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Abstract. Edge detection (for both open and closed edges) from real images
is a challenging problem. Developing fast algorithms with good accuracy and
stability for noisy images is difficult yet and in demand. In this work, we

present a variational model which is related to the well-known Mumford-Shah
functional and design fast numerical methods to solve this new model through a

binary labeling processing. A pre-smoothing step is implemented for the model,
which enhances the accuracy of detection. Ample numerical experiments on
grey-scale as well as color images are provided. The efficiency and accuracy of
the model and the proposed minimization algorithms are demonstrated through
comparing it with some existing methodologies.

1. Introduction. Edge detection plays an immensely important role not only in
image processing and computer vision, but also in many other fields, e.g., material
science and physics [67, 6]. In the context of image processing, edge detection
is to extract the boundaries of some objects of interest from a given image. Many
methods have been proposed for this purpose. The capability of classical approaches
using image gradient [15, 23, 59] is limited, as the accuracy of edge identification
is usually deteriorated by the presence of noise. Another class of methods based
on anisotropic diffusions [17, 1, 48] is typically built upon some model that can
prevent smoothing near the edges, but encourage diffusion over the homogeneous
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regions. However, they may face difficulties in dealing with images with low signal
to noise ratios (SNRs). Note that some reaction and diffusion equations [61, 70],
edge flow [35], snake/active contour models [30, 16, 4], universal gravity [60] and
wavelet frames [28] have been developed for edge detection. We also remark that
recent research interest in using a variety of filter banks to improve the accuracy
of edge detection, and the interested readers are referred to [10, 37, 34, 49, 64] and
the references therein.

In distinctive contrast with region-based image segmentation, edge detection also
targets at locating open curves, which are constituent component of edges, but
do not have interior and exterior regional separation. Although an open-ended
curve can be expressed by a parametric form, it is not a natural representation for
evolution. Among a few techniques for manipulating open curves, Leung and Zhao
[33] proposed a grid-based particle method to represent an open curve (also see
[58, 5, 40, 53] for different ideas). It is known that the level-set method [47] has
emerged as a versatile tool for various applications involving curve/surface evolution
[31].

In a recent conference report [68], we proposed to embed an open (or a closed)
curve into a narrow region (or band), formed by the curve and its parallel curve
(also known as the offset curve [66]). We then integrated the MS model with the
binary level-set method, leading to a model dubbed as the modified Mumford-Shah
(MMS) model. However, only a very preliminary algorithm was proposed for this
modified model [68]. This paper aims to present a new MMS model (incorporated
with minimizing the area of the narrow band), and introduce two fast algorithms
using the proximity algorithm [41, 42] and split Bregman method [27]. We also
compare the performance of the algorithms with the method by Ambrosio and
Tortorelli (AT) [2, 3], and the adaptive splitting (EDAS-1) algorithm in Llanas
[34] for edge detection. We demonstrate that the proposed methods outperform
the AT’s approach and the EDAS-1 algorithm in terms of ease of implementation,
quality of detection, and robustness to noise.

Huang et al. [29] showed that the alternating direction method (ADM) with
exactly solving inner subproblems enjoys a linear convergence in the context of
variational image restoration. We present a similar convergence result (see The-
orem 3.6) for our proposed algorithm under the assumption that the underlying
inner subproblem has exact solution. As with [29], such a convergence rate can be
observed even with a few inner loops.

The rest of the paper is organized as follows. In Section 2, we introduce the new
MMS model [68]. In Section 3, we describe the algorithms for solving the minimiza-
tion problem, including the proximity algorithm and the split Bregman algorithm.
In Section 4, we make a comparison study and provide sufficient numerical results
to demonstrate the strengths of the proposed methods. In Section 5, we introduce
detailed coupled pretreatments. In Section 6, we extend the proposed model and
algorithms for edge detection involving color images.

2. The modified Mumford-Shah model. We start with the well-known Mumfo-
rd-Shah model [43]:

(1) min
u,Γ

{

E(u,Γ) = µ

∫

Ω\Γ

|∇u|2dx+
ν

2

∫

Ω

(u− I)2dx+ |Γ|
}

,

where I is a given image on an open bounded domain Ω ⊂ R
2, the minimizer u

is expected to be a “good” piecewise smooth approximation of I, |Γ| is the total
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length of the targeted union of the edges Γ, and µ, ν are positive tuning parameters.
Indeed, the MS model with level-set implementation becomes a very useful tool for
region-based image segmentation. In the literature, there are some papers on the
variant of Mumford-Shah model for image segmentation and other applications (see
e.g., [18, 50] and the references therein).

When it comes to edge detection using a variational model, the most important
issue appears how to characterize the edges. To fix the idea, let r ∈ Γ be a curve
with the parameterization: r(t) = (x(t), y(t)), t ∈ [0, 1]. Without loss of generality,
assume that r(t) is regular (i.e., |r′(t)| 6= 0 for all t ∈ (0, 1)), which has finite length
and curvature. Then the parallel or offset curve generated by r(t) is defined by (cf.
[24, 66]):

(2) rd(t) = r(t) + dn(t), ∀t ∈ [0, 1],

where n(t) is the unit normal to r(t) at each point, and d is a preassigned signed
distance. This defines a positive (exterior, d > 0) or negative (interior, d < 0) offset
(see Figure 1). Denoting the total length of r and rd by L and Ld, respectively, we
have (cf. [24, Lemma 3.1]):

Ld =

∫ 1

0

|1 + κd| |r′|dt =

∫ L

0

|1 + κd| ds = |L+ d∆θ|,

where κ is the curvature and ∆θ is the total angle of rotation of the normal n to
r between t = 0 and t = 1, measured by the right-handed rule. Moreover, the
area, denoted by Ad, between the generator r and the offset rd is given by (see [24]
again):

(3) Ad =
1

2
(L+ Ld)|d|.

Note that the curve r is immersed in the (closed) band (with area Ad) denoted by
Rd.

 

!"

d

(a)

d

 

! 

(b)

 

d

 !

(c) (d)

Figure 1. The closed narrow region Rd formed by the curve Γ : r(t)
and its exterior parallel curve (dashed line) for closed curves and open
curves (the dotted lines connected the corresponding starting points and
end-points of the curve Γ and its exterior parallel curve, respectively),
where the dot-dashed line is the interior parallel curve. The last one is
an example of an intersected curve that can be split into simple open or
closed curves.

We introduce the binary level-set function: ψ = 1, if x ∈ Rd, while ψ = 0 oth-
erwise. Recall that the total variation of the indicator function of Rd characterizes
the perimeter of Rd, so we deduce from (2) that for 0 < d≪ 1,

(4) TV (ψ) = 2L+O(d),

Inverse Problems and Imaging Volume 9, No. 2 (2015), 551–578
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where the total variation is defined by

(5) TV (u) = sup
p∈S

∫

Ω

u divp dx, where S :=
{

p ∈ C1
c (Ω;R

2) : |p| ≤ 1
}

.

Here, C1
c (Ω;R

2) is the space of vector-valued functions compactly supported in Ω
with first-order partial derivatives being continuous. In [68], the following modified
MS model was considered:

(6) min
ψ∈{0,1},u

{

µ

∫

Ω

(1− ψ)2|∇u|2dx+
ν

2

∫

Ω

|u− I|2dx+ TV (ψ)
}

,

where µ, ν are positive constants. Observe that (ψ, u) = (1, I) is the minimizer of
(6), which is somehow not desirable.

To fix this deficiency, we further modify the functional in (6) by adding an L1-
term that characterizes the area of Rd in (3), that is,

(7) Ad =

∫

Ω

|ψ| dx.

