
A Fast Emulation-based NoC Prototyping
Framework

Yana E. Krasteva, Francisco Criado, Eduardo de la Torre and Teresa Riesgo
Centro de Electronica Industrial

Universidad Politecnica de Madrid
Email: yana.ekrasteva,eduardo.delatorre,teresa.riesgo{@upm.es}

Abstract—This paper presents an FPGA emulation-based fast
Network on Chip (NoC) prototyping framework, called Dynamic
Reconfigurable NoC (DRNoC) Emulation Platform. The main,
distinguishing, characteristic of this approach is that design ex-
ploration does not requires re-synthesis, accelerating the process.
For this aim, partial reconfiguration capabilities of some state of
the art FPGAs have been developed and applied. The paper
describes all the building elements of the proposed solution:
the used partial reconfiguration approach, the design space
exploration framework itself, and the data measuring system.
Results and a use case are shown.

I. INTRODUCTION

Future Systems on Chip will contain hundreds of hetero-
geneous cores, running at different speeds and voltage levels.
Finding an optimal solution for interconnecting such complex
systems is a great challenge and the required performance can
not be covered by traditional bus-based approaches. Therefore
Networks on Chip (NoCs) have been proposed as a scalable
solution for on chip communication [1][2].
NoCs have rapidly evolved during the last years and a lot of
research effort has been oriented to NoC based SoCs design
and prototyping.
One of the main challenges in NoC design is to find the
optimal NoC solution for a given application. Several meth-
ods and design flows that permit to perform design space
exploration, at different abstraction levels, have been proposed.
Higher abstraction levels permit to rapidly evaluate different
mapping and NoC implementation options without paying the
cost of long simulations. For instance, in [3], a framework
for MPSoC NoC system modeling, simulation and evaluation,
based on System C models is presented. Systems are generated
matching application and platform models. Other frameworks
are based on object-oriented languages, like the presented
in [4], where a C++ library is built on top of SystemC, or
based on the Matlab simulation environment, like [5]. Other
approaches generate NoC topologies getting the application
graph representations or application descriptions as starting
point, using analytical and/or heuristic methods. Examples
of these are SUNMAP [6], based on the Xpipes [7] NoC
generator, which creates topologies modeled in System C, or
in [8], where systems are specified in XML. These approaches
are very suitable for system design early stages as they permit
to have the fastest design space exploration. There are other
HDL or mixed (System C and HDL) solutions for NoC
modeling, like MAIA [9], where NoC parameters are defined

by the user, and NoCGeN [10], where the NoC topology
can be selected. Lower level, VHDL or RTL, permit to have
accurate results, but are more time consuming. Usually, traffic
generators and traffic consumer models that simulate real Core
behavior are used in order to reduce simulation time.
On the other side, there are FPGA based emulation solutions
proposed to drastically reduce the simulation and, therefore,
system evaluation time. For instance, in [11], a HW-SW
FPGA based emulation framework is presented and combined
with the Xpipes environment. Four orders of magnitude of
speedup are reported in that work. Emulation, depending on
the FPGA available area, may permit to test NoCs using
real application cores instead of traffic models. In [12], four
real applications mapped into a NoC and prototyped in an
FPGA are presented. Nevertheless, the main disadvantages of
emulation based solutions are:

1) Synthesis time: every time a system parameter needs
to be changed, the system has to be re-synthesized, re-
placed and re-routed (from here after this process will be
refered simply as synthesis). This is not a real problem if
a system has to be synthetized once, but if the goal is to
come up with the optimal system implementation, a lot
of combinations have to be synthetized and emulated.
An approach to overcome the synthesis problem is to
have all system options implemented in the FPGA and
switch between them, but this consumes a considerable
amount of FPGA area.

2) The available FPGA area permits only to emulate rela-
tively small systems. In [13] a solution for this problem
is proposed. There, sequentially, parts of a parallel
system are loaded into an FPGA. Speedups of 80 to 300
in comparison with System C simulation are reported.
Anyhow, each new FPGA generation has more logic
available and thus permits to emulate bigger systems.

3) Data extraction, measured from the FPGA: the FPGA
has much more limited resources in this sense in com-
parison with a SW based simulation.

