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Abstract
Clustering techniques for multivariate data are useful tools in Statistics that have been fully studied in the literature. However,
there is limited literature on clustering methodologies for functional data. Our proposal consists of a clustering procedure
for functional data using techniques for clustering multivariate data. The idea is to reduce a functional data problem into
a multivariate one by applying the epigraph and hypograph indexes to the original curves and to their first and/or second
derivatives. All the information given by the functional data is therefore transformed to the multivariate context, being
informative enough for the usual multivariate clustering techniques to be efficient. The performance of this new methodology
is evaluated through a simulation study and is also illustrated through real data sets. The results are compared to some other
clustering procedures for functional data.

Keywords Epigraph · Hypograph · Functional data · B-spline basis · Cluster analysis

1 Introduction

Nowadays, in several fields of study, much of the data col-
lected and analyzed can be considered as functions xi (t),
i = 1, . . . , n, t ∈ I, where I is an interval in R. For exam-
ple, growth, weather variables, the evolution of the market,
. . . This has been triggered by recent technological devel-
opments that enable a large volume of data to be analyzed
in a short period of time. Functional Data Analysis (FDA)
arises when this information is studied through the analysis
of curves or functions. A complete overview of FDA can be
found in the monographs of Ramsay and Silverman (2005),
and Ferraty and Vieu (2006), while some interesting reviews

B Belén Pulido
belen.pulido@uc3m.es

Alba M. Franco-Pereira
albfranc@ucm.es

Rosa E. Lillo
rosaelvira.lillo@uc3m.es

1 uc3m-Santander Big Data Institute, Universidad Carlos III de
Madrid, Getafe, Spain

2 Department of Statistics and O.R., Universidad Complutense
de Madrid, Madrid, Spain

3 Department of Statistics, Universidad Carlos III de Madrid,
Getafe, Spain

of functional data can be found in Horváth and Kokoszka
(2012), Hsing and Eubank (2015), and Wang et al. (2016).

The main drawback when working with functional and
multivariate data, unlike in one dimension, is the lack of a
total order. Thus, a traditional challenge in FDA and in mul-
tivariate analysis is to provide an ordering within a sample of
curves that enables the definition of order statistics such as
ranks and L-statistics. In this sense, (Tukey 1975) introduced
the concept of statistical depth that provided a center-outward
ordering for multivariate data. Some other definitions can be
found in Oja (1983), Liu (1990), and Zuo (2003). This con-
cept was extended to functional data, leading to different
definitions of functional depth. See, for example, (Vardi and
Zhang 2000; Fraiman and Muniz 2001; Cuevas et al. 2006;
Cuesta-Albertos and Nieto-Reyes 2008; López-Pintado and
Romo 2009, 2011), and (Sguera et al. 2014).

More recently, (Franco-Pereira et al. 2011) proposed the
epigraph and the hypograph indexes in order to measure the
“extremality” of a curve with respect to a bunch of curves,
and to provide an alternative order to the one given by the
statistical depth.

The combination of these two indexes has already been
exploited: (Arribas-Gil and Romo 2014) proposed the out-
liergram for outliers detection, (Martín-Barragán et al. 2018)
defined a functional boxplot, and (Franco-Pereira and Lillo
2020) contributed with a homogeneity test for functional
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data. These works show how the epigraph index, the hypo-
graph index and the band depth provide useful information
about both the shape and the magnitude of the curves. The
main idea of this work is to use the epigraph and the hypo-
graph indexes to reduce a problem in an infinite dimension
into a multivariate one in which multivariate clustering tech-
niques can be applied. The joint use of these indexes in the
original curves and in their derivatives largely characterizes
aspects of the curves in the sample, providing an ordering of
the curves from top to bottom or vice versa.

When studying a high volume of data, there is an increased
need to classify the data into groups without any extra
information, since this classification makes them easier to
manipulate. Clustering is one of the most widely used tech-
niques within unsupervised learning, and has been fully
studied for multivariate data. Some of the most frequently
usedprocedures are distance-based techniques such as hierar-
chical clustering (see (Sibson 1973; Defays 1977; Sokal and
Michener 1958; Lance andWilliams 1967), and (Ward 1963)
for different hierarchical clustering procedures) and k-means
clustering (introduced by MacQueen (1967)). Taking into
account that k-means is probably the most frequently used
clustering method in the literature, different variations have
been introduced. See (Ben-Hur et al. 2001), and (Dhillon
et al. 2004).

Clustering functional data is a challenging problem since
it involves working in an infinite dimensional space. Dif-
ferent approaches have been considered in the literature. In
Jacques and Preda (2014), the functional clustering tech-
niques are classified into four categories: (1) the raw data
methods, which consist of considering the functional data
set as a multivariate one and applying clustering techniques
for multivariate data (Boullé 2012); (2) the filtering meth-
ods, which first apply a basis to the functional data after
applying clustering techniques to the obtained data (Abra-
ham et al. 2003; Rossi et al. 2004; Peng et al. 2008), and
(Kayano et al. 2010); (3) the adaptivemethods, where dimen-
sionality reduction and clustering are performed at the same
time (James and Sugar 2003; Jacques and Preda 2013), and
(Giacofci et al. 2013), and (Traore et al. 2019); and (4) the
distance-based methods, which apply a clustering technique
based on distances considering a specific distance for func-
tional data (Tarpey and Kinateder 2003; Ieva et al. 2013),
and (Martino et al. 2019). Recent works that cannot be
easily classified into any of these categories for clustering
functional data are (Romano et al. 2017), which introduced
a method for clustering spatially dependent functional data,
(Zambom et al. 2019), which proposed a new method by
applying k-means, assigning each element to a cluster or
another based on a combination of an hypothesis test of par-
allelism and a test for equality of means, and (Schmutz et al.
2020), which presented a new strategy for clustering func-
tional data based on applying model-based techniques after

a principal component analysis. Based on the previous clas-
sification, the methodology proposed in this paper could be
considered as both filtering and adaptive, since dimension-
ality reduction is performed by using the epigraph and the
hypograph indexes after applying a basis to the data.

The paper is organized as follows. In Sect. 2, the epigraph
and the hypograph indexes are introduced, as well as their
relation with the band depth. Themethodology for clustering
functional data sets based on these indexes is explained in
Sect. 3. In Sect. 4, this methodology is examined through an
extensive simulation study, and the results are compared to
those obtained with some existing procedures for clustering
functional data. In Sect. 5, the applicability of our procedure
is illustrated through some real data sets. A discussion and
some concluding remarks are finally presented in Sect. 6.

2 Preliminaries: The epigraph, the
hypograph and the band depth

Let C(I) be the space of continuous functions defined on
a compact interval I. Consider a stochastic process X with
sample paths in C(I) and distribution FX . The graph of a
function x in C(I) is G(x) = {(t, x(t)), f or all t ∈ I}.
Then, the epigraph (epi) and the hypograph (hyp) of x are
defined as follows:

epi(x) = {(t, y) ∈ I × R : y ≥ x(t)},
hyp(x) = {(t, y) ∈ I × R : y ≤ x(t)}.

Franco-Pereira et al. (2011) defined two indexes based on
these two concepts. Given a sample of curves {x1(t), . . . , xn
(t)}, the epigraph index of a curve x (EIn(x)) is defined as one
minus the proportion of curves in the sample that are totally
included in its epigraph. Analogously, the hypograph index
of x (HIn(x)) is the proportion of curves totally included in
the hypograph of x .

EIn(x) =1 −
∑n

i=1 I ({G(xi ) ⊆ epi(x)})
n

=

1 −
∑n

i=1 I {Ei,x }
n

,

HIn(x) =
∑n

i=1 I ({G(xi ) ⊆ hyp(x)})
n

=
∑n

i=1 I {Hi,x }
n

,

where Ei,x = {xi (t) ≥ x(t), f or all t ∈ I}, Hi,x =
{xi (t) ≤ x(t), f or all t ∈ I} and I {A} is 1 if A is true
and 0 otherwise.

Their population versions are given by:

EI(x, FX ) ≡ EI(x) = 1 − P(G(X) ⊆ epi(x))
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= 1 − P(X(t) ≥ x(t), f or all t ∈ I),

HI(x, FX ) ≡ HI(x) = P(G(X) ⊆ hyp(x))

= P(X(t) ≤ x(t), f or all t ∈ I).

Franco-Pereira et al. (2011) argued that when the curves in
the sample are extremely irregular, with many intersections,
themodified versions of these indexes are recommended. If I
is considered as a time interval, the modified epigraph index
of x (MEIn(x)) can be defined as one minus the proportion
of time the curves are in the epigraph of x , i.e., the proportion
of time the curves of the sample are above x . Analogously,
the generalized hypograph index of x (MHIn(x)) can be con-
sidered as the proportion of time the curves in the sample are
below x .