Moreover, for ease of implementation, we relax the non-convex set {0, 1} to the
convex set [0, 1] (see e.g., [11]). In summary, we are concerned with the new MMS
model:

min
u,ψ∈[0,1]

{

µ

∫

Ω

(1− ψ)2|∇u|2dx+
ν

2

∫

Ω

|u− I|2dx+ τ

∫

Ω

|ψ| dx+ TV (ψ)
}

,(8)

where µ, ν, τ are positive constants. We reiterate that the introduction of the L1-
term (i) can characterize the small area of the narrow band surrounding the targeted
open edge; (ii) can rule out the unwanted minimizer of (6); and (iii) does not add
any difficulty for the minimization algorithm (cf. [32, 21]).

It is important to point out that Ambrosio and Tortorelli [2, 3] associated Γ with
the jump Γu of the unknown u, and they proposed the model:

EAT (u, v) =µ

∫

Ω

(v2 + oε)|∇u|
2dx+

ν

2

∫

Ω

(u− I)2dx

+

∫

Ω

(

ε|∇v|2 +
1

4ε
(v − 1)2

)

dx,

(9)

where ε is a sufficient small parameter, and oε is any non-negative infinitesimal
quantity approaching 0 faster than ε. Here, v plays a role similar to ψ in (8), that
is, v ≈ 0 if x ∈ Γu, and v ≈ 1 otherwise. A rigorous analysis (see e.g., [2, 7]) shows
that the last term converges to the length of |Γu| in Γ-convergence sense [22]. The
width of transition from v = 0 to 1 is about O(ε). This Ambrosio and Tortorelli
approximation (9) has been extensively studied and extended for segmentation and
other applications (see e.g., [55, 36, 65, 25, 56]).

3. The minimization algorithms. This section is to introduce the minimization
algorithms for solving (8), which largely consist of the proximity algorithm and
split Bregman method for resolving the binary level-set function ψ, and an iterative
method for finding u in (8).

Note that we face the situation that the edge set Γ = {ψ = 1} could be of measure
zero in the limiting process. It is questionable to use the dual approach based on the
dual formulation of the total variation. For this reason, we resort to the proximity
algorithm and split Bregman method, where the use of sub-differential can bypass
this.

Inverse Problems and Imaging Volume 9, No. 2 (2015), 551–578
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Motivated by the technique in e.g., [44, 45], we introduce an auxiliary q = ψ to
handle the L1-term and treat the constraint q = ψ by a penalty method. Then the
equation (8) can be approximated by the unconstraint problem:

min
u,q

ψ∈[0,1]

{

µ

∫

Ω

(1− ψ)2|∇u|2dx+
ν

2

∫

Ω

|u− I|2dx

+ τ

∫

Ω

|q| dx+
r

2

∫

Ω

(q − ψ)2dx+ TV (ψ)
}

.

(10)

Using the alternating optimization technique, we split (10) into three subproblems:

• u-subproblem: for fixed ψ, we solve

(11) min
u

{

R(u) := µ

∫

Ω

(1− ψ)2|∇u|2dx+
ν

2

∫

Ω

|u− I|2dx
}

.

• ψ-subproblem: for fixed u and q, we solve

(12) min
ψ

{

F(ψ) := µ

∫

Ω

(1− ψ)2|∇u|2dx+
r

2

∫

Ω

(q − ψ)2dx+ TV (ψ)
}

.

• q-subproblem: for fixed ψ, we solve

(13) min
q

{

τ

∫

Ω

|q|dx+
r

2

∫

Ω

(q − ψ)2dx
}

.

One can verify readily that the solution of (13) can be explicitly expressed as (cf.
[62, 57]):

(14) q = ψ max
{

0, 1−
τ

r|ψ|

}

.

Next, we present the algorithms for (11) and (12).

3.1. Fixed-point iterative method for solving u. We first consider (11). No-
tice that for fixed ψ, the functional in (11) is convex, so it admits a minimizer. The
corresponding Euler-Lagrange equation takes the form:

(15)

{

−2µdiv
(

(1− ψ)2∇u
)

+ ν(u− I) = 0, in Ω,

∂nu|∂Ω = 0,

where n is the unit outer normal to ∂Ω. Note that ψ is expected to take value
0 at the homogeneous region, i.e., 1 − ψ ≈ 1. To solve this elliptic problem with
variable coefficient efficiently, we propose to use a fixed-point iterative scheme based
on relaxation method (see e.g., [48, 19] for similar ideas). We adopt the difference
scheme:

νui,j = 2µ[(1− ψ)2i,j+1(ui,j+1 − ui,j) + (1− ψ)2i,j−1(ui,j−1 − ui,j)

+ (1− ψ)2i−1,j(ui−1,j − ui,j) + (1− ψ)2i+1,j(ui+1,j − ui,j)] + νIi,j ,
(16)

where ui,j ≡ u(i, j) is the approximate solution of (15) at grid point (i, j) with grid

size ĥ = 1 as usual. Then applying the Gauss-Seidel iteration to (16) leads to
(

2µ(CE + CW + CN + CS) + ν
)

uk+1
i,j =

2µ
[

CEu
k
i,j+1 + CWu

k+1
i,j−1 + CNu

k+1
i−1,j + CSu

k
i+1,j

]

+ νIi,j ,
(17)

where

CE = (1− ψk)2i,j+1, CW = (1− ψk)2i,j−1, CN = (1− ψk)2i−1,j , CS = (1− ψk)2i+1,j .

Inverse Problems and Imaging Volume 9, No. 2 (2015), 551–578
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To speed up the iteration (17), we implement the relaxation method. For this

purpose, we use rk+1
i,j to denote the residue obtained by subtracting the right-hand

side of (17) from the left-hand side of (17). This yields the iterative scheme:

uk+1
i,j = uki,j − ω1r

k+1
i,j ,(18)

where ω1 > 0 is the relaxation factor. Collecting (18) yields the new scheme:

(19) uk+1
i,j =

uki,j + ω1

(

νIi,j + 2µ[CEu
k
i,j+1 + CWu

k+1
i,j−1 + CNu

k+1
i−1,j + CSu

k
i+1,j ]

)

1 + ω1

(

2µ(CE + CW + CN + CS) + ν
) .

3.2. Proximity algorithm for solving ψ. Now, we turn to the subproblem (12).
Let us first introduce some basics of the proximity operator and proximity algorithm.
Here, we adopt the setting as in [39, 38, 41, 42], and refer to the relevant references
therein for more details.

Definition 3.1. Let H be a real Hilbert space, and let h be a convex functional
on H, which is not identically equal to ∞. The sub-differential of h at x ∈ H is the
set defined by

∂h(x) :=
{

y ∈ H : h(z) ≥ h(x) + 〈y, z − x〉, ∀z ∈ H
}

,

where 〈·, ·〉 is the inner product of H.

We remark that any y ∈ ∂h(x) is called a subgradient of h at x. The sub-
differential reduces to the classical gradient if h is differentiable. The definition of
the proximity operator introduced by Moreau [41, 42] is stated below.

Definition 3.2. Let h and H be the same as in Definition 3.1. Then the proximity
operator of h at x ∈ H is defined by

proxh(x) : = arg min
u∈H

{1

2
‖u− x‖22 + h(u)

}

,

where ‖v‖2 =
√

〈v, v〉.

A very important property is that the sub-differential of a convex function can
be characterized by its proximity operator. We refer to [41, 42] for the detailed
proof.

Lemma 3.3. Let h and H be the same as in Definition 3.1. Then for any x ∈ H,

we have

y ∈ ∂h(x) if and only if x = proxh(x+ y).