Some state of the art FPGAs permit to achieve higher flexi-
bility by including partial reconfiguration capabilities, which
allows modifying part of a system mapped in the FPGA
while the rest, non reconfigured part, is kept active. Partial
reconfiguration for FPGA NoC based systems is used in [14]
and in [15]. These papers present two different solutions for

RRM – Reconfigurable Routing
Modules

RNI – Reconfigurable Network
Interface

RE RE

RNIRNI

RE

RNI

RE RE

RNIRNI

RE

RNI

Routing
Channels

RRM RRM RRM

RRM RRMRRM

Fig. 1. DRNoC Architecture

dynamical insertion and removal of routers and cores on a
MESH based NoC. Also, partial reconfiguration at communi-
cation level has been evaluated to be used for changing routers’
FIFO size in [16].
This paper goes further and presents a complete fast NoC
emulation framework based on different types of partial recon-
figuration. The emulation framework permits to reduce design
time as it permits to build systems using reusable hardware
cores (placed and routed cores, partial configuration files) and
therefore re-synthesis is not required and problems related to
the extraction of data from the FPGA are attenuated. The rest
of the paper is structured as follows: in section II, the partial
reconfiguration approach is described. The work methodology
is explained with a use case in section III, while the entire
emulation framework is shown in section IV. Results and a
use case are included in section V and finally conclusions can
be found in section VI.

II. PARTIAL RECONFIGURATION

In order to create partially reconfigurable systems, Virtual
Architectures (VAs) have to be defined. VAs are structural
divisions of FPGA logic resources along with the internal
communication of the different regions that permit to design
and run partially reconfigurable systems. VAs structural di-
visions can be based on two different models: 1D models,
where a single reconfigurable module is allocated in an area
that spans the entire FPGA heigh, and 2D models, where two
or more reconfigurable blocks can be allocated in the same
FPGA column.
According to the Xilinx solution for partial reconfiguration
[17] and [18], for Virtex II based FPGAs, these areas have
to span the entire FPGA height or to be block based but
surrounded by fixed logic. Therefore, only 1D models can be
defined. Some examples of NoC based partially reconfigurable
systems that follow the Xilinx approach are [19] and [20].
Differently 2D VAs are more naturally mapped in latest Virtex
4 and Virtex 5 FPGAs, where block partial reconfiguration is

enabled (a block is composed of 256 CLBs).
The selected platform for the DRNoC emulation system is a
Virtex II based proprietary board specially created for partially
reconfigurable systems design. This board has been selected
due to its flexibility and the availability of proprietary support
software. On top of the FPGA, a 2D virtual architecture
has been defined and mapped. This is possible due to the
architecture design method, presented in [21] and the available
bitstream manipulation tools presented in [22].
The proposed architecture for the reconfigurable system (the
key element of the emulation platform), called Dynamic
Reconfigurable NoC, can be seen in Figure 1. It is a MESH
of Reconfigurable Elements (RE) that are connected through a
Reconfiguration Network Interface (RNI) to a Reconfigurable
Routing Module (RRM). Each RRM is connected to all its
neighboring RRMs with short, hard wired and position fixed
communication channels, that are composed of an integer
number of wires. Cores are allocated in REs, RNI allocate
network interfaces (NIs), and routers are mapped to RRMs.
Each router allocated in an RRM can use any amount of
communication channels and also any amount of channel
wires. Even more, if there is enough room, two independent
routers can share the same RRM. This, along with the diagonal
mesh-like channel interconnection network, permits to map
different NoC topologies (star, mesh or a custom one, etc). IP
cores, or traffic generator models, as well as routers occupy
different areas, therefore REs can be grouped if it is necessary.
In this case, the architecture hard wire connection links are
kept.
To map the DRNoC model to the selected FPGA first, the
regularity of the internal FPGA logic distribution needs to be
taken into account for an optimized FPGA resource partition.
Those FPGA areas that perturb the structure regularity are
reserved for fixed (non reconfigurable) area of the FPGA. The
remaining FPGA regular area is divided into slots that are used
to map REs, RNIs and RRMs.
The target board has an XC2V3000 that has 56 CLB columns
and 64 rows and the amount of slots that can be defined for
resulting a reasonable slot size is 2x4, see the upper part of
Figure 2. A direct mapping of the model is to assign one slot to
each DRNoC component, thus three slots will be needed, i.e.
one for RRM , one for RNI and one for hard cores allocation,
resulting in a one column implementation. Therefore RNIs
and hard cores have been grouped in one slot marked with S
in the bottom part of Figure 2 and RRM use the next slot,
marked with R in the bottom part of Figure 2. The resulting
DRNoC is 2x2, where each slot/RRM size is 24x12 CLB and
the implemented channel size is 40 bits in each direction (80
wires in total).
Finally, it is important to remark the scalability of the solution,
by the fact that a 4x4 DRNoC with the same channels size
has been successfully mapped to a XC2V8000 FPGA.