MEIn(x) = 1 −
n∑

i=1

λ(t ∈ I : xi (t) ≥ x(t))

nλ(I)
, (1)

MHIn(x) =
n∑

i=1

λ(t ∈ I : xi (t) ≤ x(t))

nλ(I)
, (2)

where λ stands for Lebesgue’s measure on R.
Although these definitions are applicable to an arbitrary

curve, from now on the curve x will be considered as a curve
of the sample, since the methodology proposed here is based
on the computation of these indexes on the sample curves.
Note that, since the graph of any curve x is contained in its
epigraph and its hypograph, this relation holds when x(t) =
xi (t):

λ(t ∈ I : xi (t) ≥ x(t)) = λ(I) =
λ(t ∈ I : xi (t) ≤ x(t)).

Applying this condition to (1) and (1), we obtain

MEIn(x) = 1 −

⎛

⎜
⎜
⎝

n∑

i=1
xi �=x

λ(t ∈ I : xi (t) ≥ x(t))

nλ(I)
+ 1

n

⎞

⎟
⎟
⎠ , (3)

and

MHIn(x) =
n∑

i=1
xi �=x

λ(t ∈ I : xi (t) ≤ x(t))

nλ(I)
+ 1

n
. (4)

Moreover, if x(t) �= xi (t), then

λ(t ∈ I : xi (t) ≤ x(t)) +
λ(t ∈ I : xi (t) ≥ x(t)) = λ(I).

Now, applying this into (4) we can write:

MHIn(x) =
1 − 1

n
−

n∑

i=1
xi �=x

λ(t ∈ I : xi (t) ≥ x(t))

nλ(I)
+ 1

n
(3)=

MEIn(x) + 1

n
.

Finally, the following relation between the two modi-
fied versions of the epigraph and the hypograph indexes is
obtained, concluding that they are linearly dependent:

MHIn(x) − MEIn(x) = 1

n
.

Note that this equality does not hold in Franco-Pereira and
Lillo (2020) because the way in which the data is considered
in the homogeneity test differs from the perspective given in
this paper.

One may wonder why the epigraph and the hypograph
indexes are considered for summarizing the information of a
functional sample instead of the band depth (López-Pintado
and Romo 2009). In the following, the band depth will be
obtained as a combination of the epigraph and the hypograph
indexes. Therefore, these indexes are able to summarize the
information provided by this depth.

First of all, some definitions are recalled. Consider the
band in R2 delimited by two curves xi and x j as

b(xi , x j ) = {(t, y) ∈ I × R :
min{xi (t), x j (t)} ≤ y ≤ max{xi (t), x j (t)}}.

Then, the band depth of x of López-Pintado and Romo
(2009) (BDn(x)) is the proportion of bands b(xi , x j ) deter-
mined by two curves xi , x j in the sample, containing the
whole graph of x .

BDn(x) =
∑n−1

i=1
∑n

j=i+1 I {G(x) ⊂ b(xi , x j )}
(n
2

) =
∑n−1

i=1
∑n

j=i+1 I {Bi, j,x }
(n
2

) .

where

Bi, j,x = {min{xi (t), x j (t)} ≤ x(t) ≤ max{xi (t), x j (t)},
f or all t ∈ I}.

The Lebesguemeasure can also be used instead of the indica-
tor function, obtaining a more flexible definition of the band
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depth. The modified band depth of x (MBD(x)) is given by:

MBDn(x) =
∑n−1

i=1
∑n

j=i+1
λ(MBi, j,x )

λ(I)(n
2

) ,

where

MBi, j,x =
{t ∈ I : min{xi (t), x j (t)} ≤ x(t) ≤ max{xi (t), x j (t)}}.

Now, the relation betweenbanddepth and the indexes is given
by

BDn(x) =
2HIn(x) + 2

n − 1
EIn(x) − 2n

n − 1
EIn(x)HIn(x),

and the relation between the modified band depth and the
modified epigraph index is given by

MBDn(x) = 1

n
+ 2MEIn(x) − 2n

n − 1
MEIn(x)

2

− 2

n(n − 1)

n−1∑

i=1

n∑

j=1

(
λ(MEi,x ∩ ME j,x )

λ(I)
−

λ(MEi,x )λ(ME j,x )

λ(I)

)

,

whereMEi,x = {t ∈ I : xi (t) ≥ x(t)}. The proof of the first
equality is below. The proof of the second one can be found
in Arribas-Gil and Romo (2014), but note that they omit “1 -”
in the definition of the MEI. Also note that, in order to obtain
these equations, x is considered to belong to the sample of
curves.

As stated before, the band depth, the epigraph and the
hypograph indexes can be written as:

BDn(x) =
∑n−1

i=1
∑n

j=i+1 I {Bi, j,x }
(n
2

) ,

EIn(x) = 1 − 1

n

n∑

i=1

I {Ei,x }, and

HIn(x) = 1

n

n∑

i=1

I {Hi,x }.

Note that
∑n−1

i=1
∑n

j=i+1 I {Bi, j,x } represents the number
of bands between two curves that can be obtained taking any
two curves in the sample different from x , plus the number
of bands that include x .

∑n
i=1 I {Ei,x } represents the number

of curves that lie above x plus one, and
∑n

i=1 I {Hi,x } stands
for the number of curves that lie below x plus one.

Fig. 1 Scheme of the EHyClus method

It holds that

I {Bi, j,x } = I {Ei,x }I {Hj,x } + I {Hi,x }I {E j,x },

if x �= xi , x �= x j and I {Bi, j,x } = 1 otherwise.
Thus,

n−1∑

i=1

n∑

j=i+1

I {Bi, j,x } =
n∑

i=1

I {Ei,x }
n∑

i=1

I {Hi,x } −

n∑

i=1

I {Ei,x } −
n∑

i=1

I {Hi,x } + n.

Now, since
∑n

i=1 I {Ei,x } = n(1−EIn(x)), and
∑n

i=1 I {Hi,x }
= nHIn(x), we have

BDn(x) = 2HIn(x) + 2

n − 1
EIn(x)

− 2n

n − 1
EIn(x)HIn(x).

3 Clustering functional data through the
epigraph and the hypograph indexes

The proposed methodology for clustering functional data is
a four-step method, as illustrated in Fig. 1. In what follows,
we will refer to this method as EHyClus.

Step 1 (S1) consists of smoothing the data. This is recom-
mended since the amount of data upon which the process is
based precludes abrupt changes in value. For this reason, it
is common to smooth the data when working with curves.
Cubic B-spline bases have been used, but any other func-
tional basis could have been applied. In this case, since the
first and the second derivatives of the data are considered,
taking a cubic B-spline basis is the most natural option. In
order to choose the optimal number of bases, a sensitivity
study was carried out. The corresponding results are shown
in the Supplementary Material, Section 1, and depend on
the data sets one may consider, as happens in almost all the
studies in the literature. Here, all the data sets explained in
Sect. 4 have been taken. They show that particular changes in
the number of bases do not play a crucial role in the results.
Nonetheless, this analysis highlights that the best ones can be
obtainedwith a number of bases between 30 and 40. After the
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data set is transformed, the second step (S2) is to apply the
epigraph and the hypograph indexes (and their generalized
versions) to the basis transformed data, as well as to their
derivatives, obtaining a multivariate data set. As explained
in Sect. 2, the modified epigraph and hypograph indexes are
linearly dependent. Because of that, MHI will be discarded
since it will not provide “extra information”.

From now on, the term curves will refer to the smoothed
ones, and data will refer to the complete data set with curves
and the first and second derivatives. Then, different subsets
of the data will be taken to applymultivariate clustering tech-
niques (S3). Finally, the fourth step (S4) consists of obtaining
a final clustering partition in a previously fixed number of
groups. In general, as explained in Rendón et al. (2011),
clustering validity approaches can be divided into two cate-
gories: external and internal criteria. Thefirst type ofmethods
requires the ground truth to obtain a final result, and the sec-
ond one uses some other intrinsical information of the data to
achieve a solution. For evaluating the goodness of the clas-
sification, in this work, three different external validation
strategies will be applied: Purity, F-measure and Rand Index
(RI), which are fully explained in Manning et al. (2009), and
Rendón et al. (2011).

Purity is the proportion of elements that were classified
correctly. The F-measure is the harmonic mean of the pre-
cision and the recall values for each cluster. The precision
of a cluster is the same as its purity coefficient. The recall
of a cluster is the proportion of observations classified as a
given class in a correct way. The Rand Index can be viewed
as a measure of the percentage of correct decisions made by
the algorithm. All these indexes provide values in [0, 1] and
verify that the higher the value, the better the classification.
The Adjusted Rand Index (ARI) could be considered instead
of the ARI. The ARI is a corrected version of the RI that
rectifies the fact that good results were obtained by chance.
In this work we have considered RI instead of ARI because
ARI is not always a number between 0 and 1 and thus, it has
a different scale than Purity and F-measure, which are the
other validity measures considered here.