Next, we apply Lemma 3.3 to solve the subproblem (12). For this purpose, we
define

(20) ρ(ψ) = µ

∫

Ω

(1− ψ)2|∇u|2dx+
r

2

∫

Ω

(q − ψ)2dx.

Then (12) is equivalent to

(21) min
ψ

{

(g ◦B)(ψ) + ρ(ψ)
}

,

where (g ◦B)(ψ) = TV (ψ) with the understanding that

(22) g(·) = ‖ · ‖L1(Ω), B = ∇.

Then by using the following result, which can be proved in a fashion similar to
Proposition 1 in [39], we can obtain the solution of (21).

Inverse Problems and Imaging Volume 9, No. 2 (2015), 551–578
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Lemma 3.4. Let g and B be the same as above, and let ρ be a convex functional,

e.g., in (20). If ψ ∈ H(= L2(Ω)) is a solution of (21), then for any α, β > 0, there
exists s ∈ H ×H such that

(23) ψ = prox 1
α
ρ

(

ψ −
β

α
B∗s

)

,

and

(24) s = (I− prox 1
β
g)(Bψ + s),

where B∗ is the adjoint operator of B, and I is the identity operator.

Conversely, if there exist α, β > 0, s ∈ H ×H, and ψ ∈ H satisfying (23) and

(24), then ψ is a solution of the model (21).

Equipped with Lemma 3.4, we are able to derive the proximity algorithm for
(21). By Definition 3.2 and (23), we obtain

(25) ψ = prox 1
α
ρ

(

ψ−
β

α
B∗s

)

= argmin
̟

{ 1

α
ρ(̟) +

1

2

∥

∥

∥
̟ −

(

ψ −
β

α
B∗s

)∥

∥

∥

2

L2(Ω)

}

.

In view of (20), we find the Euler-Lagrangian equation:

̟ −M1 +
1

α

{

− 2µ(1−̟)|∇u|2 + r(̟ − q)
}

= 0,

where

M1 = ψ −
β

α
B∗s.

Therefore, we have the representation of the minimizer of (25):

(26) ̟ =
rq + 2µ|∇u|2 + αM1

α+ r + 2µ|∇u|2
= ψ.

To further enforce ψ ∈ [0, 1], we apply the “truncation” method (see e.g., [20]):

(27) Tr(ψ) =











0, ψ < 0,

ψ, 0 ≤ ψ ≤ 1,

1, ψ > 1.

It remains to find s in (26) (i.e., in M1). The special form of the functional g
enables us to formulate the sub-differential and proximity operators in a closed form
(see, e.g., [38]):

(28) s = (Bψ + s)−max
{

|Bψ + s| − 1/β, 0
}

· sign(Bψ + s).

We summarize the full algorithm for (10), called the Proximity Algorithm, as
follows.

Proximity Algorithm

1. Initialization: set s0 = 0, and input ψ0, u0, µ, ν, α, β, ω1, r, τ.
2. For n = 0, 1, · · · ,

(i) Update un+1 using the iteration scheme (19) with initial value un and ψn

(in place of ψ);
(ii) Update qn by

qn = ψn max
{

0, 1−
τ

r|ψn|

}

.

Inverse Problems and Imaging Volume 9, No. 2 (2015), 551–578
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(iii) Update ψn+1 by

ψn+1 =
rqn + 2µ|∇un+1|2 + α

(

ψn − β
α
B∗sn

)

α+ r + 2µ|∇un+1|2
,

and ψn+1 = Tr(ψn+1);
(iv) Update sn+1 by

sn+1 = (Bψn+1 + sn)−max
{

|Bψn+1 + sn| − 1/β, 0
}

· sign(Bψn+1 + sn).

3. Endfor till some stopping rule meets.

Some remarks are in order.

(a) In practice, we need to run the fixed-point iteration for solving u in Step 2 (i)
for several times. For convenience, we denote the number of iterations by J.

(b) In this context, the operators B = ∇ and B∗ = −div. We refer to [19] for
their discretizations.

(c) It is seen that under the proximal framework, the algorithm appears simple
to implement. While the proximity algorithm introduces two additional pa-
rameters α and β, the algorithm is robust and not sensitive to choice of α, β
(see the numerical examples in next section).

(d) For a noisy image, we find it is beneficial to implement a thresholding tech-
nique aiming at sharpening the edges. More precisely, given a threshold
T ∈ (0, 1), we set ψN = 0, if ψN < T, and ψN = 1, otherwise, where N
is the number of loops till the stopping rule meets in Step 3.

3.3. Split Bregman method for solving ψ. As already mentioned, another way
to get around the imposition of total variation over the edge set Γ (with “zero” mea-
sure in the limiting case) is to use the split Bregman method [27], which basically
integrates the notion of Bregman distance [8] with augmented Lagrangian tech-
niques (cf. [62]). Indeed, this method has been widely used in image processing
(see e.g., [13, 26, 54] and the references therein).

We start with introducing an auxiliary variable d and rewrite (21) as

min
ψ

{

∫

Ω

|d| dx+ ρ(ψ)
}

subject to d = (d1, d2) = ∇ψ,

where |d| =
√

d21 + d22 and ρ(ψ) is defined in (20). Following [27], we formulate the
split Bregman iteration as

(29) (ψn+1,dn+1) = argmin
ψ,d

{

∫

Ω

|d| dx+ ρ(ψ) +
λ

2

∫

Ω

(d−∇ψ − bn)2dx
}

,

for given bn, and

(30) bn+1 = bn +
(

∇ψn+1 − dn+1
)

.

It is equivalent to writing (29)-(30) in the component form of d = (d1, d2) and
b = (b1, b2). This yields

(ψn+1, dn+1
1 , dn+1

2 ) = arg min
ψ,d1,d2

{

∫

Ω

√

d21 + d22 dx

+ µ

∫

Ω

(1− ψ)2|∇u|2dx+
λ

2

∫

Ω

(d1 −∇xψ − bn1 )
2dx

+
λ

2

∫

Ω

(d2 −∇yψ − bn2 )
2dx+

r

2

∫

Ω

(q − ψ)2dx
}

,

(31)

Inverse Problems and Imaging Volume 9, No. 2 (2015), 551–578
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and

bn+1
1 = bn1 +

(

∇xψ
n+1 − dn+1

1

)

, bn+1
2 = bn2 +

(

∇yψ
n+1 − dn+1

2

)

.

The Euler-Lagrange equation of (31) for ψ with fixed d1 and d2 is

(32) − λ∆ψ + 2µ|∇u|2(ψ − 1) + r(ψ − q)− λ∇∗
x(d1 − bn1 )− λ∇∗

y(d2 − bn2 ) = 0,

with the Neumann boundary condition ∂nψ = 0. Following the same idea as in
Subsection 3.1, we need to solve the equations about ψ :

(33) ψk+1
i,j =

ψk + ω2

(

F ki,j + λ(ψki+1,j + ψk+1
i−1,j + ψk+1

i,j−1 + ψki,j+1)
)

1 + ω2(2µ|(∇u)
k+1
i,j |2 + 4λ+ r)

,

where ω2 > 0 is the relaxation factor and

F := 2µ|∇u|2 + rq + λ∇∗
x(d1 − bn1 ) + λ∇∗

y(d2 − bn2 ).

For fixed ψ, the optimality condition of (31) with respect to d1 and d2 gives

(34) d1 = max
{

h̄−
1

λ
, 0
}h1
h̄
, d2 = max

{

h̄−
1

λ
, 0
}h2
h̄
,

where

h1 = ∇xψ + bn1 , h2 = ∇yψ + bn2 , h̄ =
√

h21 + h22.