Regarding the supported reconfigurability, both intra-core
and inter-core partial reconfiguration schemes have been ap-
plied. On one side, intra-core reconfiguration permits chang-
ing only a certain parameter of a core, NI or router. For

S:01 R:01 S:11 R:11

S:00 R:00 S:10 R:10

Slot

Fi
xe

d
 A

re
a

Slot

Access Points Communication channels

Fig. 2. DRNoC Structure mapped on an XC2V3000

instance, the system supports changes in core target/source
node addresses, to change routers routing strategy, or modify
router buffers size. On the other side, inter-core reconfiguration
is used to define the communication strategy, which permits
setting NoC routers type, RE feed-through and/or NoC phit
size.
These reconfiguration schemes are the core of the emulation
workflow presented in the next section.

III. EMULATION WORKFLOW

A general view of the proposed methodology for NoCs
design space exploration is presented in Figure 3. General
aspects this flow are similar to other flows, like [23], but here
partial reconfiguration is exploited and the NoC to be emulated
is intended to be built entirely by reusable hard cores (already
placed and routed partial configuration files) available in a
hard core library. The flow begins with a mapped application
communication task graph (CTG), where application tasks
are assigned to system cores. For each node of the CTG, a
suitable DRNoC hard core (traffic receiver or traffic generator)
is assigned if they are available in the hard core library or
generated if they are not available. This step is previous to
the emulation process. After that, in the first step of the
emulation flow, the CTG is mapped to the available emulation
systems FPGA DRNoC architecture (CTG nodes are assigned
to slots) and NoC parameters are defined (NIs and routers
are mapped to slots/RNIs and RRMs). From here after, each
CTG to DRNoC mapping with assigned NoC parameters will
be referred as a configuration. Also, in this step, measuring
points are defined in selecting the tracked nodes. Once all
configurations have been setup, the emulation starts. For each
DRNoC configuration, hard cores from the library are arranged
in an FPGA bitstream and downloaded in the FPGA. All
configurations are emulated consecutively, and the results
related to each measuring point are saved. After this, results
can be plotted, analyzed by a user and, if needed, new DRNoC
configurations can be added with modified CTG to DRNoC
mappings and/or new communication parameters assignment.

lib

1 3

5

2

6
4

1 3

5

2

6 4

Run emulation and take results

Evaluate results (manual)

Optimal solution Found

Select/modify communication scheme and

map CTG to DRNoC 2D VA (manual)

Are requirements

covered ? (manual)

Prepare CTG

Partially reconfigure the FPGA

Select and prepare new configuration

Fig. 3. Emulation workflow diagram

This process continues until the best communication scheme
and CTG mapping has been found.
Base on the presented working flow, an entire emulation
platform have been created and is presented in the next section.

IV. THE DRNOC EMULATION PLATFORM

The Emulation platform is composed of three parts: i) the
DRNoC design resources along with an associated SW tool
for model generation, ii) the measuring system and iii) a SW
tool for controlling the emulation process. Each element is
described in the following subsections.

A. DRNoC - Dynamically Reconfigurable NoC

The distinguishing characteristic of DRNoC is that it is
prepared for being mapped to partially reconfigurable systems,
like the one presented in section II. A set of models in VHDL
at behavioral or RTL level created for building and testing
different DRNoCs has been created. Available resources are:

1) Routers. Two types of routers have been designed. One
based on the HERMES network routers [24], but im-
plementing FIFOs in FPGA BRAMs and with different
packet organization. These routers use XY routing and
permit to build mesh NoCs. The second type of routers
are based on table routing that permits to create irregular
topologies of up to 9 connections.