In steps S1 to S3, the following procedure is carried out
to obtain the clustering partitions to which the external vali-
dation criteria explained above may be applied.

A functional data problem is converted into a multivariate
one by applying the indexes. Thus, some “information” is
lost. Applying these indexes, not only to the original curves
but also to their first and secondderivatives, allows one to take
advantage of the shape/magnitude/amplitude of the curves in
the sample. It seems clear that these three attributes play an
important role in functional clustering, and these indexes can
provide a great deal of information in this regard.

Thereafter, data and indexes are combined to obtain a data
set where a multivariate clustering technique is later applied.

Table 1 Representation and description of the combinations of data
and indexes

Representation Description

_.EIHI = (EI, HI) The epigraph and the hypograph
index on the original curves.

dd2.MEI = (dMEI, d2MEI) The generalized epigraph index
applied to the first and second
derivatives.

_.dd2.EIHIMEI = (EI, HI,
MEI, dEI, dHI, dMEI, d2EI,
d2HI, d2MEI)

The epigraph, the hypograph and
the generalized version of the
epigraph applied to all the data.

Since considering all the possible combinations between
data and indexes without fixing any condition leads to a vast
number of options, 18 different combinations of data and
indexes are contemplated.

Now, the notation used for presenting the results in every
table is explained. The combinations sets are represented as
(b).(c) where (b) stands for the data, with ‘_’ representing
the curves, ‘d’ first derivatives and ‘d2’ second derivatives,
and (c) represents the indexes. The 18 different combinations
come from applying all the indexes in (c) to all the data in
(b). All these possible combinations are listed in the Sup-
plementary Material, but some examples are shown in Table
1.

When the curves are extremely irregular, the epigraph and
the hypograph indexes may take values very close to 1 and
0, respectively. This fact causes the indexes to lose discrim-
inatory capacity to differentiate between clusters and also
induces computational problems and “ill-conditioned” prob-
lems inwhich singular or near-singularmatrices are involved.
Combinations leading to these kinds of problems have been
avoided in our study.

Finally, themultivariate clustering technique to be applied
has to be chosen from among the following: hierarchical
clustering using different criteria for calculating similarity
between clusters (single linkage, complete linkage, average
linkage, centroid linkage), and Ward’s method; k-means and
its different versions using a feature space induced by a
kernel, such as kernel k-means (kkmeans), and some other
approacheswith fewer restrictions in the structure of the data,
as are spectral clustering (spc) and support vector clustering
(svc).

For hierarchical methods, the Euclidean distance has been
considered. On the other hand, when implementing k-means,
Euclidean and Mahalanobis distances have been used. In
order to apply the Mahalanobis distance, data is rescaled
using the Cholesky decomposition of the variance matrix
before running k-means with the Euclidean distance (see
Redko et al. 2019). Moreover, when the method uses a kernel
space, three different kernels have been applied: Gaussian,
polynomial and linear.
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4 Simulation study

With the current EHyClus version, all the cluster partitions
derived from applying a clustering technique to the 18 com-
binations are computed. Then, the external validation criteria
explained in Sect. 3 are employed to choose the best one.

A simulation study has been carried out in order to eval-
uate the performance of EHyClus and to compare it to some
other existing methodologies in the literature. Specifically,
EHyClus has been compared to five different methodologies
fully explained in Yassouridis and Leisch (2017), and it has
also been contrastedwith two recent ones: the distance-based
k-means procedure (functional k-means) introduced byMar-
tino et al. (2019) and the test-based k-means from Zambom
et al. (2019).

The first methodology in Yassouridis and Leisch (2017),
baseclust, consists in smoothing the data and applying k-
means to the resultant data set. It can be easily computed
in R by fitting a B-spline basis and then applying k-means.
The second one, fiftclust, also smooths the data but, instead
of applying k-means, it assumes data coming from Gaus-
sian distributions and applies the EM algorithm to the data.
The third one, distclust, is a distance approach based on
Karhunen-Loève (K-L) expansions. Method four, modelcf,
is again based on expansions, but assigns a curve to its closest
subspace. These threemethods are provided in theR-package
‘funcy’. Finally, the fifth method, curvclust, applies the EM
algorithm to a wavelet basis, and it is provided in the R-
package ‘curvclust’.

Martino et al. (2019) proposes a k-means algorithm with
a generalized Mahalanobis distance for functional data, dρ ,
which was previously defined in Ghiglietti and Paganoni
(2017), and where the value of ρ has to be set in advance.

Zambom et al. (2019) propose a methodology based on a
hypothesis test applying k-means, where they consider four
different possibilities for initializing the clusters: at random,
choosing one iteration of k-means, choosing one iteration of
a hierarchical method (Ward’s method with Euclidean dis-
tance) or taking one iteration of k-means++ (Vassilvitskii
and Arthur 2006).

Each simulated scenario is composed of previously known
groups proceeding from different processes. Each scenario
is simulated 100 times. The eight methodologies previously
described are applied each time. In each iteration, the average
of each validation criterion: Purity, F-measure, Rand Index,
and themean execution timeof all themethods are calculated.
Thus, one result from each of these four values is obtained
for each evaluated clustering partition. This section has been
divided into three parts: The first two deal with the number of
clusters and the last one is a summary of the results obtained
in all the simulated scenarios.

4.1 Simulation study A: Two clusters

Three different simulation groups of scenarios will be stud-
ied in this section. The first one consists of eight different
scenarios previously considered in Flores et al. (2018), and
Franco-Pereira and Lillo (2020). The second one consists
of two scenarios introduced in Martino et al. (2019), and
the third one is based on the data presented in Tucker et al.
(2013).

First, data simulated in the first group of scenarios is
described: Consider eight functional samples defined in
[0, 1], which have continuous trajectories in such interval
andwhich are the realizations of a stochastic process X . Each
curve has 30 equidistant observations in the interval [0, 1].
We generate 100 functions: 50 from Model 1 and 50 from
Model i , i = 2, ..., 9, obtaining eight different functional
data sets.

Model 1. This is the reference group for all the scenarios. It
is generated by a Gaussian process

X1(t) = E1(t) + e(t),

where E1(t) = 30t
3
2 (1 − t) is the mean function and e(t) is

a centered Gaussian process with covariance matrix

Cov(e(ti ), e(t j )) = 0.3 exp(−|ti − t j |
0.3

).

The rest of the models are obtained from the first one by
perturbing the generation process.
The first three models contain changes in the mean, while the
covariance matrix does not change. Changes in the mean are
presented in increasing order from Model 2 to Model 4.

Model 2. X2(t) = 30t
3
2 (1 − t) + 0.5 + e(t).

Model 3. X3(t) = 30t
3
2 (1 − t) + 0.75 + e(t).

Model 4. X4(t) = 30t
3
2 (1 − t) + 1 + e(t). The next two

samples are obtained by multiplying the covari-
ance matrix by a constant.

Model 5. X5(t) = 30t
3
2 (1 − t) + 2 e(t).

Model 6. X6(t) = 30t
3
2 (1 − t) + 0.25 e(t).

Model 7. This set is obtained by adding to E1(t) a centered
Gaussian process h(t) whose covariance matrix is
given by Cov(h(ti ), h(t j )) = 0.5 exp(−|ti−t j |

0.2 ).

In this case X7(t) = 30t
3
2 (1 − t) + h(t).

The next two samples are obtained by a different
mean function.

Model 8. X8(t) = 30t(1 − t)2 + h(t).
Model 9. X9(t) = 30t(1 − t)2 + e(t).
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Fig. 2 A sample generated from S 1-4. Original data (left panel), first
and second derivatives curves (center and right panels respectively)

From now on, the eight resulting data sets will be referred
to as scenarios.

The data is smoothed by using a cubic B-spline basis
in order to remove noise and to use data derivatives (S1 in
Fig. 1). Then, each scenario is simulated 100 times and, each
time, EHyClus is applied (S1-S4 in Fig. 1). The mean Purity,
F-measure, Rand index (RI) and execution time (ET) are used
as criteria to choose the best model. Table 2 presents these
results for the top 10 combinations obtained for the scenario
S 1-4. The rest of the tables are deferred to the Supplementary
Material. In these tables, each row represents a description
of the process carried out for the 100 realizations, denoted
by (a).(b).(c) where (a) represents the name of the consid-
ered strategy: a hierarchical method, k-means, support vector
clustering, kernel k-means or spectral clustering, and (b).(c)
represents the elections of the data and indexes, as repre-
sented in Table 1, where (b) is the name of the employed
data and (c) the indexes applied on that data.

