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Abstract. In this paper it is shown how the multiplication byM map on the Kummer
surface of a curve of genus 2 defined overFq can be used to construct a Diffie–Hellman
protocol. We show that this map can be computed using only additions and multiplica-
tions inFq. In particular we do not use any divisions, polynomial arithmetic, or square
root functions inFq, hence this may be easier to implement than multiplication byM
on the Jacobian. In addition we show that using the Kummer surface does not lead to
any loss in security.
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1. Introduction

One of the easiest protocols in cryptography to understand is the Diffie–Hellman protocol.
In this protocol two people, Alice and Bob, who wish to agree on some secret random
information, decide on a finite abelian group,G, to work with and a generator,g, of some
cyclic subgroup of large order. Alice generates a random integerMA and sendsMAg to
Bob. Bob chooses a random integerMB and sendsMBg to Alice. Both Alice and Bob
can then compute(MAMB)g. It is hoped that no one else can do this. In particular we
hope that for the chosen group the difficulty of determiningMAMBg given onlyMAg,
MBg, andg is as hard as solving a discrete logarithm problem inG.

Many groups have been proposed for such a protocol including the groups
F∗q, (Z/NZ)∗, and the class groups of algebraic number fields. However, for all of
these groups there exist subexponential methods to solve the discrete logarithm prob-
lem, mostly based on the number field sieve, see [14]. This has led people, see [10], to
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consider the group of points on an elliptic curve over some finite field or more generally
the Jacobian of a curve of genusg over some finite field,Fq; at present there is no known
subexponential method to solve the discrete logarithm problem in these groups unless
the genus is very large in comparison with the characteristic andq is prime, in this latter
situation there is a subexponential method [1].

One drawback of using Jacobians of curves of genus greater than one is that it is com-
paratively expensive to computeMg when compared with groups such asF∗q. However,
a variant of the Diffie–Hellman protocol can be described in the absence of a full group
structure. Consider a large setSand any action of the groupZ on the setS;

Z× S → S,
(M, g) → Mg.

If g is a generator of a large orbit, then we can define a functionf (M) = Mg. Such a
function f (M) will be suitable for the Diffie–Hellman protocol if it is easy to compute
f (M) but it is hard to computef −1(Mg).

In this paper we show that for any curve of genus 2 defined overFq there is a naturally
associated setSand a functionf which have the above properties; namely, we letSbe
the Kummer surface associated with our curve,g be any point on the Kummer surface
defined overFq and f be given by f (M) = Mg. We show that the inversion off is
closely related to solving a discrete logarithm problem on the Jacobian of our curve, and
hencef could be considered as a possible one way function. However, our functionf is
rather easy to compute, and is certainly easier than multiplication byM on the Jacobian
of the curve. The literature on curves of genus 2 has grown considerably in the last few
years so we refer the reader to [13] for a general discussion of their arithmetic and of the
open problems in the area.

2. Multiplication on the Jacobian

Suppose we take a curve of genus 2 defined overFq given by

C : Y2 = f6X6+ · · · + f0 = F(X). (1)

The Jacobian ofC overFq, denotedJ, is given by all unordered pairs of points onC
defined overFq2, including the points at infinity, such that each unordered pair is fixed
by the obvious action of Gal(Fq/Fq) on it. In addition we need to “blow-down” all pairs
of the form{(x, y), (x,−y)} to the canonical divisorO.

The group law onJ is given by the rule that three pairs of points will sum to zero, which
is the canonical divisorO, if there is a cubic curve,Y = aX3 + bX2 + cX+ d, which
passes through all of the six component points with the correct multiplicities. Given an
elementg ∈ J one can computeMg for M ∈ Z in O(log|M |) addition operations inJ
using the standard binary method.

However, an addition operation inJ can be quite expensive. The obvious method
involves polynomial arithmetic overFq, a careful study of various cases, and possibly
the extraction of square roots overFq. An asymptotically fast method for large genus
hyperelliptic curves was given by Cantor in [4], which again uses extensive polynomial
arithmetic. In [5] Cantor gave a method for multiplication byM in the Jacobian of
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a hyperelliptic curve based on Pad´e approximation which usesO(M2(log|M |)k) field
operations.

In the next section we show that multiplication byM on the Kummer surface of
a curve of genus 2 can be accomplished using elementary operations (only additions
and multiplications) in the fieldFq. In addition the method may be more amenable to
hardware implementation than the polynomial arithmetic required for addition in the
Jacobian.

