based on Table 1. The data

show that FCE can achieve VG grade at CR up to 74% for

RSBM sensing matrix, compared to 56% for WOMP, 54%

for WLM, and 50% for BSBL. Consequently, for RSBM

sensing matrix, FCE achieves VG grade with at least 32%

higher CR than other techniques. On the other hand, none of

the these techniques could achieve VG grade for RD sensing

matrix, while FCE maintains its performance. Therefore,

FCE has a good potential to perform efficiently over the RD

FIGURE 6: ARSNR versus CR at N = 512.

acquisition architecture at the sensing node. This grants a

significant reduction in the energy consumption and cost of

the CS encoder [41].

TABLE 3: Maximum achievable CR for VG and G quality grades.

RSBM sensing matrix RD sensing matrix

Method VG grade G grade VG grade G grade

FCE 74% 80% 74% 81%

BPDN N/A 62% N/A N/A

BSBL 50% 75% N/A N/A

WLM 54% 76% N/A 66%

WOMP 56% 76% N/A N/A

In Fig. 7, we assess and compare the variability of the

decoding performance by presenting a box plot of the PRD

values achieved by all tested methods. The results shown

are computed at CR = 75% and N = 512 for the entire

record number 200 of the MIT-BIH database. This constitutes

approximately 1270 ECG frames. For each box, the central

line, lower and upper edge resemble the median, 25th and

75th percentile, receptively. The whiskers extend to the lower

and upper extrema. Outliers are marked by the (+) symbol.

Results for RSBM sensing matrix show that FCE has very

low performance variability. FCE performance is followed by

WLM, BSBL and WOMP, respectively. However, the latter

three have higher median and a larger spread. On the other

hand, for RD sensing matrix, WOMP performance is most

impacted, while the impact on the performance of BSBL and

WLM is less severe. However, FCE preserves its consistency.

Finally, in all cases, BPDN performance is quite poor, as

expected.

To visually demonstrate and compare the quality of the

reconstructed ECG signal, Fig. 8 illustrates two ECG frames

of 3 seconds each, which were taken from the MIT-BIH
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FIGURE 7: Box plots of the reconstruction PRD for MIT-BIH record no.
200 at CR = 75% and N = 512.

database. A normal ECG frame is shown in Fig. 8a and an

abnormal frame is shown in Fig. 8b. The figure compares

the original signals to those reconstructed by FCE, WOMP

(with RSBM sensing matrix) and WLM (with RD sensing

matrix) at CR = 75%. According to Fig. 6 and Fig. 7, the latter

techniques achieved the second-best performance after FCE.

We observe several distortions in the signals reconstructed

by WOMP, while the QRS complex is highly affected in

the signals reconstructed by WLM. On the other hand, for

FCE, QRS complexes and other indicative intervals are well-

defined and clear, and there is no noticeable distortion or

other signal artifacts. Thus, it is clear that the reconstruction

quality of FCE is superior.

E. DECODING SPEED

Fig. 9 depicts the average execution time for CS decoding

versus N = {256, 512, 1024, 2048} at CR = 75%. We ob-

serve that the FCE execution time is significantly shorter than

all other tested CS-ECG techniques. According to the speed

gains listed in Table 4, FCE is on average 33 times faster

than WOMP, and several hundred times faster than the other

methods. We may hence deduce that FCE reconstruction has

an obvious speed advantage over other methods, especially

for large values of N . In addition, storage space requirement

of FCE is accordingly reduced, since the compression matrix

size was shrunk from M × N to become M × k. All

temporary storage space needed for intermediate calculations

is consequently shrunk.

V. CONCLUSIONS

In this paper, we presented a Fast Compressive Electrocar-

diography (FCE) technique. FCE is a low-complexity CS

decoding technique that has been tailored for optimal re-

construction of compressed ECG signals. Numerical results

demonstrated considerable improvements compared to other

TABLE 4: Execution speed gains of FCE against other tested CS-ECG
decoding techniques.

N BPDN BSBL WLM WOMP

256 771 477 631 23

512 619 510 611 24

1024 258 465 383 28

2048 117 547 428 58

Average 441 500 513 33

techniques presented in related literature, in terms of decod-

ing speed and quality. FCE can contribute to minimizing the

computational and energy cost of CS decoding, especially

when decoding is done at the resource-constrained WBSN

gateway node. Thus, enabling real-time decoding in long-

term ECG monitoring scenarios. In addition, FCE is compat-

ible with the random demodulator acquisition architecture,

which enables energy-efficient and low-cost implementation

of the CS encoder on the wearable ECG sensor module.

Future extensions of this work include adapting FCE to deal

with realistic implementation challenges, especially large

CS measurements errors and invalid measurements caused

by wireless channel impairments [59], [60]. In addition,

developing a hardware implementation of an FCE-based

ECG monitoring system within a smart-home framework

[61]. Realistic ECG reconstruction performance and energy

consumption are then measured, evaluated and compared.
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