Now, we are in a position to present the whole algorithm using split Bregman
iteration. We replace Steps (iii) and (iv) in the Proximity algorithm by the split
Bregman method and summarize the resulted algorithm as follows.

Split Bregman (SB) Algorithm

1. Initialization: set d01 = d02 = b01 = b02 = 0, and input ψ0, u0, µ, ν, ω1, ω2, λ, r, τ.
2. For n = 0, 1, · · · ,

(i) Update un+1 using the iteration scheme (19) with initial value for itera-
tion: un and ψn (in place of ψ);

(ii) Update qn by

qn = ψn max
{

0, 1−
τ

r|ψn|

}

.

(iii) Update ψn+1 using the iteration scheme by (33) with initial value ψn,
un+1 in place of u, and qn in place of q, then set ψn+1 = Tr(ψn+1);

(iv) Update dn+1
1 and dn+1

2 by (34) with ψn+1 in place of ψ;
(v) Update bn+1

1 and bn+1
2 by

bn+1
1 = bn1 +

(

∇xψ
n+1 − dn+1

1

)

, bn+1
2 = bn2 +

(

∇yψ
n+1 − dn+1

2

)

.

3. Endfor till some stopping rule meets.

As with the proximity algorithm, we can perform the thresholding technique to
sharpen the edges (see (d) in the remarks).
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3.4. Convergence analysis. Noticed that the SB algorithm includes “inner” and
“outer” iteration. It is seen from (19) and (33) that some “inner” iterations are
needed to solve the u-subproblem and ψ-subproblem, so we next show the conver-
gence of the iterative schemes. We postpone its proof to Appendix A.

Theorem 3.5. The sequence {uk}k≥0 (resp. {ψk}k≥0) generated by the inner iter-

ative scheme (19) (resp. (33)) converges to the solution of the problem (11) (resp.
(12)).

Following the argument for the convergence analysis in [13, 71], we are able
to prove the convergence of the whole algorithm. Note that from the first order
optimality condition, we derive
(35)
2µ∇∗((1− ψ∗)2∇un+1) + ũn+1 = 0, ũn+1 ∈ ∂Hu(u

n+1);

−λ△ψn+1 + 2µ(|∇u∗|2(ψn+1 − 1)) + ψ̃n+1 − λ∇(dn − bn) = 0, ψ̃n+1 ∈ ∂Hψ(ψ
n+1);

pn+1 + λ(dn+1 −∇ψn+1 − bn) = 0, pn+1 ∈ ∂|dn+1|;

bn+1 = bn + (∇ψn+1 − dn+1).

with (u∗, ψ∗) being the pair of minimizers of the subproblems (11)-(12), and

Hu(u
n+1) =

ν

2
‖un+1 − I‖2, Hψ(ψ

n+1) =
r

2
‖ψn+1 − q‖2.

Theorem 3.6. Let (u∗, ψ∗) be the pair of minimizers of the subproblems (11)-(12).
Given ω1, ω2 > 0 in the alternating split Bregman iteration scheme, we have

lim
n→+∞

F(ψn) = F(ψ∗), lim
n→+∞

R(un) = R(u∗).(36)

Moreover, if the pair of minimizers is unique, we get

lim
n→∞

‖ψn − ψ∗‖ = 0, lim
n→∞

‖un − u∗‖ = 0.(37)

We provide the proof in Appendix B. For the Proximity algorithm, we can also
get the convergence theorem in the same way as Theorem 3.6, so we omit the details.

4. Numerical experiments. In this section, we provide ample numerical results
to show the performance of the proposed model and algorithms from various per-
spectives, and to compare with the relevant methods.

4.1. Convergence test. In the first experiment, we consider extraction of simple
open or closed edges from images polluted by small Gaussian noise (see Figure 2 (a)),
and intend to show that the level-set function ψ converges to the indictor function of
the narrow band around the targeted edge. We see that with a reasonable number of
iterations, ψn converges to the expected indicator function, from which we identify
the open or closed edges.

4.2. Algorithm for Ambrosio and Tortorelli model. As aforementioned, our
approach shares certain similarity with the approach by Ambrosio and Tortorelli
(AT). Hence, we feel compelled to make a comparison. Many algorithms are pro-
posed to solve the model (9) (see e.g., [12]).
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(a) Given image (b) Edge-SB (c) ψ-SB (d) Edge-
Proximity

(e) ψ-Proximity

Figure 2. Convergence of the level-set function ψ. (a) Input noisy
image (with Gaussian noise: σ = 0.01); (b) Edge segmented by SB
algorithm with 80 iterations; (c) ψ-profile obtained by SB algorithm
with 80 iterations. (d) Edge segmented by Proximity algorithm with
300 iterations; (e) ψ profile obtained by Proximity algorithm with 300
iterations. The parameters µ = 100, ν = 10, ω1 = 5× 10−4, r = 100, τ =
1 and λ = 0.01, ω2 = 1 in SB algorithm and α = 0.01, β = 0.01 in
Proximity algorithm, respectively. The inner iteration for u is set to be
J = 3.

The Euler-Lagrange equations of the AT model (9) read

(38)



























u =
2µ

ν
div

(

(v2 + oǫ)∇u
)

+ I, in Ω,

v
( 1

4ǫ
+ µ|∇u|2

)

= ǫ∆v +
1

4ǫ
, in Ω,

∂u

∂n
=
∂v

∂n
= 0, on ∂Ω.

As before, we use the fixed-point iterative method to solve this system (see
Subsection 3.1). More precisely, we solve u by the iterative scheme:
(39)

un+1
i,j =

uni,j + ω3

(

νIi,j + 2µ[CEu
n
i,j+1 + CWu

n+1
i,j−1 + CNu

n+1
i−1,j + CSu

n
i+1,j ]

)

1 + ω3

(

2µ(CE + CW + CN + CS) + ν
) ,

where ω3 > 0 is the relaxation factor and

CE = (vn)2i,j+1 + oǫ, CW = (vn)2i,j−1 + oǫ, CN = (vn)2i−1,j + oǫ, CS = (vn)2i+1,j + oǫ.

We solve v by the fixed-point iteration:

(40) vn+1
i,j =

vni,j + ω4

(

1
4ǫ + ǫ(vni+1,j + vn+1

i−1,j + vn+1
i,j−1 + vni,j+1)

)

1 + ω4(
1
4ǫ + 2µ|∇un+1

i,j |2 + 4ǫ)
,

where ω4 > 0 is the relaxation factor. Now, we present full algorithm as follows.

AT Algorithm

1. Initialization: set oǫ = ǫp̂(p̂ > 1), and input u0, v0, µ, ν, p̂, ǫ, ω3, ω4.
2. For n = 0, 1, · · · ,

(i) Update un+1 by (39);
(ii) Update vn+1 by (40).

3. Endfor till some stopping rule meets.
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4.3. Comparison. Next, we compare the following four algorithms: AT algorithm
stated above, the Canny edge detector [15] (based on the code “edge(I,‘canny’,THR-
ESH)” in Matlab), the Proximity algorithm and the split Bregman (SB) algorithm.

Here, we set the stopping rule by fixed numbers of iteration (e.g., Figure 3) or
using the relative error (e.g., Figure 7)

(41) El1(u
n+1, un) := ‖un+1 − un‖ ≤ η,

where ‖ψ‖ =
∑

|ψi|, and the summation is over all the pixels, for a prescribed
tolerance η > 0. The initial value u0 is set to be the noisy image I and ψ0 is set
to be a null matrix, since most of ψ values are 0 as a result. For simplicity, we let
ω3 = ω4 = ω2 in AT algorithm. The choice of the parameters are specified in the
captions of the figures.