3. The Kummer Surface

For every curve of genus 2, as in (1), there is a surfaceK , in P3, called the Kummer
surface, which is given by the equation

R(k1, k2, k3)k
2
4 + S(k1, k2, k3)k4+ T(k1, k2, k3) = 0,

whereR, S, T are given by
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If we let J be the Jacobian ofC, then there is a map

κ: J → K

which is 2:1 on all points except the points of order 2 inJ where it is 1:1. We have
κ(g) = κ(−g) for anyg ∈ J andκ(O) = (0,0,0,1). The points onK do not form a
group, however, a multiplication byM map onK can be defined by

f (M) = Mκ(g) = κ(Mg)

for M ∈ Z and g ∈ J. Hence this mapf (M) could be used for a Diffie–Hellman
protocol. As it is closely related to the multiplication bym map on the Jacobian, we
show that invertingf is as hard as solving a discrete logarithm problem inJ.

All that remains is to give a procedure for computingf (M). In contrast to the method
above for computing the multiplication byM map on the Jacobian we only use additions
and multiplications inFq to computef (M). Indeed, the main computation will involve
nothing more than evaluation of various quartic and biquadratic forms overFq.

There exist ten biquadratic formsBi, j (kP, kQ), with 1 ≤ i ≤ j ≤ 4, such that
Bi, j (kP, kQ) is projectively equal to

(ki (P + Q)kj (P − Q)+ ki (P − Q)kj (P + Q)),
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whereki (P) denotes thei th component ofkP = κ(P). That such biquadratic forms
exist follows from (3.4.1) on p. 23 of [6].

Givenk P = κ(P) andkQ = κ(Q) we would like to computekP+Q = κ(P + Q);
this is, however, impossible. As explained in [9] we can at least perform the following:
If we are given(m1,m2,m3,m4), equal to a choice of eitherkP+Q or kP−Q, then the
remaining “companion” choice is given by

(ni ) = (2mj Bi j (kP, kQ)−mi Bj j (kP, kQ)),

where j is fixed and chosen so thatmj 6= 0. We call this pseudo-addition and we write
this as

(ni ) = pseudo-add(kP, kQ) companion to(mi ).

Using this pseudo-addition we can give the following algorithm to compute the multi-
plication byM map on the Kummer surface.

Multiplication by M

DESCRIPTION: Algorithm for multiplication by M on the Kummer
surface.

INPUT: k ∈ K and M ∈ Z.
OUTPUT: Mk.

1. Put N = M, x = (0,0,0,1), y = (k1, k2, k3, k4) and z= (k1, k2, k3, k4).

2. If N is negative then put N = −N.
3. While N 6= 0 do.
4. If N is odd then
5. Replace x by pseudo-add (x, z) companion to y.
6. N=N-1.
7. Else
8. Replace y by pseudo-add (y, z) companion to x.
9. Endif.

10. Replace z by 2z.
11. N=N/2.
12. Enddo.
13. Output x.

This procedure is the natural analogue of the binary method of multiplication byM
on the Jacobian. It clearly requiresO(log|M |) pseudo-adds andO(log|M |)maps of the
form z→ 2z. Each pseudo-add only requires the evaluation of four biquadratic forms.
Clearly the four evaluations of the biquadratic forms can be performed in parallel. The
doubling operation can be performed using the quartenary quartic forms which are given
in [8].

Lemma 1. A quartenary quartic form can be evaluated using only34 additions
and 73 multiplications; whilst each biquadratic form requires35 additions and46
multiplications.
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Table 1. Average time (in seconds) to perform
a multiplication.

Jacobian Kummer
log10(p) multiplication multiplication

20 2.660 2.525
40 9.602 6.803
60 18.987 11.900
80 32.350 18.740

100 54.238 27.286

Proof. If we use Horner’s rule, then it is easy to see that if we letA(v,d) andM(v,d)
denote the number of additions and multiplications needed to evaluate a form of degree
d in v variables, wherev ≥ 2, then we have

A(2,d) = d, A(v,1) = v − 1, M(2,d) = 3d, M(v,1) = v.

and ifv 6= 0 andd 6= 1, then we have

A(v,d) = d +
d∑

i=0

A(v − 1, i ), M(v,d) = d +
d∑

i=0

M(v − 1, i ).

The result follows on evaluatingA(4,4), M(4,4), A(8,2), andM(8,2).

So we can compute the multiplication byM map on the Kummer surface inO(log|M |)
additions and multiplications inFq.

We implemented both multiplication of divisors on the Jacobian and multiplication on
the Kummer surface using C++ and the LiDIA library [11]. Table 1 shows the average
time needed, in seconds, to perform a multiplication by a random integerN, in the range
0 ≤ N ≤ p− 1, for a curve defined overFp. The implementation of multiplication on
the Kummer made no use of the parallel nature of the computation mentioned above.

4. Cryptanalysis

In this section we show that although we have replaced multiplication byM on the
Jacobian by multiplication byM on the Kummer surface we have not lost any security
in our protocol. Indeed, we even gain some added safety.

Lemma 2. Solving the discrete logarithm problem on the Jacobian is polynomial time
equivalent to solving the discrete logarithm problem on the Kummer surface, for points
on the Kummer which are in the image of the mapκ.