2) Network interfaces. IP cores communicate with network
interfaces using s simple AMBA APB protocol. AMBA
has been selected because it requires less hard wires
in comparison with other protocols, like OCP. Network
interfaces are in charge of data packetizing. Two types
of network packets can be generated depending on the
NoC router: XY or table based.

3) Traffic generators(TGs). Two type of traffic generator
have been implemented so far: i) simple traffic gen-

erators that generate regular traffic and ii) burst traffic
generators based on Pareto ON/OFF scheme [25]. TGs
can generate traffic to a single traffic receiver or to
several traffic receivers.

4) Traffic receivers(TR). These modules implement the
DRNoC platform measuring system. Two types of traffic
receivers can be distinguished, depending on the mea-
suring scheme: either to perform online measuring, or
to keep only max/min values into the internal measur-
ing registers. Each TR has one or several groups of
measuring registers. Each register of a measuring group
is related to a parameter to be measured: latency, the
time a packet has been in the NoC and amount of
transmitted data. Each group of measuring registers track
data related to one TG, although there may be more than
one register set. This permits to perform more detailed
analysis of the system. Taking advantage of intra-core
reconfiguration, it is possible to use TRs that track data
from a single TG and then change the associated node
without the need of having special logic for accessing
these registers.

A new SW tool, called DRNoCGEN, has been designed.
It uses a set of user defined parameters for automatically
generating DRNoC models . The main difference of this tool
compared to other solutions is that the generated models,
apart from being synthesizable, are directly mapped on
reconfigurable elements, like the described 2D architecture.
The virtual architecture definition is used as a template
where a user selects and maps a DRNoC. For instance a
user can map a 2x2 DRNoC mesh based on XY routing or
a star DRNoC based on table routing on a defined 8x8 2D
VA. DRNoCGEN also permits to define new architecture
templates. The output of DRNoCGEN is a set of VHDL files
that include the selected NoC routers, NIs TGs and TRs, as
well as a top design that includes the instantiation of all the
needed communication macros (VA related user constraints
file are not automatically generated till now).

B. DRNoC Measuring System

The measuring system is distributed in two platforms:
measuring points, included in the DRNoC FPGA and the
measuring system buffers, based on an XUP board with an
XC2VP30 FPGA.
Following [26], the system measuring points (a group of
measuring registers) are allocated in TRs and in TRs NIs.
Data is extracted from measuring points using the AMBA APB
interfaces. In the current approach measuring in routers is not
foreseen in order to save area.
The pulled data is buffered in a FIFO allocated in the FPGA
area of the XC2VP30 and connected as a custom peripheral to
the on-chip Power PC (PPC). The PPC is used to transmit data
from the buffer FIFO and send it to a Host PC, through a serial
port, and also, to control the DRNOC emulation process (run,
stop, reset, reconfigure). Control commands are sent from the
Host PC when a SW control is defined, or are automatically

controlled by the HW when a HW control is defined. In
the second case, when the system emulation is finished, an
interrupt to the PPC is generated and this activates the Host
PC SW, described next.
The XUP based platform is needed to isolate as much as
possible the measuring system from the proper NoC and to
leave the DRNoC FPGA as regular as possible.

C. DRNoC Emulation SW

The SW tool running on the host PC is in charge of
controlling the entire emulation process and the design space
exploration. The SW includes a GUI and its main features are
listed next:

1) To define DRNoC configurations and measuring points.
2) To control system configurations, reconfigure the FPGA

and communicate with the DRNoC measuring system.
Partial reconfiguration is used to pass from one configu-
ration to other whenever it is possible. For this purpose,
the hard core reallocation tool mentioned in section II
has been integrated in the DRNoC emulation SW.

3) To collect, organize and plot measured data for each
measuring point.