The smoothed functions and the first and second deriva-
tives of curves generated from S 1-4 are shown in Fig. 2.
These figures confirm that the original curves discriminate
between the two clusters better. This can also be noticed
when applying the indexes (see Figs. 3 and 4). Regarding the
formulation of Model 1 and Model 4, their derivatives are
the same. Thus, in this scenario, considering the derivatives
does not provide any extra information. Nevertheless, as any
previous information is considered, they are included in the
process. At first, one could think this ismisleading themodel,
but the combination to be used will be the one with the high-
est validation criterion. In this case, the top 10 combinations
when applyingEHyClus are shown inTable 2, and all of them
contain the original curves. Hence, the combinations that do
not provide information to distinguish between groups are
discarded in the top partitions.

In Figs. 3 and 4 the represented data sets have two columns
obtained from combining data and indexes, but when apply-
ing EHyClus, the higher data set can have up to nine of these
combinations.

Finally, the best combination here turns out to be the one
obtained when applying k-means on the epigraph, the hypo-
graph and the modified epigraph indexes of the original data
(kmeans._.EIHIMEI).

Fig. 3 Scatter plots of the epigraph index (EI) and the hypograph index
(HI) of the original data simulated fromModel 1 and 4 (left panel), first
derivatives (center panel) and second derivatives (right panel)

Fig. 4 A sample generated from S 1-4. Scatter plots of different combi-
nations of MEI. Original data and first derivatives (left panel), original
data and second derivatives (center panel) and first and second deriva-
tives (right panel)

Table 2 Top 10 mean results for S 1-4 considering Euclidean distance
(gray), Mahalanobis distance (pink), a polynomial kernel (blue), kernel
k-means for initialization (green) and k-means for initialization (orange)

Purity Fmeasure RI Time

kmeans. .EIHIMEI 0.929 0.867 0.868 0.00213
kmeans. .EIHIMEI 0.929 0.867 0.868 0.00256
svc. .EIHIMEI 0.929 0.866 0.867 0.00424
kmeans. d.EIHIMEI 0.929 0.866 0.867 0.00252
kmeans. d.EIHIMEI 0.929 0.866 0.867 0.00282
kkmeans. d.EIHIMEI 0.929 0.866 0.867 0.01086
svc. d.EIHIMEI 0.928 0.865 0.866 0.00565
svc. d.EIHIMEI 0.928 0.864 0.866 0.00535
svc. .EIHIMEI 0.928 0.865 0.866 0.00421
kkmeans. .EIHIMEI 0.926 0.861 0.863 0.00934

These results are first compared to those obtained from
applying functional k-means and test-based k-means tech-
niques, which are shown in Tables 3 and 4. In the case of
functional k-means, each row represents a different distance
between the generalizedMahalanobis distance (dρ), the trun-
cated Mahalanobis distance (dk) and the Euclidean distance
(L2). For test-based k-means, each row stands for a differ-
ent initialization. When considering the first procedure, L2

distance provides the best RI, 0.847, which is close to those
results obtained using methods with a small value of ρ. Nev-
ertheless, when considering ρ equal to 0.02 the execution
time is double the one for L2 distance.

When applying test-based k-means, themethod is not able
to distinguish between the two groups, since all the metrics
lead to values close to 0.5 in all cases.
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Table 3 Mean values of Purity, F-measure, Rand Index and execution
time for the functional k-means procedure (Martino et al. 2019) with
truncated Mahalanobis distance, generalizedMahalanobis distance and
L2 distance to simulated data from S 1-4

Purity Fmeasure RI Time

L2 0.917 0.846 0.847 0.72276

dρ, ρ = 0.02 0.916 0.845 0.846 1.69700

dρ, ρ = 1 0.916 0.844 0.846 1.73552

dρ, ρ = 0.001 0.914 0.842 0.843 1.73665

dρ, ρ = 100 0.832 0.777 0.773 2.15567

dρ, ρ = 1e + 08 0.863 0.772 0.772 1.87334

dk, k = 2 0.791 0.713 0.713 0.84618

dk, k = 3 0.724 0.646 0.643 0.71322

Table 4 Mean values of Purity, F-measure, Rand Index and execution
time for the test-based k-means procedure (Zambom et al. 2019) with
four different initializations to simulated data from S 1-4

Purity Fmeasure RI Time

kmeans ++ 0.500 0.507 0.495 0.32627

hclust 0.500 0.498 0.495 0.20851

kmeans 0.500 0.498 0.495 0.20502

random 0.500 0.502 0.495 0.27125

Table 5 Mean values of Purity, F-measure, Rand Index and execu-
tion time for the five different procedures described in Yassouridis and
Leisch (2017) to simulated data from S 1-4

Purity Fmeasure RI Time

baseclust 0.923 0.856 0.857 0.00625

fitfclust 0.691 0.565 0.569 0.22153

distclust 0.908 0.833 0.833 4.21785

modelcf 0.901 0.818 0.819 0.04989

curvclust 0.914 0.847 0.847 0.55814

Moreover, results from the five different methodologies
considered in Yassouridis and Leisch (2017) appear in Table
5.

The best partition in terms of metrics and ET is the one
given by EHyClus (RI=0.868, ET=0.00213), followed then
by baseclust (RI=0.857, ET=0.00625). The rest of method-
ologies do not provide competitive results compared to
EHyClus. Thus, the good results achieved in terms of the
three different metrics and execution time is key to stating
that the proposed methodology is a very good alternative to
the existing ones for clustering functional data.

For the other seven scenarios, whose results appear in the
Supplementary Material, EHyClus obtains good results in
terms of metrics and execution times. These results in terms
of RI and ET are commented in Sect. 4.3.

On the other hand, in order to extend the simulation study,
the functional data in Martino et al. (2019) is considered.
These data sets were specially created for testing clustering
techniques for functional data, and consist of two functional
samples defined in [0, 1], with continuous trajectories that
are generated by independent stochastic processes in L2(I ).
Each curve has 150 equidistant observations in the interval
[0, 1]. We generate 100 functions, 50 from Model 10 and 50
fromModel i , i = 11, 12, obtaining two different functional
samples. These two scenarios will be referred to as S 10-11
and S 10-12, respectively.

The three different models defined for these simulations
are specified below.
Model 10. The first 50 functions are generated as follows:

X10(t) = E2(t) +
100∑

k=1

Zk
√

ρkθk(t),

where E2(t) = t(1 − t) is the mean function, {Zk, k =
1, ..., 100} are independent standard normal variables, and
{ρk, k ≥ 1} is a positive real numbers sequence defined as

ρk =
{

1
k+1 i f k ∈ {1, 2, 3},

1
(k+1)2

i f k ≥ 4,

in such a way that the values of ρk are chosen to decrease
faster when k ≥ 4 in order to have most of the vari-
ance explained by the first three principal components. The
sequence {θk, k ≥ 1} is an orthonormal basis of L2(I )
defined as

θk(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

I[0,1](t) i f k = 1,√
2 sin (kπ t)I[0,1](t) i f k ≥ 2,

k even,√
2 cos ((k − 1)π t)I[0,1](t) i f k ≥ 3,

k odd,

where IA(t) stands for the indicator function of set A.
The next two models are defined in the same way, but in each
case changing the term which is added to E2(t) in Model 10.
Moreover, the standard normal variables generated for the
following two models differ from those of the last model.

Model 11. X11(t) = E3(t) +
100∑

k=1

Zk
√

ρkθk(t), where

E3(t) = E2(t) +
3∑

k=1

√
ρkθk(t).

Model 12. X12(t) = E4(t) +
100∑

k=1

Zk
√

ρkθk(t), where

E4(t) = E2(t) +
100∑

k=4

√
ρkθk(t).
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Fig. 5 A sample generated from S 10-12. Original data (left panel), first
and second derivatives curves (center and right panels respectively)

Fig. 6 Scatter plots of the epigraph index (EI) and the hypograph index
(HI) of the original data simulated from Model 10 and 12 (left panel),
first derivatives (second panel) and second derivatives (right panel)

As before, data is considered after being smoothed with a
cubic B-spline basis in order to remove noise and to be able
to use its first and second derivatives.

The corresponding smoothed curves simulated from S 10-
12 often cross, as do their derivatives (Fig. 5).When applying
the epigraph and the hypograph indexes to these sets of
curves, again, the difference between groups is negligible
(Fig. 6). Nevertheless, looking at Fig. 7, when applying the
MEI, the difference between groups is now much clearer.
The best result from EHyClus (see Table 6) is achieved by
applying kernel k-means with a polynomial kernel on the
generalized epigraph index of the first and second deriva-
tives, obtaining a RI of 0.919. Moreover, when applying the
same technique with the same set of data (first and second
derivatives) but adding the epigraph and hypograph indexes,
the same RI is obtained. This combination is not graphically
shown since six different variables are involved. This partic-
ular case exemplifies that when considering EI, HI and MEI
at the same time, in general one gets equal or better results
than when working with any of their subsets. Thus, it would
not be necessary to try all the combinations of indexes, but
only the union of the three. Nevertheless, in order to see the
differences, all the possibilities previously explained have
been considered.

