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Abstract. In this paper it is shown how the multiplication iy map on the Kummer
surface of a curve of genus 2 defined a¥grcan be used to construct a Diffie-Hellman
protocol. We show that this map can be computed using only additions and multiplica-
tions inFFg. In particular we do not use any divisions, polynomial arithmetic, or square
root functions inFgy, hence this may be easier to implement than multiplicatiomvby

on the Jacobian. In addition we show that using the Kummer surface does not lead to
any loss in security.
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1. Introduction

One ofthe easiest protocols in cryptography to understand is the Diffie—Hellman protocol.
In this protocol two people, Alice and Bob, who wish to agree on some secret random
information, decide on a finite abelian gro@p,to work with and a generatay, of some
cyclic subgroup of large order. Alice generates a random int®geand send$1,g to
Bob. Bob chooses a random intedédg and senddMgg to Alice. Both Alice and Bob
can then computéMaMg)g. It is hoped that no one else can do this. In particular we
hope that for the chosen group the difficulty of determinigMgg given only Mag,
Mgg, andg is as hard as solving a discrete logarithm probler@in

Many groups have been proposed for such a protocol including the groups
Fg, (Z/NZ)*, and the class groups of algebraic number fields. However, for all of
these groups there exist subexponential methods to solve the discrete logarithm prob-
lem, mostly based on the number field sieve, see [14]. This has led people, see [10], to
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consider the group of points on an elliptic curve over some finite field or more generally
the Jacobian of a curve of gengisver some finite fieldfy; at present there is no known
subexponential method to solve the discrete logarithm problem in these groups unless
the genus is very large in comparison with the characteristigasgrime, in this latter
situation there is a subexponential method [1].

One drawback of using Jacobians of curves of genus greater than one is that it is com-
paratively expensive to compukég when compared with groups suchlgis However,
a variant of the Diffie—Hellman protocol can be described in the absence of a full group
structure. Consider a large setind any action of the group on the sefS,

ZxS — S
(M, 9) — Mg.

If g is a generator of a large orbit, then we can define a functiol) = Mg. Such a
function f (M) will be suitable for the Diffie—Hellman protocol if it is easy to compute
f (M) but it is hard to computé ~1(Mg).

In this paper we show that for any curve of genus 2 definedBy#rere is a naturally
associated se$ and a functionf which have the above properties; namely, weSéie
the Kummer surface associated with our cuyée any point on the Kummer surface
defined oveily and f be given byf(M) = Mg. We show that the inversion df is
closely related to solving a discrete logarithm problem on the Jacobian of our curve, and
hencef could be considered as a possible one way function. However, our furfcion
rather easy to compute, and is certainly easier than multiplicatiov oy the Jacobian
of the curve. The literature on curves of genus 2 has grown considerably in the last few
years so we refer the reader to [13] for a general discussion of their arithmetic and of the
open problems in the area.

2. Multiplication on the Jacobian

Suppose we take a curve of genus 2 defined Byagiven by
C:Y2= feX®+ ... + fo = F(X). 1)

The Jacobian o€ overFg, denotedl, is given by all unordered pairs of points @Gnh
defined ovelfy, including the points at infinity, such that each unordered pair is fixed
by the obvious action of Géﬁ_q/ﬁ?q) on it. In addition we need to “blow-down” all pairs

of the form{(x, y), (X, —y)} to the canonical diviso®.

The group law ord is given by the rule that three pairs of points will sum to zero, which
is the canonical diviso®, if there is a cubic curvey = aX® 4+ bX? 4+ cX + d, which
passes through all of the six component points with the correct multiplicities. Given an
elementg € J one can comput®lg for M € Z in O(log|M|) addition operations id
using the standard binary method.

However, an addition operation i can be quite expensive. The obvious method
involves polynomial arithmetic ovefy, a careful study of various cases, and possibly
the extraction of square roots ovEf. An asymptotically fast method for large genus
hyperelliptic curves was given by Cantor in [4], which again uses extensive polynomial
arithmetic. In [5] Cantor gave a method for multiplication b in the Jacobian of
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a hyperelliptic curve based on Radpproximation which use®(M?2(log|M|)¥) field
operations.

In the next section we show that multiplication b on the Kummer surface of
a curve of genus 2 can be accomplished using elementary operations (only additions
and multiplications) in the field'. In addition the method may be more amenable to
hardware implementation than the polynomial arithmetic required for addition in the
Jacobian.