(a) Original image (b) Canny (c) AT (d) Proximity (e) SB

(f) Original image (g) Canny (h) AT (i) Proximity (j) SB

Figure 3. Comparisons of four algorithms for clean images. Column
1: the original images; Column 2: edge detected by Canny method;
Column 3: edge detected by AT algorithm with 100 iterations; Column
4: edge detected by Proximity algorithm with 100 iterations; Column 5:
edge detected by SB algorithm with 50 iterations. From the numerical
results, we can get Proximity algorithm and SB algorithm produce better
results than the other two algorithms.

In the second experiments, we test two real clean images (see Figure 3 (a) and
Figure 3 (f)), and generally choose the same parameters in Proximity algorithm,
SB algorithm and AT algorithm with

µ = 100, ν = 10, ω1 = 5× 10−4, r = 100, η = 1.0e− 4

and the parameters λ = 0.01, ω2 = 1, τ = 1 in SB algorithm, ǫ = 0.01, p̂ = 2 in
AT algorithm and α = 0.01, β = 0.01, τ = 1 in Proximity algorithm, respectively.
We present in Figure 3 the input images and the results detected by four different
algorithms. We observe from Figure 3 that Proximity algorithm and SB algorithm
outperform the Canny method and AT algorithm. The proposed two algorithms
are able to detect all the meaningful edges.

In the third experiments, we turn to the comparison of four algorithms for the
noisy images in Figure 4 (a) and Figure 4 (f) (small Gaussian noise with σ = 0.01)
and Figure 4 (k) and Figure 4 (p) (large Gaussian noise with σ = 0.04), respectively.
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In this situation, solving u equation usually not only need one iteration in order to
smooth the noisy image. Here, we apply 2 iterations to solve u equation for Gaussian
noise with σ = 0.01, while 3 iterations for Gaussian noise with σ = 0.04. Here, τ
is set to be 0.05. We choose the same parameters as the previous example except
λ = 0.001, and present in Figure 4 the original images and the detected results
obtained by four different algorithms. We observe from Figure 4 (a) -4 (j) that
when the noise level is low, all algorithms produce satisfactory results. However,
when we increase the level of noise, Canny method fails to find the correct edges.
The other three algorithms lead to acceptable results, but Proximity algorithm and
SB algorithm yield better results and AT algorithm smoothes some details of the
edge.

In the fourth experiments, we also compared our algorithm with another wholly
different algorithm in [34]. B. Llanas et al. [34] proposed an Edge Detection by
Adaptive Splitting (EDAS-d with d = 1, 2) algorithm to approximate the jump
discontinuity set of functions defined on subsets of Rd, based on adaptive splitting of
the domain of the function guided by the value of an average integral. The algorithm
is easy to compute some integrals and no need to solve any partial differential
equation. The algorithm requires the following positive real parameters:

• E1: maximum local error of the approximant L and detection threshold.
• E2: the approximation error of the points in jump discontinuity set ΓJ and

stopping criterion.
• E3: the minimum magnitude of jump reported.
• E4: exploration parameter.
• E5: adaptivity of cubature formulas parameter.

We have applied EDAS-1 algorithm for three images: the “line” image (see Figure
2 (a)), cameraman image (see Figure 4 (a)), kitten image (see Figure 9 (a)). Figure
5 shows the obtained edges with

E1 = 1.0e− 3, E2 = 1.0e− 7, E4 = 10, E5 = 10, E3 = 200,

for Figure 5 (c), and E3 = 25 for the other images. The parameter E3 significantly
affects the accuracy of edge detection. The choice of larger E3 might not be able
to detect some edges. We notice that some pixels of some edge are missed out
sometimes by EDAS-1 algorithm (which has been also pointed out in [34]). For the
noisy line image (see Figure 3 (a)), Figure 5 (c) displays some spurious edges.

4.4. Sensitivity study of the parameters. Here we show some basic guides to
set these parameters in SB algorithm and Proximity algorithm. Firstly the results
are not so sensitive for the initial values u0 and v0 which can be set to be any
constant values between zero and one. But different initial values exactly impact the
iterative times with different iterations, which will be described in the forthcoming
subsection.

Secondly, a smaller value of µ will have less of a smoothing effect in the restored
image and exist more details in the resulting edge detection image, while a larger
µ will have a greater smoothing effect in the restored image. Notice that ν has the
opposite effects compared with µ. Large µ/ν yields a blurry, over-smoothed restored
image, while small µ/ν corresponds to very little noise removal. Thus usually we
keep optimal µ/ν value. The threshold T ∈ (0, 1) is set to distinguish edge points
and non-edge points clearly. Larger T may miss some tiny edges, while small one
will make the edges look noisy. Usually, T is set to be 0.5 for small noise, while
0.8 for large noise. If the parameter τ is larger than 1 especially for noisy image,
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(a) Noisy image (b) Canny (c) AT (d) Proximity (e) SB

(f) Noisy image (g) Canny (h) AT (i) Proximity (j) SB

(k) Noisy image (l) Canny (m) AT (n) Proximity (o) SB

(p) Noisy image (q) Canny (r) AT (s) Proximity (t) SB

Figure 4. Comparisons of four algorithms for noisy images. Column
1: the original images; Column 2: edge detected by Canny method; Col-
umn 3: edge detected by AT algorithm; Column 4: edge detected by
Proximity algorithm; Column 5: edge detected by SB algorithm with 50
iterations. Row 1 and Row 2: T = 0.5, τ = 0.05, λ = 0.001, 100 itera-
tions; Row 3 and Row 4: T = 0.8, τ = 0.05, λ = 0.001, 200 iterations.
Proximity algorithm and SB algorithm produce better results than the
other two algorithms.

the detected edges will be noisy. Thus, the parameter τ usually needs to be smaller
than 1. The penalty parameter r usually is set to be large, since sufficiently large r
means that (10) converges to (8). The larger λ implies smoother restored image and
simpler edges with losing tiny edges. The relaxation parameter ω1, ω2 usually are
set to be smaller than 1. Large ω1, ω2 values will speed up the convergence process.
The obtained results depend mildly on α and β. In the following subsections, we will
especially discuss several different parameters and show our model and algorithms
are robust and effective.
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(a) (b) (c)

Figure 5. Results obtained by EDAS-1 algorithm [34] with E1 =
1.0e− 3, E2 = 1.0e− 7, E3 = 25, E4 = 10, E5 = 10.

4.5. Selection of the initial values u0 and v0. In this subsection, we provide
some directions into the selection of the initial values u0 and v0. The initial values
impacts the number of iterations, computational time, and detected results.

In Figure 6, we test two real clean images (see Figure 3 (a) and Figure 3 (f)) by
Proximity algorithm and SB algorithm with different u0 and v0 and fix the other
parameters as before. Four testing sets are available in Figure 6:

u0 = 0, v0 = 0;u0 = I, v0 = 0.5E;u0 = 0, v0 = 0.5E;u0 = R, v0 = R;

where 0 is zero matrix, E is identity matrix and R means the random value matrix.
The tolerance η = 1.0e− 8, which needs to be small, since it needs more iterations
for some initial values far away from the true solutions, especially for Proximity
algorithm. We see that Proximity algorithm and SB algorithm shows the robustness
for different initial values in Figure 6. We let τ = 0.05 from column 1 to column
3, and 0.5 for random value matrix as initial values in column 4. The results are
shown in Figure 6. We also test the initial values being any constant between 0
and 1, and obtain that both Proximity algorithm and SB algorithm can obtain
satisfactory results. Thus especially for real image with a lot of tiny edges, it is
better to set the initial values u0 = I, v0 = 0, which save the computational time
and get satisfactory detected edges.