The tool works only with hard cores (FPGA partial configura-
tion files) that are held in a configurations library. A hard core
can be a NoC router, a NI, a TG or a TR. Additionally, smaller
partial configuration files are automatically generated from
hard cores for intra-core reconfiguration. The configuration
library can be expanded with other hard cores, it is not limited
to just one core per element type.
There is not an automated connection between the presented
tool for DRNoCGEN and this one. If a new hard core is going
to be added to the library, this process has to be done manually.
For including a new router, for instance, first a DRNoC with
the proper options has to be generated with the DRNoCGEN
tool. The generated DRNoC includes more than a router, apart
from the TGs, TRs and NIs. For having fast synthesis and since
only one router is needed, a router is selected and isolated.
The code generated by DRNoCGEN is modular and well
structured, therefore this step is quite easy, only the top and the
user constraints file have to be modified (all but the router and
the communication macros have to be commented). Second, a
partial configuration file containing only the router hard core
has to be generated. This can be done using the conventional
Xilinx design Flow and the tool BITPOS [22], or using the
Plan Ahead tool provided by Xilinx included in its partial
reconfigurable flow [18]. In both cases, synthesis times are
drastically reduced in comparison to synthesizing the entire
system.
The system permits to track the tested DRNoC configuration
and the obtained results. The user can also select which
configurations to be included in the emulation process.

V. RESULTS AND USE CASE

Area requirements of some TR implementations are pre-
sented in Table I, including TRs of both available types: one

TABLE I
TR AREA REQUIREMENTS

TR type Slice FF LUTs

TR-Single-online 286 290 395
TR-Single 285 218 528

TR-2 489 350 781
TR-4 810 613 1293
TR-8 1571 1120 2522

TABLE II
ROUTER AREA REQUIREMENTS

Router type Num ports Slice FF LUTs BRAMs

HERMES 3 876 882 929 0
HERMES 5 1452 1460 1547 0

DRNoC XY 3 261 183 505 3
DRNoC XY 5 385 296 808 5

RRM01
P2P link

Slot01
Node2
(TG)

RRM11
Router

Slot00
Node0
(TG)

Slot10
Node1
(TG)

Slot11
Node3
(TR)

RRM00
P2P link

RRM10
P2P link

Communication
macros

Fig. 4. STAR DRNoC

that follows the online measuring scheme, marked as TR-
Single-online, and the remaining TRs, that follow a max/min
value scheme, with different amount of measuring blocks (one
measuring block for every associated TG). For instance, TR-4
tracks data from 4 TGs.
It can be noticed that the area needed for a TR increases
linearly with the amount of TGs to be tracked. Therefore it is
more suitable to have only simple TRs implemented and run
the emulation as much times as needed, changing the tracked
TG using intra-core reconfiguration.
Regarding routers area overhead, a comparison of the original

HERMES routers with buffer depth of 32 and flit size of 8 bits,
and the DRNoC XY routers with the buffers implemented in
FPGA BRAMs, also with flit size 8 are presented in table II.
Regarding router latency, additional logic has been included in
the buffers control for maintaining the original router latency.
For measuring the performance of the entire emulation system,
an example DRNoC implementation on top of reconfigurable
system has been defined. In the currently available FPGA an