3. The Kummer Surface

For every curve of genus 2, as in (1), there is a surtécén P3, called the Kummer
surface, which is given by the equation

R(K1, Kz, k3)K3 + S(Ky, Ko, ka)kg + T (Ky, ko, k3) = 0,
whereR, S, T are given by

R(K1, ko, k3) = k3 — 4kgka,
S(ki, ko, ka) = — 2(2k3 fo + k2ky f1 + 2k2ks fp + kikoks f3 + 2kik2 4
+ Kok fs + 2K fg),
— 4k o Ty + kT 12 — ACko fo f3 — 2k3ks f1 f3 — 4Kk2K3 fo T4
+ 4kPkoks fo fs — AkZkoks fy f4 — 4k2k2 fo fs + 2k2K2 fy fs
— AK3K3 fp 4+ K2k £ 2 — AkekS fo fs 4 8kak2ks fo fo — 4Kj fo fo
— 4kik3ks f1 f5 -+ AkqkaoK3 fq fo — Akikok fp f5 — 2kikS f3 5
— Ak3ks fy fg — 4k2KE 5 fo — AkokS f3fg — 4k] f4 fs + k3 f2.

T (ka, k2, ka)

If we let J be the Jacobian o, then there is a map
k:J—> K

which is 2:1 on all points except the points of order 2Jirwhere it is 1:1. We have
k(g) = k(—g) foranyg € J and«(O) = (0,0, 0, 1). The points orK do not form a
group, however, a multiplication byl map onK can be defined by

f(M) = Mic(g) = «(Mg)

for M € Z andg € J. Hence this mapf (M) could be used for a Diffie—Hellman
protocol. As it is closely related to the multiplication by map on the Jacobian, we
show that invertingf is as hard as solving a discrete logarithm problerd.in

All that remains is to give a procedure for computifigM). In contrast to the method
above for computing the multiplication by map on the Jacobian we only use additions
and multiplications irf'y to computef (M). Indeed, the main computation will involve
nothing more than evaluation of various quartic and biquadratic formsyver

There exist ten biquadratic formB; j(kp, kg), with 1 < i < j < 4, such that
Bi,j (kp, k) is projectively equal to

(ki (P + Qkj(P — Q) + k(P — Qkj(P + Q)),
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wherek; (P) denotes théth component okp = «(P). That such biquadratic forms
exist follows from (3.4.1) on p. 23 of [6].

Givenkp = «(P) andkq = «(Q) we would like to comput&pq = x(P + Q);
this is, however, impossible. As explained in [9] we can at least perform the following:
If we are given(my, mp, mz, ms), equal to a choice of eithdep g or Kp_q, then the
remaining “companion” choice is given by

(i) = (2m; Bij (kp, kq) — m; Bjj (kp, kq)),

wherej is fixed and chosen so that; # 0. We call this pseudo-addition and we write
this as

(nj) = pseudo-adtkp, ko) companion tam;).

Using this pseudo-addition we can give the following algorithm to compute the multi-
plication byM map on the Kummer surface.

Multiplication by M

DESCRIPTION: Algorithm for multiplication by M on the Kummer
surface.
INPUT: ke K and M eZ.
OUTPUT: MK.
1. Puu N=M, x=(0,0,0,1), y= (k]_, kz, k3, k4) and z= (kl, kz, k3, k4)
2. If N is negative then put N = —N.
3. While N #0 do.
4. If N is odd then
5. Replace x by pseudo-add (X,z) companion to .
6. N=N-1.
7. Else
8. Replace y by pseudo-add (y,z) companion to X.
9. Endif.
10. Replace z by 2z
11. N=N/2.
12. Enddo.

13.  Output x.

This procedure is the natural analogue of the binary method of multiplicatiavi by
on the Jacobian. It clearly requir€glog|M|) pseudo-adds and(log|M|) maps of the
form z — 2z. Each pseudo-add only requires the evaluation of four biquadratic forms.
Clearly the four evaluations of the biquadratic forms can be performed in parallel. The
doubling operation can be performed using the quartenary quartic forms which are given
in [8].

Lemmal. A quartenary quartic form can be evaluated using oBK additions
and 73 multiplications whilst each biquadratic form require85 additions and46
multiplications
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Table 1. Average time (in seconds) to perform
a multiplication.