4.6. Selection of the parameters α and β. Hereafter, we provide some insights
into the selection of parameters α and β. We test Proximity algorithm with different
α and β in Figure 7 (a) and Figure 7 (f). We fix the other parameters as before,
but choose α, β ranging from 0.01 to 0.5. We see that Proximity algorithm enjoys
a similar performance in these tests.

4.7. Selection of the parameters µ and ν. Now, we provide some insights into
the selection of parameters µ and ν. We test SB algorithm with different µ and ν in
Figure 8 (a) and Figure 8 (f). Since the parameter µ/ν impacts the denoised effects,
large µ/ν yields a blurry, oversmoothed restored image, and small µ/ν corresponds
to very little noise removal. We fix the other parameters as before, but choose µ
ranging from 200 to 1000 and ν ranging from 0.1 to 50. We see that SB algorithm
enjoys a similar performance in these tests.

4.8. Some more tests. We next test more images by using the Proximity algo-
rithm and SB algorithm in Figure 9. In these tests, both algorithms are terminated
with 100 iterations. We refer to the caption of Figure 9 for the choices of the pa-
rameters of these two algorithms. It is seen that both the two algorithms yield good
results.
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(a) u0 = 0, v0 = 0 (b) u0 = I, v0 = 0.5E (c) u0 = 0, v0 = 0.5E (d) u0 = R, v0 = R

(e) u0 = 0, v0 = 0 (f) u0 = I, v0 = 0.5E (g) u0 = 0, v0 = 0.5E (h) u0 = R, v0 = R

Figure 6. Results obtained by Proximity algorithm and SB algorithm
with different u0 and v0. Row 1: SB algorithm. Row 2: Proxim-
ity algorithm. Column 1: u0 = 0, v0 = 0 and 400 iterations for
SB algorithm, and 1000 iterations for Proximity algorithm; Column 2:
u0 = I, v0 = 0.5E and 100 iterations for SB algorithm, and 1000 it-
erations for Proximity algorithm; Column 3: u0 = 0, v0 = 0.5E and
400 iterations for SB algorithm, and 3000 iterations for Proximity algo-
rithm; Column 4: u0 = R, v0 = R, τ = 0.5 and 1000 iterations for SB
algorithm, and 8500 iterations for Proximity algorithm.

(a) α = 0.1 (b) α = 0.05 (c) α = 0.5

(d) β = 0.1 (e) β = 0.05 (f) β = 0.5

Figure 7. Results obtained by Proximity algorithm with different α
and β. Row 1: results obtained with different α; Row 2: results obtained
with different β. We indicate the value of α and β.

Although the Canny detector is not very desirable for noisy images, the detected
edges are usually acceptable for clean images. In practice, a pre-smoothing of
the noisy image oftentimes favours the Canny method. Cai et al. [14] proposed a
two-stage segmentation algorithm for a convex variant of the Mumford-Shah model,
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(a) µ = 200 (b) µ = 1000 (c) µ = 500

(d) ν = 1 (e) ν = 0.1 (f) ν = 50

Figure 8. Results obtained by SB algorithm with different µ and ν.
Row 1: results obtained with different µ; Row 2: results obtained with
different ν. We indicate the value of µ and ν.

(a) Original image (b) Proximity (c) SB

(d) Original image (e) Proximity (f) SB

(g) Original image (h) Proximity (i) SB

Figure 9. Results obtained by Proximity algorithm and SB algorithm.
In the computation, we take µ = 100, ν = 10, r = 100, λ = 0.01, α =
0.1, β = 0.1, τ = 0.05. Both Proximity algorithm and SB algorithm can
produce satisfactory results.

which incorporated with smoothing and thresholding. Here, we adopt the smoothing
step in [14] and then use Canny detector. In Figure 10, we output the edges with
µ = 5;σ = 2; k = 4;λ = 100, for the images in Figure 2 (a), Figure 4 (a) and Figure
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4 (f). We see that better detection can be obtained from our approach (see, e.g.,
Figure 4).

(a) (b) (c)

Figure 10. Results obtained by the algorithm in Cai et al. [14] with
µ = 5;σ = 2; k = 4;λ = 100.

5. Pretreatment before edge detection. In order to improve the accuracy of
edges and accelerate the computation speed, coupled pretreatments are carried
out before proceeding the above model (8). Similarly, a eight direction box spline
tight frame with noise removal before edge detection is constructed in [28]. In the
following, we show the coupled pretreatments including two steps: first to remove
noise from noisy images, then to locate non-edge pixels through hard thresholding
the norm of gradients.

Given a noisy image I, we first apply the split Bregman method [62, 27] to solve
the ROF model [51]:

(42) µ

∫

Ω

|∇u|dx+
ν

2

∫

Ω

(u− I)2dx,

which yields a denoised (i.e., pre-smoothed) image.
Then we set a threshold value ζ to simply distinguish the non-edge pixels for the

pre-smoothed image. That is to say, if the gradient of one pixel is less than the
threshold value ζ, set the pixel to be a non-edge pixel, i.e., ψ = 0. The pretreatment
will save the computation since the ψ values of these pixels will maintain unchanged
in the remaining computational process. Thus how to choose the value of ζ is
important. On the one hand, a big threshold leads to edges loss. But on the other
hand, a small threshold increases false edges. In all the experiments, we let the
threshold value ζ = 0.01.

At last, we just need to proceed the minimization model (8) in Section 2 to
recalculate the ψ values of the remaining pixels. In our experiments, we let µ =
100, ν = 1000, η = 1.0e − 6, τ = 1 for the experiments in Figure 11. Here is the
pretreatment split Bregman (Pre-SB) algorithm:

Pretreatment Split Bregman Algorithm

1. Pre-smooth the noisy image.
2. Compute the gradient for each pixel of the pre-smoothed image.
3. Fix ψ = 0 on these non-edge pixels whose gradient magnitudes are less than

a threshold value ζ.
4. Compute the remaining pixels using Split Bregman Algorithm.

Using the Proximity algorithm to solve the model (8), we also can get the pre-
treatment proximity algorithm (Pre-Proximity) as follows:
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Pretreatment Proximity Algorithm

1. Pre-smooth the noisy image.
2. Compute the gradient for each pixel of the pre-smoothed image.
3. Fix ψ = 0 on these non-edge pixels whose gradient magnitudes are less than

a threshold value ζ.
4. Compute the remaining pixels using Proximity Algorithm.

(a) Pre-SB (b) ψ-Pre-SB (c) Pre-Proximity

(d) Pre-SB (e) Pre-Proximity (f) Pre-SB

(g) Pre-SB (h) Pre-SB (i) Pre-SB

Figure 11. Results obtained by Pre-Proximity algorithm and Pre-SB
algorithm for noisy images (Figure 2 (a), Figure 4 (a) and Figure 4 (f)).
In the computation, we take µ = 100, ν = 1000, r = 100, λ = 0.01, α =
0.1, β = 0.1, η = 1.0e − 6, τ = 1. Last row: edges with 5000 iterations.
Both Pre-Proximity and Pre-SB algorithm can produce satisfactory re-

sults.