Proof. Suppose first that we are given two points on the Jacobian,P andQ, and we
are asked to solve the discrete logarithm problem,P = M Q. If we can solve the discrete
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logarithm problem on the Kummer surface, then all we need do is map the pointsP and
Q down to the Kummer and find an integerMK such that

kP = MK kQ.

Then our originalM is given by eitherMK or |J(Fq)| − MK . However,|J(Fq)| can be
computed in polynomial time using methods due to Adleman, Huang, and Pila, see [3]
and [12]. We then only need check which of our two possible values ofM is the correct
one.

Now suppose we are given two points on the Kummer surface,kP andkQ, which
lie in the image of the mapκ. We wish to solve the discrete logarithm problem on the
Kummer surface given byk P = MkQ. We can in polynomial time determine points
P and Q on the Jacobian such thatκ(±P) = kP andκ(±Q) = kQ. We then have a
discrete logarithm problem on the Jacobian to solve, namely,

P = MJ Q.

ThenMJkQ = κ(MJ Q) = κ(P) = kP.

It is then clear that if we wish to make out protocol even more secure, then we should not
takeg ∈ K , the generator of our large orbit, to be in the image of the mapκ. If this is the
case, then if we wish to use a method to find the discrete logarithm on the Jacobian to
find our discrete logarithm on the Kummer, we would need to solve a discrete logarithm
problem not onJ(Fq) but onJ(Fq2).

5. Encryption Schemes Using the Kummer Surface

We have shown that using the Kummer surface of a curve of genus 2 we have an analogue
of the Diffie–Hellman protocol which may be more efficient than using Jacobians of
curves of genus 2 directly.

Clearly there is an analogue of the Massey–Omura scheme: Alice and Bob choose
some curve of genus 2 over some finite fieldFq. They can compute in polynomial time
the number of points on the Jacobian of such a curve, call this numberNq = |J(Fq)|.
Alice wishes to send a message to Bob which she encodes as an elementg ∈ K . Alice
and Bob then generate secret random numbersMA and MB which are coprime toNq.
Alice sends BobMAg, and Bob then returnsMB(MAg). Alice can computeM−1

A modulo
Nq and so she returns to BobM−1

A (MB MAg) = MBg. Bob can then easily recover the
message by computingM−1

B (mod Nq).
Perhaps one could also devise an analogue of the ElGamal encryption scheme which

only uses arithmetic on the Kummer surface? What appears to be obstructing this is that
ElGamal requires the presence of a group law and not just the action ofZ on a set as
Diffie–Hellman or Massey–Omura does. One needs not only to perform multiplication
by an integerM but also an addition in the group. Perhaps using the pseudo-add function
above this may be possible.



A Fast Diffie–Hellman Protocol in Genus 2 73

References

[1] L. Adleman, J. DeMarrais, and M.-D. Huang. A subexponential algorithm for discrete logarithms over the
rational subgroup of the Jacobians of large genus hyperelliptic curves over finite fields. In [2], pp. 28–40.

[2] L.M. Adleman and M-D. Huang, editors.ANTS-1: Algorithmic Number Theory. LNCS 877, Springer-
Verlag, Berlin, 1994.

[3] L. Adleman and M.-D. Huang. Counting rational points on curves and abelian varieties over finite fields.
In [7], pp. 1–16.

[4] D.G. Cantor. Computing in the Jacobian of a hyperelliptic curve.Math. Comp., vol. 48, pp. 95–101,
1987.

[5] D.G. Cantor. On the analogue of division polynomials for hyperelliptic curves.J. Reine Angew. Math.,
vol. 447, pp. 91–145, 1994.

[6] J.W.S. Cassels and E.V. Flynn.Prolegomena to a Middlebrow Arithmetic of Curves of Genus2. Cambridge
University Press, Cambridge, 1996.

[7] H. Cohen, editor.ANTS-2: Algorithmic Number Theory. LNCS 1122, Springer-Verlag, Berlin, 1996.
[8] E.V. Flynn. The group law on the Jacobian of a curve of genus 2.J. Reine. Angew. Math., vol. 439,

pp. 45–69, 1993.
[9] E.V. Flynn and N.P. Smart. Canonical heights on the Jacobians of curves of genus 2 and the infinite

descent.Acta Arith., vol. 79, pp. 333–352, 1997.
[10] N. Koblitz. Hyperelliptic cryptosystems.J. Cryptology, vol. 1, pp. 139–150, 1989.
[11] LiDIA Group. LiDIA—A library for computational number theory. Universit¨at des Saarlandes, 1995.
[12] J. Pila. Frobenius maps of abelian varieties and finding roots of unity in finite fields.Math. Comp., vol. 55,

pp. 745–763, 1996.
[13] B. Poonen. Computational aspects of curves of genus at least 2. In [7], pp. 283–306.
[14] O. Schirokauer, D. Weber, and T. Denny. Discrete logarithms: the effectiveness of the index calculus

method. In [7], pp. 337–361.