Jacobian Kummer
10g;0(P) multiplication multiplication
20 2.660 2.525
40 9.602 6.803
60 18.987 11.900
80 32.350 18.740
100 54.238 27.286

Proof. If we use Horner’s rule, then it is easy to see that if weAét, d) andM (v, d)
denote the number of additions and multiplications needed to evaluate a form of degree
d in v variables, where > 2, then we have

A(2,d) =d, Aw,1) =v -1, M(2,d) = 3d, M, 1) =v.

and ifv #£ 0 andd # 1, then we have

d d
Av,d)=d+> Aw-1i) M@d=d+) Muv-1i.
i=0 i=0

The result follows on evaluating(4, 4), M (4, 4), A(8, 2), andM (8, 2). O

So we can compute the multiplication Mymap on the Kummer surface@(log|M|)
additions and multiplications iR

We implemented both multiplication of divisors on the Jacobian and multiplication on
the Kummer surface using C++ and the LiDIA library [11]. Table 1 shows the average
time needed, in seconds, to perform a multiplication by a random intégerthe range
0 < N < p— 1, for a curve defined ovelf,. The implementation of multiplication on
the Kummer made no use of the parallel nature of the computation mentioned above.

4. Cryptanalysis

In this section we show that although we have replaced multiplicatioMbgn the
Jacobian by multiplication b on the Kummer surface we have not lost any security
in our protocol. Indeed, we even gain some added safety.

Lemma 2. Solving the discrete logarithm problem on the Jacobian is polynomial time
equivalent to solving the discrete logarithm problem on the Kummer syfiacgoints
on the Kummer which are in the image of the nrap

Proof. Suppose first that we are given two points on the Jacolflaamd Q, and we
are asked to solve the discrete logarithm problEm; M Q. If we can solve the discrete



72 N. P. Smart and S. Siksek

logarithm problem on the Kummer surface, then all we need do is map the |poartd
Q down to the Kummer and find an integélk such that

kp = MKkQ.

Then our originaM is given by eitheMy or |J(Fq)| — Mk . However,|J(Fq)| can be
computed in polynomial time using methods due to Adleman, Huang, and Pila, see [3]
and [12]. We then only need check which of our two possible valués & the correct
one.

Now suppose we are given two points on the Kummer surfageandkq, which
lie in the image of the map. We wish to solve the discrete logarithm problem on the
Kummer surface given bikp = Mkg. We can in polynomial time determine points
P and Q on the Jacobian such tha{£P) = kp and«(£Q) = kq. We then have a
discrete logarithm problem on the Jacobian to solve, namely,

P=M;Q.

ThenMJkQ=K(MJQ)=K(P)=kp. O

Itis then clear that if we wish to make out protocol even more secure, then we should not
takeg € K, the generator of our large orbit, to be in the image of the mafthis is the

case, then if we wish to use a method to find the discrete logarithm on the Jacobian to
find our discrete logarithm on the Kummer, we would need to solve a discrete logarithm
problem not onJ (Fq) but onJ(Fg2).

5. Encryption Schemes Using the Kummer Surface

We have shown that using the Kummer surface of a curve of genus 2 we have an analogue
of the Diffie—Hellman protocol which may be more efficient than using Jacobians of
curves of genus 2 directly.

Clearly there is an analogue of the Massey—Omura scheme: Alice and Bob choose
some curve of genus 2 over some finite figld They can compute in polynomial time
the number of points on the Jacobian of such a curve, call this nuiper |J(Fg)|.

Alice wishes to send a message to Bob which she encodes as an efpméntAlice
and Bob then generate secret random numbgisand Mg which are coprime td\g.
Alice sends BotM 5g, and Bob then returnidlg (M ag). Alice can computé/ ;1 modulo
Ng and so she returns to Bdh;l(MBMAg) = Mgg. Bob can then easily recover the
message by computing gl (mod Ng).

Perhaps one could also devise an analogue of the EIGamal encryption scheme which
only uses arithmetic on the Kummer surface? What appears to be obstructing this is that
ElGamal requires the presence of a group law and not just the actidronfa set as
Diffie—Hellman or Massey—Omura does. One needs not only to perform multiplication
by anintegeM but also an addition in the group. Perhaps using the pseudo-add function
above this may be possible.
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