Figure 11 show the results for the noisy images in Figure 4 (a) and Figure 4 (f)
(corrupted by Gaussian noise with σ = 0.01). Since ψ are fixed to be 0 on non-edge
pixels in the third step of Pre-SB algorithm, the edges in Figure 11 are clear, not
like the noisy edge images in Figure 4 where ψ are not zero on the non-edge pixels.
To show that the convergence of Pre-SB algorithm is better than SB algorithm,
we have several tests (see the last row in Figure 11) with 5000 iterations. In this
situation, the stopping tolerance η is much less than 1.0e− 16. Of course, the tiny
images sometimes disappear with too many iterations (see Figure 11 (i)).

To show the coupled pretreatments indeed accelerate the computation speed,
we will compare the iterations and computation times in Table 1. For Pre-SB
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SB Pre-SB Proximity Pre-Proximity
time iterations time iterations time iterations time iterations

Figure 3 (a) 3.56 80 2.38 57 2.45 58 2.12 53

Figure 3 (f) 3.93 79 2.57 55 2.41 55 2.32 52

Table 1. Computation time and iterations of the cameraman
and baby images.

algorithm and Pre-Proximity algorithm, satisfactory edges can be gotten by small
µ
ν

which can not denoise noisy image for SB algorithm and Proximity algorithm
and the edges can not be detected. So here we only test the clean images (see
Figure 3 (a) and 3 (f)). Table 1 shows that the computation time and iterations
with µ = 100, ν = 1000, η = 1.0e− 4, τ = 1 and the other parameters are the same
as above. The detected edges are satisfactory and we will not show the results
here. These data show that the coupled pretreatments need less iterations and less
computation times.

6. Extension to color images. Finally, we extend the proposed model and algo-
rithm for edge detection involving color images. To this end, let us denote

I = (Ir, Ig, Ib), u = (ur, ug, ub), ψ = (ψr, ψg, ψb).

Meanwhile, we introduce the multichannel TV (cf. [63, 9, 52]):

TV (ψ) =

∫

Ω

√

∑

i=r,g,b

|∇ψi|2dx.

The counterpart of the model (8) takes the form

min
u,ψ

{

ECL(u,ψ) = µ

∫

Ω

(1−ψ)2|∇u|2dx+
ν

2

∫

Ω

|u− I|2dx+ TV (ψ) +

∫

Ω

|ψ|dx
}

.

Similarly, the algorithm in Section 3 can be straightforwardly extended to this
vectorial setting. Here, we just sketch the split Bregman method for solving ψ. We
start with introducing the new variable:

d = (dr,dg,db) = ∇ψ = (∇ψr,∇ψg,∇ψb),

and apply the split Bregman iteration

(ψn+1,dn+1) = argmin
ψ,d

{

∫

Ω

√

∑

i=r,g,b

|di|2 dx+ µ

∫

Ω

(1−ψ)2|∇u|2dx

+
λ

2

∑

i=r,g,b

∫

Ω

|di −∇ψi − b
n
i |

2dx+

∫

Ω

|q|dx+
r

2

∫

Ω

(q −ψ)2dx
}

,

and
bn+1 = bn +

(

∇ψn+1 − dn+1
)

.

Thus, we can solve ψn+1
i as in (33) with fixed d for each i = r, g, b, respec-

tively. Meanwhile, the solution of dn+1 with fixed ψ can be obtained by the multi-
dimensional shrinkage formula (cf. [69]):

d = max
{

h−
1

λ
, 0
}h1

h
,

where
h1 = ∇ψ + bn, h = |∇ψ + bn|.
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We test the algorithms on the color images with Gaussian noise (σ = 0.04), and
refer to the caption of Figure 12 for the choices of parameters. In the following
experiments, µ is changed to be 200.

Indeed, there has been limited work on edge detection involving color images.
Our proposed model and algorithms provide viable means for such a purpose.

(a) Original image (b) Noisy image (c) SB (d) Pre-SB

(e) Original image (f) Noisy image (g) SB (h) Pre-SB

Figure 12. Results obtained by SB algorithm with the parameters:
µ = 200, ν = 10, r = 100, τ = 1, λ = 1e− 2 and 80 iterations.
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Appendix A. Proof of Theorem 3.5. The proof is motivated by the idea in
[62]. Rewriting the iterative scheme (19) as

[1 + ω1(2µ(CE + CW + CN + CS) + ν)]uk+1
i,j − 2µω1CWu

k+1
i,j−1 − 2µω1CNu

k+1
i−1,j

=uki,j + 2µω1CSu
k
i+1,j + 2µω1CEu

k
i,j+1 + νω1Ii,j ,

(A.43)

where

CE = (1− ψk)2i,j+1, CW = (1− ψk)2i,j−1, CN = (1− ψk)2i−1,j , CS = (1− ψk)2i+1,j .

Thus it can be written as the matrix formula

(A.44) (L+ D́ + Ú)Uk+1 = (E + D̀ + Ù)Uk + I,

where Uk is made up of elements uki,j column-wise, E is identity matrix, the matrix
L is diagonal matrix with

Li,i = 1 + 2ω1µ(CE + CW + CN + CS) + ω1ν

and 0 otherwise, the matrix Ú is lower diagonal matrix with the minor diagonal
element Úi−1,i = 2µω1CW and 0 otherwise, the matrix D́ is upper diagonal matrix
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with the minor diagonal element D́i,i−1 = 2µω1CN and 0 otherwise, the matrix Ù

is lower diagonal matrix with the minor diagonal element Úi−1,i = 2µω1CE and 0

otherwise, the matrix D̀ is upper diagonal matrix with the minor diagonal element
D́i,i−1 = 2µω1CS and 0 otherwise.

Suppose the eigenvalue of the iterative matrix

A = (L+ D́ + Ú)−1(E + D̀ + Ù)

be λ́, thus we have

det(λ́(L+ D́ + Ú)− (E + D̀ + Ù)) = 0.

According to Hadamard theorem, there exists one k, such that

(A.45) |akkλ́| ≤ |λ́|

k−1
∑

j=1

|akj |+

n
∑

j=k+1

|akj |.

That means

λ́[1+2ω1µ(CE +CW +CN +CS)+ω1ν] ≤ λ́2µω1(CW +CS)+1+2µω1(CE +CN ),

which yields

λ́ ≤
1 + 2µω1(CE + CN )

1 + 2ω1µ(CE + CW + CN + CS) + ω1ν − 2µω1(CW + CS)
< 1

because of ω1ν > 0. That implies lim
k→∞

uk = u∗.

The convergence process about ψk follows the same argument as above.

Appendix B. Proof of Theorem 3.6. Let ψ∗ be an exact solution of (12). By
the first order optimality condition, ψ∗ satisfies

(B.1) 2µ|∇u∗|2(ψ∗ − 1) + ∂(TV (ψ∗)) + ψ̃∗ = 0,

with fixed u∗ and ψ̃∗ ∈ ∂Hψ(ψ
∗) = ∂( r2‖ψ

∗− q‖22). Similarly, let u∗ be an arbitrary
exact solution of (11). By the first order optimality condition, u∗ satisfies

(B.2) 2µ∇∗((ψ∗ − 1)2∇u) + ũ∗ = 0,

with fixed ψ∗ and ũ∗ ∈ ∂Hu(u
∗) = ∂( ν2‖u

∗ − I‖22). By the first order optimality
condition, (u∗, ψ∗, b∗, q∗) satisfy
(B.3)















2µ∇∗((1− ψ∗)2∇u∗) + ũ∗ = 0, ũ∗ ∈ ∂Hu(u
∗);

−λ△ψ∗ + 2µ(|∇u∗|2(ψ∗ − 1)) + ψ̃∗ − λ∇(d∗ − b∗) = 0, ψ̃∗ ∈ ∂Hψ(ψ
∗);

p∗ + λ(d∗ −∇ψ∗ − b∗) = 0, p∗ ∈ ∂|d∗|;
b∗ = b∗ + (∇ψ∗ − d∗).