XC2V3000, a 2x2 DRNoC architecture has been defined as is
the one used for the use cases presented in this section.
The use case supposes that there is an application where three
sources try to access a common media (the application CTG
has four nodes). Following the emulation flow, each node has
been modelled with DRNoC design resources. Uniform traffic
generator has been used for node0, node1 and node2, while the
common media has been modelled as a traffic receiver node
node3) that includes a measuring point. Two configurations
have been defined for this application, both with the same
mapping to the DRNoC architecture (node0 to slot00, node1 to
slot01, node2 to slot10 and node3 to slot11), but with different
NoC parameters. The first one is a 2x2 mesh composed of 4
DRNoC XY routers and the second is a star NoC, composed of
3 point to point (P2P) links and one router. As an example, the
star topology mapping to DRNoC is presented in Figure 4. In
the same figure, the used feed-throughs for the P2P connection
allocated in RRM00, RRM01 and RRM10 can be seen.
Each configuration (mesh and star) transmits 100 packets of
320 bits each. For the mesh topology, emulation time is 1
ms for each desired measuring point tracked TG, while for
the STAR it is 0,8 ms. This time is measured from the
start command to run the emulation process until the end of
the emulation in the FPGA. For simulating the same system
with VHDL simulation, 10 minutes are needed for the mesh
version and 2 minutes for the star. If results from all the
possible TGs to be tracked are required, then three intra-core
reconfigurations have to be done and emulation has to be run
3 times. In this case, the acceleration achieved is in the range
on tens of thousands.
The main goal in this work was to try to solve one of
the disadvantages of NoC emulation related to the system
synthesis time. For instance, for the mesh implementation
synthesis, that uses around 20 % of the XC2V3000 FPGA, it
takes 16 minutes, while for the star it is 8 minutes. Differently,
for building the star system from the mesh or vice versa,
following the approach presented in this paper, 2 inter-core
reconfigurations are needed, but no synthesis is required.
The required time for each partial reconfiguration is in the
range of microseconds to milliseconds when using the FPGA
internal confirmation port (ICAP) and in the range of seconds
when using the JTAG interface. The achieved speedup in
comparison with the synthesis approach (non reconfigurable)
is in the range of hundreds of times for the worst case.
Additionally, if for instance, the needed router is not available
in the hard core emulation library, only one router is needed
to be synthesized and this will take just 1 min, 8 times less
than synthesizing the entire star system.
Results of the online measuring of the traffic received from
node0 (TG) are presented for the mesh and for the star
in Figure 5 as example. The main advantage of the online
measuring is the possibility of tracking the network dynamics
as it is shown in figure 5, where latency for each received
packet is plotted.
The main drawback of the presented system resides in the
inherited restrictions of current partial reconfiguration tech-

MESH

STAR

Fig. 5. MESH and START NoC latency, measured in clock cycles, for each
received word. Plots correspond to an online measuring point, allocated in
node3 and tracking data received from node0.

niques. Although the used method for VAs definition tries to
reduce the area overhead due to partial reconfiguration, it is
still high. Anyway a tendency of improving the partial recon-
figuration capabilities in the newest FPGAs can be noticed.
The presented systems can be retargeted to other FPGAs with
the exception of the hard core libraries and the related hard
core manipulation SW that support Virtex II and Virtex II Pro
FPGAs.

VI. CONCLUSION

A method for overcoming emulation systems drawback
derived from long synthesis times has been presented. The
core of the method is the exploitation of state of the art
partial reconfiguration capabilities of some FPGAs. A work
flow, based on partial reconfiguration where the system to be
emulated is built using hard cores (partial configuration files)
has been proposed. As a demonstration of the approach, a
use case based on a NoC reconfigurable system, mapped on
a Virtex II FPGA, has been defined and presented. Speedups
of hundreds of time have been achieved in the presented use
case compared with a non reconfigurable approach (synthesis
based).

ACKNOWLEDGMENT

The authors wish to express their gratitude to the De-
partamento de Fundamentos da Computacao, Pontificia Uni-
versidade Catolica do Rio Grande do Sul, specially to Ney
Calazans, for providing the Atlas environment and the HER-
MES network.

REFERENCES

[1] L. Benini and G. D. Micheli, “Networks on chips: A new soc paradigm,”
IEEE Computer, vol. 35, no. 1, pp. 70–78, 2002.

[2] F. Karim, A. Nguyen, S. Dey, and R. Rao, “On-chip communication
architecture for oc-768 network processors,” in DAC, 2001, pp. 678–
683.

[3] S. Mahadevan, K. Virk, and J. Madsen, “Arts: A systemc-based frame-
work for modelling multiprocessor systems-on-chip,” Design Automa-
tion of Embedded Systems, 2006.

[4] M. Coppola, S. Curaba, M. D. Grammatikakis, R. Locatelli, G. Maruc-
cia, and F. Papariello, “Occn: a noc modeling framework for design
exploration,” Journal of Systems Architecture, vol. 50, no. 2-3, pp. 129–
163, 2004.

[5] S. S. K. A. Mehran and Armin, “Smap: An intelligent mapping tool for
network on chip,” Signals, Circuits and Systems ISSCS 2007, pp. 1–4,
13-14 July 2007.

[6] S. Murali and G. D. Micheli, “Sunmap: a tool for automatic topology
selection and generation for nocs,” in DAC ’04: Proceedings of the 41st
annual conference on Design automation. New York, NY, USA: ACM,
2004, pp. 914–919.