These results are compared to those obtained by applying
the functional k-means procedure (Table 7). In this case, the
best distance is the Mahalanobis distance with a big value
of ρ, ρ = 1e + 08, getting a RI of 0.718, which is small
compared to the value of 0.919 obtained with EHyClus. In
addition, EHyClus spends 0.00423s for its best combina-
tion, while functional k-means spends 7.9055s for the best
election of ρ.

Fig. 7 A sample generated from S 10-12. Scatter plots of different
combinations of MEI. Original data and first derivatives (left panel),
original data and second derivatives (center panel) and first and second
derivatives (right panel)

Table 6 Top10mean results forS10-12 consideringEuclideandistance
(gray), a polynomial kernel (blue), kernel k-means for initialization
(green) and k-means for initialization (orange)

Purity Fmeasure RI Time

kkmeans.dd2.MEI 0.957 0.918 0.919 0.00423
kkmeans.dd2.EIHIMEI 0.957 0.918 0.918 0.00466
svc.dd2.EIHIMEI 0.956 0.916 0.917 0.00276
svc.dd2.MEI 0.956 0.916 0.917 0.00185
kmeans.dd2.EIHIMEI 0.956 0.916 0.917 0.00100
kmeans.dd2.MEI 0.956 0.916 0.917 0.00082
svc.dd2.EIHIMEI 0.956 0.916 0.914 0.00273
ward.D2.dd2.EIHIMEI 0.939 0.889 0.888 0.00015
ward.D2.dd2.MEI 0.939 0.889 0.888 0.00009
average.dd2.MEI 0.921 0.882 0.874 0.00009

Table 7 Mean values of Purity, F-measure, Rand Index and execution
time for the functional k-means procedure (Martino et al. 2019) with
truncatedMahalanobis distance, generalizedMahalanobis distance and
L2 distance to simulated data from S 10-12

Purity Fmeasure RI Time

dρ, ρ = 1e + 08 0.831 0.718 0.718 7.9055

dρ, ρ = 100 0.637 0.554 0.548 10.1940

dρ, ρ = 0.02 0.551 0.504 0.502 9.2982

dρ, ρ = 1 0.549 0.503 0.502 9.8511

dρ, ρ = 0.001 0.548 0.503 0.502 9.9013

L2 0.547 0.502 0.502 1.3529

dk, k = 3 0.543 0.503 0.501 1.1880

dk, k = 2 0.541 0.501 0.500 0.53262

When applying test-based k-means to this type of simu-
lated data (see Table 8) and the five methods described in
Yassouridis and Leisch (2017) (Table 9), none of them are
able to distinguish between groups, obtaining values close to
0.5 for all metrics.

To sum up, EHyClus leads to the best results in terms of
metrics and execution time, being 0.2 points better regarding
RI, and being faster compared to functional k-means, which
is second in terms of the considered metrics.

Finally, when dealing with functional data, it is important
not only to investigate magnitude and amplitude changes in
the generated curves, but also those changes in phase due
to possible misalignment of data. For that, the models in
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Table 8 Mean values of Purity, F-measure, Rand Index and execution
time for the test-based k-means procedure (Zambom et al. 2019) with
four different initializations to simulated data from S 10-12

Purity Fmeasure RI Time

kmeans 0.545 0.502 0.501 0.30259

hclust 0.542 0.502 0.500 0.39506

random 0.539 0.501 0.499 0.53736

kmeans ++ 0.536 0.503 0.499 0.99704

Table 9 Mean values of Purity, F-measure, Rand Index and execu-
tion time for the five different procedures described in Yassouridis and
Leisch (2017) to simulated data from S 10-12

Purity Fmeasure RI Time

baseclust 0.539 0.501 0.499 0.02385

fitfclust 0.520 0.492 0.496 3.23131

distclust 0.544 0.508 0.501 32.29883

modelcf 0.530 0.492 0.497 0.05702

curvclust 0.545 0.515 0.502 1.24491

Tucker et al. (2013) are taken. Consider a functional sample
of continuous trajectories defined in the interval [−6, 6], and
which are the realizations of a stochastic process. Each curve
has 150 equidistant observations in the interval [−6, 6]. We
generate 42 functions: 21 for Model 13 and 21 for Model 14.

Model 13. This model has the variation in phase. It is

generated as X13(t) = z1 exp(
−(t−a)2

2 ) where z1 and a are
independent normal variablesN (1, 0.052) andN (0, 1.252),
respectively.

Model 14. This model does not present variation in phase
and it is combined with the previous one in order to check
whether the new methodology is able to distinguish between
the two populations. This data is generated considering the

equation X14(t) = z2 exp(
−(t−2.5)2

2 ) where z2 follows a
N (1.5, 0.12).

The combination of these two models will be referred to
as S 13-14. As before, a cubic B-spline basis is considered for
smoothing the data and to calculate its derivatives. Figures8
and 9 represent the curves and the groups when applying
the modified epigraph index to the different data available.
In this case, as the curves present phase variation, there are
many intersections between them. This is why the modified
versions of the indexes are a must in order to summarise the
information.

Top 10 combinations of EHyClus appear in Table 10.
There, all the combinations use the modified epigraph index,
because it is the one providing the most informative insights.
These results are compared to those obtained from the other
seven approaches and appear in Tables 11, 12 and 13.

EHyClus and fitfclust are the methodologies with higher
RI. Nevertheless, the first one obtains an ET for the best com-

Fig. 8 A sample generated from S 13-14. Original data (left panel), first
and second derivatives curves (center and right panels respectively)

Fig. 9 A sample generated from S 13-14. Scatter plots of different
combinations of MEI. Original data and first derivatives (left panel),
original data and second derivatives (center panel) and first and second
derivatives (right panel)

Table 10 Top 10 mean results for S 13-14 considering Euclidean
distance (gray), a polynomial kernel (blue), kernel k-means for ini-
tialization (green), and k-means for initialization (orange)

Purity Fmeasure RI Time

complete.d.EIHIMEI 0.952 0.905 0.907 0.00033
kkmeans.d.EIHIMEI 0.952 0.905 0.907 0.00754
kmeans.d.EIHIMEI 0.952 0.905 0.907 0.00365
spc.d.EIHIMEI 0.952 0.905 0.907 0.02359
spc.dd2.MEI 0.952 0.905 0.907 0.03001
svc.d.EIHIMEI 0.952 0.905 0.907 0.00644
svc.d.EIHIMEI 0.952 0.905 0.907 0.00643
ward.D2.d.EIHIMEI 0.952 0.905 0.907 0.00035
ward.D2.dd2.EIHIMEI 0.952 0.905 0.907 0.00037
ward.D2.dd2.MEI 0.952 0.905 0.907 0.00035

bination equal to 0.00033, while the second spends 1.1612s.
Thus, even though there could be some misalignment in one
of the classes, EHyClus is able to distinguish between the
two populations, and it improves the computational cost with
respect to the existing approaches.

4.2 Simulation Study B: More than two clusters

In this case, four data sets will be considered. Three of them
with three groups and one with six.

First, three different scenarios coming from three different
groups are taken into account. This simulation study previ-
ously appeared in Zambom et al. (2019). Each data set is
composed of 150 curves, 50 of them belonging to each of the
three clusters. Each curve has 100 equidistant points defined
in the interval [0, π

3 ].
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Table 11 Mean values of Purity, F-measure, Rand Index and execution
time for the functional k-means procedure (Martino et al. 2019) with
truncated Mahalanobis distance, generalizedMahalanobis distance and
L2 distance to simulated data from S 13-14

Purity Fmeasure RI Time

dρ, ρ = 0.001 0.929 0.862 0.864 1.46303

dρ, ρ = 0.02 0.9289 0.862 0.864 0.80187

dρ, ρ = 1 0.929 0.862 0.864 1.45995

dρ, ρ = 1e + 08 0.929 0.862 0.864 1.44883

L2 0.929 0.862 0.864 0.17995

dk, k = 3 0.905 0.822 0.824 0.19996

dρ, ρ = 100 0.714 0.634 0.582 1.44405

Table 12 Mean values of Purity, F-measure, Rand Index and execution
time for the test-based k-means procedure (Zambom et al. 2019) with
four different initializations to simulated data from S 13-14

Purity Fmeasure RI Time

random 0.905 0.822 0.824 0.34584

kmeans 0.905 0.822 0.824 0.17640

hclust 0.905 0.822 0.824 0.25854

kmeans ++ 0.833 0.724 0.715 0.46918

Table 13 Mean values of Purity, F-measure, Rand Index and execu-
tion time for the five different procedures described in Yassouridis and
Leisch (2017) to simulated data from S 13-14