The above equations (B.3) means that (u∗, ψ∗, b∗, q∗) is the fixed point of (35).
Denote the errors by

une = un − u∗, ψne = ψn − ψ∗, ũne = ũn − ũ∗, ψ̃ne = ψ̃n − ψ̃∗,

pne = pn − p∗, bne = bn − b∗,dne = dn − d∗.

Subtracting the second equation of (35) by the second equation of (B.3), we obtain

−λ△ψn+1
e + 2µ(|∇u∗|2(ψn+1 − 1)− (|∇u∗|2)(ψ∗ − 1)) + ψ̃ne − λ∇∗(dne − bne ) = 0.
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Taking the inner product of the left- and right- hand sides with respect to ψn+1
e ,

we have

λ‖∇ψn+1
e ‖2 + 2µ|∇u∗|2‖ψn+1

e ‖2 + 〈ψ̃ne , ψ
n+1
e 〉 − λ〈∇∗(dne − bne ), ψ

n+1
e 〉 = 0.(B.4)

Applying the same technique to the third equation of (35) and the third equation
of (B.3), we obtain

(B.5) 〈pne ,d
n+1
e 〉+ λ‖dn+1

e ‖2 − λ〈dn+1
e ,∇ψn+1

e + bne 〉 = 0.

Summing up (B.4) and (B.5), we get

λ‖∇ψn+1
e ‖2 + 2µ|∇u∗|2‖ψn+1

e ‖2 + 〈ψ̃ne , ψ
n+1
e 〉+ 〈pne ,d

n+1
e 〉

+ λ‖dn+1
e ‖2 − λ〈∇ψn+1

e ,dn+1
e + dne 〉+ λ〈∇ψn+1

e − dn+1
e , bne 〉 = 0.

(B.6)

Furthermore, subtracting the fourth equation of (35) and the fourth equation of
(B.3), we obtain

(B.7) bn+1
e = bne +∇ψn+1

e − dne ,

which leads to

(B.8) ‖bn+1
e ‖2 = ‖bne ‖

2 + ‖∇ψn+1
e − dn+1

e ‖2 + 2〈bne ,∇ψ
n+1
e − dn+1

e 〉.

That is,

(B.9) 〈bne ,∇ψ
n+1
e − dn+1

e 〉 =
1

2
(‖bn+1

e ‖2 − ‖bne ‖
2)−

1

2
‖∇ψn+1

e − dn+1
e ‖2.

Substituting (B.9) into (B.6), we have

λ

2
(‖bne ‖

2 − ‖bn+1
e ‖2) = λ‖∇ψn+1

e ‖2 + 2µ|∇u∗|2‖ψn+1
e ‖2

+ 〈ψ̃ne , ψ
n+1
e 〉+ 〈pne ,d

n+1
e 〉+ λ‖dn+1

e ‖2 − λ〈∇ψn+1
e ,dn+1

e + dne 〉

−
λ

2
‖∇ψn+1

e − dn+1
e ‖2.

(B.10)

Then, by summing the above inequality bilaterally from 0 to N , we obtain

λ

2
(‖b0e‖

2 − ‖bN+1
e ‖2) =2µ

N
∑

n=0

|∇u∗|2‖ψn+1
e ‖2 +

N
∑

n=0

(〈ψ̃ne , ψ
n+1
e 〉+ 〈pne ,d

n+1
e 〉)

+
λ

2

(

N
∑

n=0

‖∇ψn+1
e − dne ‖

2 + ‖dN+1
e ‖2

)

−
λ

2
‖d0e‖

2.

(B.11)

Noting that all terms involved in (B.11) are nonnegative, and the facts 0 ≤ ψ∗ ≤ 1,
| · | and ‖ · ‖2 are convex, we derive that

λ

2

(

‖d0e‖
2 + ‖b0e‖

2
)

≥ 2µ

N
∑

n=0

|∇u∗|2‖ψn+1
e ‖2 +

N
∑

n=0

(〈ψ̃ne , ψ
n+1
e 〉+ 〈pne ,d

n+1
e 〉)

+ λ
(1

2

N
∑

n=0

‖∇ψn+1
e − dne ‖

2 +
1

2
‖dN+1

e ‖2
)

.

(B.12)
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Firstly, (B.12) leads to

(B.13)

N
∑

n=0

|∇u∗|2‖ψn+1
e ‖2 <∞,

which, together with Theorem 3.5, implies

(B.14) lim
n→∞

|∇un|2‖ψn − ψ∗‖2 = 0.

Denote the first term in (12) by

F(ψ) = 2µ

∫

Ω

|∇un|(ψ − 1)2dx.

Thus, using the nonnegativity of the Bregman distance, we have lim
n→∞

B
p∗

ψ

F(·)(ψ
n, ψ∗)

= 0, i.e.,

(B.15) lim
n→∞

(

F(ψn)−F(ψ∗)− 〈|∇un|2(ψ∗ − 1), ψn − ψ∗〉
)

= 0.

Secondly, (B.12) leads to

N
∑

n=0

〈pne ,d
n+1
e 〉 < +∞, so lim

n→∞
〈pne ,d

n+1
e 〉 = 0.

Associating it with the nonnegativity of the Bregman distance (see e.g., [46, 13]),
we obtain

(B.16) lim
n→∞

(

|dn| − |d∗| − 〈dn − d∗,p∗〉
)

= 0.

Thirdly, (B.12) leads also to
∑N
n=0 ‖∇ψ

n+1
e − dne ‖

2 <∞, which means

lim
n→∞

‖∇ψn+1
e − dne ‖

2 = 0.

By ∇ψ∗ = d∗, we have

(B.17) lim
n→∞

‖∇ψn+1 − dn‖ = 0.

Moreover, by the continuous property of | · |, we obtain

(B.18) lim
n→∞

(

|∇ψn| − |∇ψ∗| − 〈∇ψn −∇ψ∗,p∗〉
)

= 0.

Similarly, we have

(B.19) lim
n→∞

(

Hψ(ψ
n)−Hψ(ψ

∗)− 〈ψn − ψ∗, ψ̃∗〉
)

= 0.

Combining (B.15), (B.18), (B.19) and (B.1), we have

(B.20) lim
n→∞

(

F(ψn) + |∇ψn|+Hψ(ψ
n)
)

= F(ψ∗) + |∇ψ∗|+Hψ(ψ
∗).

This gives the first equation in (36). In the similar way as above, by denoting the
first term in (11) be G(u), we have

(B.21) lim
n→∞

(

G(un) +Hu(u
n)
)

= G(u∗) +Hu(u
∗),

where we have used the formula (B.2). This gives the second equation in (36).
Next, we prove the second equation in (37) by assuming that (11) has a unique

solution. The argument is by contradiction. Assume the second equation in (37)
does not hold, there exists a subsequence uni such that ‖uni − u∗‖ > ǫ for some
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ǫ > 0 and for all i. Let c = tu∗ + (1− t)uni with t ∈ (0, 1). By the convexity of R
and u∗ is the unique minimizer of R(u), we have

R(uni) > tR(u∗) + (1− t)R(uni) ≥ R(c) ≥ min{R(u) : ‖u− u∗‖ = ǫ}.

Denote

ū = argmin
u

{R(u) : ‖u− u∗‖ = ǫ}.

By applying the second equation in (37), we have

R(u∗) = lim
i→∞

R(uni) ≥ R(ū) > R(u∗),

which is a contradiction.
The first equation in (37) follows the same arguments as above.
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