[7] A. Jalabert, S. Murali, L. Benini, and G. D. Micheli, “xpipesCompiler: A
tool for instantiating application specific Networks on Chip,” in Design,
Automation and Test in Europe (DATE), Paris, France, Feb. 2004.

[8] J. Joven, O. Font-Bach, D. Castells-Rufas, R. Martinez, L. Teres, and
J. Carrabina, “xenoc - an experimental network-on-chip environment
for parallel distributed computing on noc-based mpsoc architectures.” in
PDP. IEEE Computer Society, 2008, pp. 141–148.

[9] L. Ost, A. Mello, J. Palma, F. G. Moraes, and N. Calazans, “Maia: a
framework for networks on chip generation and verification,” in ASP-
DAC, 2005, pp. 49–52.

[10] J. Chan and S. Parameswaran, “Nocgen: A template based reuse
methodology for networks on chip architecture,” vlsid, vol. 00, p. 717,
2004.

[11] N. Genko, D. Atienza, G. D. Micheli, J. M. Mendias, R. Hermida,
and F. Catthoor, “A complete network-on-chip emulation framework,”
in DATE. IEEE Computer Society, 2005, pp. 246–251.

[12] Ü. Y. Ogras, R. Marculescu, H. G. Lee, P. Choudhary, D. Marculescu,
M. Kaufman, and P. Nelson, “Challenges and promising results in noc
prototyping using fpgas,” IEEE Micro, vol. 27, no. 5, pp. 86–95, 2007.

[13] P. T. Wolkotte, P. K. F. Holzenspies, and G. J. M. Smit, “Fast, accurate
and detailed NoC simulations,” May 2007.

[14] C. Bobda, A. Ahmadinia, M. Majer, J. Teich, S. P. Fekete, and J. van der
Veen, “Dynoc: A dynamic infrastructure for communication in dynam-
ically reconfigurable devices,” in FPL, 2005, pp. 153–158.

[15] T. Pionteck, R. Koch, and C. Albrecht, “Applying partial reconfiguration
to networks-on-chips.” in FPL. IEEE, 2006, pp. 1–6.

[16] R.Benmouhoub and O.Hammami, “Noc monitoring harwdare support
for fast noc design space exploration and potential noc partial dynamic
reconfiguration,” in IEEE IES, 18-20 oct 2006.

[17] M. P. Davin Lim, XAPP 29 (v1.0)0: Two Flows for Partial Reconfigur-
tion: Module Based or Small Bit Manipulation. Xilinx, 2004.

[18] Partial Reconfiguration Software User’s Guide. Xilinx, 2006.
[19] T. Marescaux and et al., “Run-time support for heterogeneous multitask-

ing on reconfigurable socs,” Integr. VLSI J., vol. 38, no. 1, pp. 107–130,
2004.

[20] L. Moller, I. Grehs, E. Carvalho, R. Soares, N. Calazans, and F. Moraes,
“A noc-based infrastructure to enable dynamic self reconfigurable sys-
tems,” in ReCoSoC, 2007, pp. 23–30.

[21] Y. E. Krasteva, E. de la Torre, and T. Riesgo, “Virtual architectures
for partial runtime reconfigurable systems. application to network on
chip based soc emulation,” in Annual Conference of the IEEE Industrial
Electronics Society, 2008, p. accepted for publication.

[22] Y. E. K. et al., “Virtex ii fpga bitstream manipulation: Application to
reconfiguration control systems,” in FPL, 2006, pp. 1–4.

[23] N. Genko, D. Atienza, G. De Micheli, and L. Benini, “Feature - noc
emulation: a tool and design flow for mpsoc,” in Volume 7, Issue 4,
Circuits and Systems Magazine, IEEE, Fourth Quarter 2007, pp. 42 –
51.

[24] F. G. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost, “Hermes:
an infrastructure for low area overhead packet-switching networks on
chip,” Integration, vol. 38, no. 1, pp. 69–93, 2004.

[25] L. Tedesco, A. Mello, D. Garibotti, N. Calazans, and F. Moraes, “Traffic
generation and performance evaluation for mesh-based nocs,” in SBCCI,
2005, pp. 184–189.

[26] C. G. et al., “Towards open network-on-chip benchmarks,” in NOCS,
2007, p. 205.