Purity Fmeasure RI Time

baseclust 0.929 0.862 0.864 0.00938

fitfclust 0.952 0.905 0.907 1.1612

distclust 0.928 0.862 0.864 12.1398

modelcf 0.929 0.862 0.864 0.03553

curvclust 0.929 0.862 0.864 0.3678

Each scenario is composed of 50 functions from three
different models, each of them of the form:

X(t) = Y (t) + ε

The nine different models are defined as follows:

Model 15. X13(t) = 1
1.3 sin(1.3t) + t3 + a + 0.3 + ε1

Model 16. X14(t) = 1
1.2 sin(1.3t) + t3 + a + 1 + ε1

Model 17. X15(t) = 1
4 sin(1.3t) + t3 + a + 0.2 + ε1

Model 18. X16(t) = sin(1.5π t) + cos(π t2) + b + 1.1+ ε1
Model 19. X17(t) = sin(1.7π t) + cos(π t2) + b + 1.5+ ε1
Model 20. X18(t) = sin(1.9π t) + cos(π t2) + b + 2.2+ ε1
Model 21. X19(t) = 1

1.8 exp(1.1t) − t3 + a + ε2

Model 22. X20(t) = 1
1.7 exp(1.4t) − t3 + a + ε2

Model 23. X21(t) = 1
1.5 exp(1.5t) − t3 + a + ε2

Fig. 10 Asample generated fromS 15-16-17. Original data (left panel),
first and second derivatives curves (center and right panels respectively)

Fig. 11 Scatter plots of the epigraph index (EI) and the hypograph
index (HI) of the original data simulated from Model 15, 16 and 17
(left panel), first derivatives (center panel) and second derivatives (right
panel)

Fig. 12 A sample generated from S 15-16-17. Scatter plots of different
combinations of MEI. Original data and first derivatives (left panel),
original data and second derivatives (center panel) and first and second
derivatives (right panel)

where a ∼ U (−1
4 , 1

4 ), b ∼ U (−1
2 , 1

2 ) and ε1 ∼ N (2, 0.42),
ε2 ∼ N (2, 0.42)

Hence, S 15-16-17 is composed of 50 functions from
Model 15, 50 functions from Model 16 and 50 from Model
17. S 18-19-20 are created in an analogous way.

Data considered from S 15-16-17 is shown in Fig. 10,
where it is clear that the functions in green and red inter-
twine a lot. When applying the epigraph and the hypograph
indexes (Fig. 11) it is possible to identify two well distin-
guished bunches of curves, because the green curves overlap
the red and blue ones. Nevertheless, when considering the
modified epigraph index (Fig. 12), it seems that the differ-
ences between the three groups are much more evident.

EHyClus with k-means and both Euclidean and Maha-
lanobis distances for the original data, first and second
derivatives with the generalized epigraph index leads to
the same and best result in Table 14 (RI=0.977 and ET
almost 0.003s). When considering functional k-means, the
best method in Table 15 is the one with a small value of ρ,
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Table 14 Top 10 mean results for S 15-16-17 considering Euclidean
distance (gray), Mahalanobis distance (pink), kernel k-means for ini-
tialization (green) and k-means for initialization (orange)

Purity Fmeasure RI Time

kmeans dd2.MEI 0.988 0.967 0.985 0.00274
kmeans dd2.MEI 0.988 0.977 0.985 0.00205
svc dd2.MEI 0.988 0.977 0.985 0.00449
kmeans. d.MEI 0.988 0.976 0.984 0.00175
kmeans. d.MEI 0.988 0.976 0.984 0.00179
svc. d.MEI 0.988 0.976 0.984 0.00433
svc. d.MEI 0.988 0.975 0.984 0.00430
svc dd2.MEI 0.982 0.969 0.979 0.00429
ward.D2. d.MEI 0.979 0.961 0.974 0.00022
average. d.MEI 0.975 0.959 0.972 0.00027

Table 15 Mean values of Purity, F-measure, Rand Index and execution
time for the functional k-means procedure (Martino et al. 2019) with
truncated Mahalanobis distance, generalizedMahalanobis distance and
L2 distance to simulated data from S 15-16-17

Purity Fmeasure RI Time

dρ, ρ = 0.001 0.936 0.894 0.928 6.50802

dρ, ρ = 0.02 0.934 0.890 0.925 6.28237

L2 0.934 0.887 0.923 1.38996

dρ, ρ = 1 0.927 0.885 0.921 6.39378

dρ, ρ = 100 0.682 0.662 0.754 5.67288

dk, k = 2 0.659 0.606 0.735 1.54468

dρ, ρ = 1e + 08 0.719 0.590 0.725 7.95828

dk, k = 3 0.605 0.548 0.695 1.59957

Table 16 Mean values of Purity, F-measure, Rand Index and execution
time for the test-based k-means procedure (Zambom et al. 2019) with
four different initializations to simulated data from S 15-16-17

Purity Fmeasure RI Time

kmeans ++ 0.955 0.915 0.944 0.99653

kmeans 0.953 0.912 0.942 4.96029

random 0.952 0.910 0.940 1.05298

hclust 0.947 0.903 0.936 4.98203

ρ = 0.001, (RI=0.928 and ET=6.50802s). And when apply-
ing test-based k-means, the best result in Table 16 is obtained
when initializing the process with k-means++ (RI=0.944
and ET=0.99653). Results from the other five methodolo-
gies appear in Table 17, with baseclust being the only one
obtaining competitive results compared to the previously
mentioned ones (RI=0.945 and ET=0.02291).

In summary, EHyClus leads to the best result in terms of
RI and ET.

Results for S 18-19-20 and S 21-22-23 are shown in the
Supplementary Material.

One last scenario fromYassouridis andLeisch (2017)with
six different groups is studied. Consider a functional sample

Table 17 Mean values of Purity, F-measure, Rand Index and execu-
tion time for the five different procedures described in Yassouridis and
Leisch (2017) to simulated data from S 15-16-17

Purity Fmeasure RI Time

baseclust 0.955 0.917 0.945 0.02291

fitfclust 0.667 0.723 0.760 1.81523

distclust 0.667 0.737 0.770 45.79747

modelcf 0.667 0.676 0.730 0.14528

curvclust 0.667 0.741 0.773 1.05079

Fig. 13 A sample generated from S 24-25-26-27-28-29. Original data
(left panel), first and second derivatives curves (center and right panels
respectively)

defined in [0, 1], which have continuous trajectories in such
interval andwhich are the realizations of a stochastic process.
Each curve is measured at 15 equidistant observations in the
interval [0, 1]. We generate 60 functions: 10 for each model
from Model 24 to Model 29.

Model 24. X24(t) = x2(t)+ e2(t) where e2(t) is a centered
Gaussian process with standard deviation 0.3.

Model 25. X25(t) = x2(t) + e2(t)
Model 26. X26(t) = √

x(t) + e2(t)
Model 27. X27(t) = sin(2πx(t)) + e2(t)
Model 28. X28(t) = −x2(t) + e2(t)
Model 29. X29(t) = x(t) − 1 + e2(t)

Data generated from Models 24 to 29 (S 24-25-26-27-28-
29) is shown in Fig. 13. As the curves intertwine a lot,
it seems natural that the best result when applying EHy-
Clus will include the modified epigraph index. The results
obtained with this methodology, as well as the ones obtained
when applying functional k-means, hypothesis k-means, and
the five methodologies of Yassouridis and Leisch (2017)
for benchmarking are presented in Tables 18, 19, 20 and
21, respectively. The best result is obtained with baseclust,
having a RI equal to 0.909 and ET equal to 0.00519. This
methodology obtains small differences compared to EHy-
Clus results, despite its RI being slightly higher.
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Table 18 Top 10 mean results for S 24-25-26-27-28-29 considering
Euclidean distance (gray),Mahalanobis distance (pink), kernel k-means
for initialization (green) and k-means for initialization (orange)

Purity Fmeasure RI Time

kmeans dd2.MEI 0.753 0.655 0.889 0.00343
kmeans dd2.MEI 0.753 0.654 0.889 0.00289
kmeans. dd2.EIHIMEI 0.744 0.643 0.884 0.00450
kmeans. dd2.EIHIMEI 0.744 0.643 0.884 0.00339
ward.D2. dd2.EIHIMEI 0.736 0.646 0.881 0.00023
kmeans. d.MEI 0.732 0.618 0.878 0.00306
kmeans. d.MEI 0.732 0.618 0.878 0.00291
svc dd2.MEI 0.736 0.625 0.877 0.00969
ward.D2 dd2.MEI 0.727 0.621 0.875 0.00033
svc. dd2.EIHIMEI 0.722 0.620 0.873 0.01540

Table 19 Mean values of Purity, F-measure, Rand Index and execution
time for the functional k-means procedure (Martino et al. 2019) with
truncated Mahalanobis distance, generalizedMahalanobis distance and
L2 distance to simulated data from S 24-25-26-27-28-29

Purity Fmeasure RI Time

dρ, ρ = 0.001 0.587 0.495 0.835 0.38078

dρ, ρ = 0.02 0.560 0.477 0.827 0.39563

L2 0.530 0.458 0.807 0.13257

dk, k = 3 0.520 0.405 0.806 0.16657

dρ, ρ = 1 0.550 0.423 0.802 0.28823

dρ, ρ = 100 0.433 0.344 0.785 0.32555

dρ, ρ = 1e + 08 0.400 0.286 0.762 0.41861

Table 20 Mean values of Purity, F-measure, Rand Index and execution
time for the test-based k-means procedure (Zambom et al. 2019) with
four different initializations to simulated data from S 15-16-17

Purity Fmeasure RI Time

random 0.645 0.494 0.831 5.41103

kmeans ++ 0.604 0.483 0.828 10.81740

hclust 0.608 0.467 0.825 13.34848

kmeans 0.513 0.353 0.779 7.09966

Table 21 Mean values of Purity, F-measure, Rand Index and execu-
tion time for the five different procedures described in Yassouridis and
Leisch (2017) to simulated data from S 15-16-17

Purity Fmeasure RI Time

baseclust 0.776 0.7114 0.909 0.00519

fitfclust 0.333 0.474 0.661 0.10180

distclust 0.333 0.461 0.652 0.43145

modelcf 0.333 0.474 0.661 0.02781

curvclust 0.317 0.447 0.606 0.47361

4.3 Simulation summary

Table 22 summarizes the results obtained in all the simulated
scenarios, including those deferred to the Supplementary
Material. This table presents the RI and ET obtained with
EHyClus, with the two methodologies of Martino et al.
(2019) and (Zambom et al. 2019), and also with the five
different approaches explained in Yassouridis and Leisch
(2017). Each row represents one scenario, with the highest
RI and the smallest ET shown in bold. Note that the ET for
EHyClus in Table 22 corresponds to the one obtained using
the best combination of indexes, data andmethod. The reason
is that EHyClus is supposed to be used with one combination
fixed in advance. However, in this stage, all the possibilities
are calculated and the best one is obtained by comparing all
the results.

If the aim of this methodology were to compute all the
possibilities and to choose between them with an internal
criterion, a global time would be required. In that case, the
number of combinations to try could be reduced with no
major difference in the results. Nevertheless, even consid-
ering all the possibilities and a global ET, this approach is
competitive with the others. To illustrate this, the global ET
for S 1-4 when applying EHyClus, functional k-means and
hypothesis k-means have been computed, obtaining 2.4991s,
2.5069s and 1.1545s respectively. It is important to note that
EHyClus calculates more than 200 combinations, while the
other two methodologies compute fewer than 10 different
alternatives. Overall, the differences in time are small, but
the number of trials is completely different. If the same num-
ber of possibilities were computedwith the three approaches,
the differences in time would be much more noticeable.

EHyClus reaches the best RI in nine out of the fifteen
scenarios, and when concerning partial ET, it obtains the
best results in all but one. After analysing the difference in
the results between EHyClus and the other approaches, one
can notice that the RI in the scenarios where EHyClus is
not the best strategy have very small differences with the
best one. On the other hand, when it gets the best RI it is
much higher, and the difference in ET is also high. Finally,
baseclust can be considered as the approach with the most
competitive results in terms of RI and ET compared to the
ones given by EHyClus. Nevertheless, in some cases, when it
does not achieve the best result, the differences are high, see
the cases S 10-12 and S 21-22-23. In conclusion, EHyClus
can be considered a good clustering alternative in terms of
metrics and outperforming the existing approaches in terms
of ET.

123



36 Page 14 of 19 Statistics and Computing (2023) 33 :36

Ta
bl
e
22

B
es
tR

I
an
d
ex
ec
ut
io
n
tim

e
in

se
co
nd

s
(i
n
br
ac
ke
ts
)
fo
r
ea
ch

si
m
ul
at
ed

da
ta
se
tc
on

si
de
ri
ng

E
H
yC

lu
s
an
d
se
ve
n
m
or
e
di
ff
er
en
ta
pp

ro
ac
he
s

E
H
yC

lu
s

Fu
nc
tio

na
l

H
yp

ot
he
si
s

B
as
ec
lu
st

Fi
tf
cl
us
t

D
is
tc
lu
st

M
od

el
cf

C
ur
vc
lu
st

k-
m
ea
ns

k-
m
ea
ns

S
1-
2

0.
64
4
(0
.0
09
44
)

0.
62
1
(0
.7
50
23
)

0.
49
5
(0
.3
44
36
)

0.
62
9
(0
.0
06
57
)

0.
49
5
(0
.5
63
97
)

0.
61
8
(2
.1
16
64
)

0.
59
4
(0
.0
43
52
)

0.
61
6
(0
.6
31
35
)

S
1-
3

0.
76
3
(0
.0
00
71
)

0.
75
1
(0
.7
36
22
)

0.
49
5
(0
.3
32
67
)

0.
75
5
(0
.0
05
02
)

0.
50
6
(0
.4
42
35
)

0.
73
4
(2
.6
06
77
)

0.
67
9
(0
.0
54
78
)

0.
74
9
(0
.5
53
63
)

S
1-
4

0.
86
8
(0
.0
02
13
)

0.
84
7
(0
.7
22
76
)

0.
49
5
(0
.3
26
27
)

0.
85
7
(0
.0
06
25

s)
0.
56
9
(0
.2
21
53

s)
0.
83
3
(4
.2
17
85
)

0.
81
9
(0
.0
49
89
)

0.
84
7
(0
.5
58
14
)

S
1-
5

0.
52
3
(0
.0
12
29
)

0.
49
6
(1
.2
86
81
)

0.
49
7
(0
.3
87
73
)

0.
49
7
(0
.0
06
59
)

0.
49
5
(0
.2
66
72
)

0.
49
7
(6
.0
57
42
)

0.
49
5
(0
.0
50
26
)

0.
50
3
(0
.6
12
42
)

S
1-
6

0.
55
1
(0
.0
10
63
)

0.
53
2
(0
.2
39
64
)

0.
52
9
(0
.4
27
81
)

0.
52
9
(0
.0
05
31
)

0.
54
7
(0
.2
44
53
)

0.
52
5
(2
.3
61
52
)

0.
52
0
(0
.1
36
64
)

0.
51
0
(0
.5
72
48
)

S
1-
7

0.
50
1
(0
.0
17
48
)

0.
50
0
(0
.8
10
32
)

0.
50
1
(0
.2
42
18
)

0.
49
9
(0
.0
05
57
)

0.
49
7
(0
.8
49
45
)

0.
50
1
(4
.7
29
70
)

0.
50
8
(0
.0
81
88
)

0.
50
0
(0
.5
63
48
)

S
1-
8

0.
90
4
(0
.0
09
98
)

0.
99
3
(0
.5
00
43
)

0.
87
7
(0
.3
09
39
)

0.
99
2
(0
.0
04
32
)

0.
71
6
(1
.0
02
64
)

0.
99
3
(2
.6
80
13
)

0.
96
1
(0
.0
42
05
)

0.
98
6
(0
.5
51
82
)

S
1-
9

0.
90
1
(0
.0
02
31
)

0.
99
2
(0
.5
07
88
)

0.
87
8
(0
.2
63
16
)

0.
99
3
(0
.0
04
44
)

0.
92
2
(0
.8
55
55
)

0.
98
9
(4
.8
99
78
)

1.
00
0
(0
.0
38
51
)

0.
98
9
(0
.5
47
13
)

S
10
-1
1

0.
60
3
(0
.0
04
83
)

0.
63
7
(0
.9
56
2)

0.
61
2
(0
.6
14
13
)

0.
65
2
(0
.0
20
38
)

0.
63
1
(7
.3
29
39
)

0.
63
3
(2
6.
62
48
3)

0.
63
2
(0
.0
57
06
)

0.
62
8
(1
.2
13
8)

S
10
-1
2

0.
91
9
(0
.0
04
23
)

0.
71
8
(7
.9
05
5)

0.
50
1
(0
.3
02
59
)

0.
49
9
(0
.0
23
85
)

0.
49
6
(3
.2
31
31
)

0.
50
1
(3
2.
29
88
3)

0.
49
7
(0
.0
57
02
)

0.
50
2
(1
.2
44
91
)

S
13
-1
4

0.
90
7
(0
.0
00
23
)

0.
86
4
(0
.6
54
48
)

0.
82
4
(0
.0
97
22
)

0.
86
4
(0
.0
09
38
)

0.
90
7
(1
.1
61
20
)

0.
86
4
(1
2.
13
98
)

0.
86
4
(0
.0
35
52
8)

0.
86
4
(0
.3
67
80
)

S
15
-1
6-
17

0.
98
5
(0
.0
02
74
)

0.
92
8
(6
.5
08
02
)

0.
94
4
(0
.9
96
53
)

0.
94
4
(0
.0
22
91
)

0.
76
0
(1
.8
15
23
)

0.
77
0
(4
5.
79
74
7)

0.
73
0
(0
.1
45
28
)

0.
77
3
(1
.0
50
79
)

S
18
-1
9-
20

0.
71
9
(0
.0
02
21
)

0.
75
4
(7
.7
69
38
)

0.
82
1
(1
.3
38
09
)

0.
70
2
(0
.0
26
81
)

0.
74
9
(1
.8
07
54
)

0.
72
4
(4
1.
89
71
0)

0.
70
3
(0
.1
21
54
)

0.
71
6
(1
.1
75
36
)

S
21
-2
2-
23

0.
99
8
(0
.0
01
43
)

0.
80
0
(1
.5
46
71
)

0.
93
7
(0
.8
36
32
)

0.
82
1
(0
.0
27
19
)

0.
72
1
(1
.8
07
93
)

0.
72
3
(4
7.
61
03
0)

0.
72
4
(0
.1
44
83
)

0.
72
2
(1
.1
46
07
)

S
24
-.
..-
29

0.
88
9
(0
.0
03
30
)

0.
83
4
(0
.3
80
78
)

0.
83
1
(5
.4
11
03
)

0.
90
9
(0
.0
05
19
)

0.
66
1
(0
.1
01
80
)

0.
65
2
(0
.4
31
45
)

0.
66
1
(0
.0
27
81
)

0.
60
6
(0
.4
73
61
)

123



Statistics and Computing (2023) 33 :36 Page 15 of 19 36

Fig. 14 Growth curves (girls in green and boys in blue) for the origi-
nal data (left panel) the first derivatives (center panel) and the second
derivatives (right panel)

Fig. 15 Scatter plots of the epigraph index (EI) and the hypograph
index (HI) of the growth curves original data (left panel), first derivatives
(second panel) and second derivatives (right panel)

Fig. 16 Growth curves. Scatter plots of different combinations of MEI.
Original data and first derivatives (left panel), original data and second
derivatives (center panel) and first and second derivatives (right panel)

5 Application to real data

In this section, EHyClus is applied to two different real data
sets that have been fully studied in the literature: The Berke-
ley Growth Study data set and the Canadian Weather data
set.

5.1 Case study: Berkeley Growth Study data set

EHyClus has been applied to a popular real data set in the
FDA literature: the Berkeley Growth study. This is a classi-
cal data set included in Ramsay and Silverman (2005) and
available in the ‘fda’ R-package. It contains the heights of 93
children aged from 1 to 18 (54 girls and 39 boys).

A cubic B-spline basis has been fitted to the curves.
In Fig. 14, there are differences in shape between the
two groups. Thus, when applying the hypograph, epigraph
(Fig. 15) and theirmodified versions (Fig. 16), the two groups
have different behaviours despite there being some overlap.

Table 23 Top10mean results for growth data set consideringEuclidean
distance (gray), Mahalanobis distance (pink), a Gaussian kernel (yel-
low), a polynomial kernel (blue), kernel k-means for initialization
(green) and k-means for initialization (orange)

Purity Fmeasure RI Time

kkmeans.dd2.EIHIMEI 0.968 0.937 0.937 0.02580
kmeans.dd2.EIHIMEI 0.968 0.937 0.937 0.00408
kmeans.dd2.EIHIMEI 0.968 0.937 0.937 0.00434
kmeans.dd2.MEI 0.968 0.937 0.937 0.00399
kmeans.dd2.MEI 0.968 0.937 0.937 0.00000
svc.dd2.EIHIMEI 0.968 0.937 0.937 0.01704
svc.dd2.EIHIMEI 0.968 0.937 0.937 0.02070
svc.dd2.MEI 0.967 0.937 0.937 0.00404
svc.dd2.MEI 0.968 0.937 0.937 0.00407
average.dd2.MEI 0.957 0.917 0.917 0.0001

The best result in Table 23 is obtained when applying
different clustering methods: kernel k-means with a polyno-
mial kernel and k-means with Euclidean and Mahalanobis
distances, using the three indexes (EI, HI, MEI) applied to
first and second derivatives. The resultant clustering parti-
tion correctly classifies all boys, but fails to classify 3 girls
as boys. The partition is very accurate.

When applying the functional k-means procedure (Table
24), the larger Purity coefficient is equal to 0.850, and it is
obtained when applying a big value of ρ, ρ = 1e + 08. In
addition, the differences in ET compared to EHyClus are
evident.

Furthermore, the test-based k-means technique (Table 25)
leads to the best result with k-means initialization, obtaining
a Purity coefficient of 0.817. EHyClus has also been com-
pared to five different approaches explained in Yassouridis
and Leisch (2017) in Table 26, obtaining worse results than
the previous ones.

In summary, EHyClus obtains the best result in terms of
the three different metrics and in terms of execution time.

5.2 Case study: Canadian weather data set

Another popular real data set in the FDA literature, also
included in Ramsay and Silverman (2005) and in the ‘fda’
R-package, is the Canadian weather data set. This data set
contains the daily temperature from 1960 to 1994 at 35 dif-
ferent Canadian weather stations grouped into 4 different
regions: Artic (3), Atlantic (15), Continental (12) and Pacific
(5).

EHyClus has been applied to this data set after smoothing
with a cubic B-spline basis. The first and second derivatives
by themselves do not give much more information, as shown
in Fig. 17. Nevertheless, when applying the indexes and con-
sidering them together (Fig. 18), they are able to distinguish
between the groups in a better way.

The best configuration between the clustering method,
indexes and data is support vector clustering initialized with
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Table 24 Mean values of Purity, F-measure, Rand Index and execution
time for the functional k-means procedure with truncated Mahalanobis
distance, generalizedMahalanobis distance and L2 distance to data from
growth data set

Purity Fmeasure RI Time

dρ, ρ = 1e + 08 0.850 0.747 0.742 1.93641

dρ, ρ = 100 0.753 0.634 0.624 1.74462

L2 0.656 0.551 0.544 0.50927

dρ, ρ = 0.001 0.624 0.529 0.525 1.67513

dk, k = 2 0.591 0.513 0.511 0.68651

dρ, ρ = 0.02 0.581 0.517 0.508 2.10050

dk, k = 3 0.5806 0.4988 0.4974 0.4418

dρ, ρ = 1 0.581 0.496 0.495 2.18262

Table 25 Mean values of Purity, F-measure, Rand Index and execution
time for the test-based k-means procedure with four different initializa-
tions to data from growth data set

Purity Fmeasure RI Time

kmeans 0.817 0.702 0.698 0.09893

kmeans ++ 0.666 0.552 0.5526 0.34084

hclust 0.666 0.552 0.525 0.09557

random 0.666 0.552 0.525 0.16951

Table 26 Mean values of Purity, F-measure, Rand Index and execu-
tion time for the five different procedures described in Yassouridis and
Leisch (2017) to data from growth data set

Purity Fmeasure RI Time

baseclust 0.656 0.551 0.544 0.01212

fitfclust 0.581 0.504 0.499 0.28018

distclust 0.667 0.559 0.550 1.6616

modelcf 0.581 0.542 0.504 0.10094

curvclust 0.677 0.617 0.558 0.71444

Fig. 17 Canadianweather curves.Original data, first and secondderiva-
tives curves

k-means on the three indexes (EI, HI, MEI) of the original
data and its second derivatives (see Table 27). In this case,
EHyClus provides the following values: a purity value equal
to 0.714, F-measure of 0.604 and aRand index equal to 0.729.
These results mean that the final configuration of the groups
seems to be accurate, in the sense that the groups obtained by
EHyClus have a similar number of elements as the true ones.

Fig. 18 Canadianweather curves. Epigraph andhypograph indexon the
original data (left panel), the generalized epigraph index on the original
data and first derivatives (center panel) and the generalized epigraph
index on the first and second derivatives (right panel)

Table 27 Top 10 mean results for the Canadian weather data set
considering Euclidean distance (gray), Mahalanobis distance (pink),
a Gaussian kernel (yellow), a polynomial kernel (blue), kernel k-means
for initialization (green) and k-means for initialization (orange)

Purity Fmeasure RI Time

svc. d2.EIHIMEI 0.714 0.604 0.729 0.00801
kkmeans. d2.EIHIMEI 0.685 0.557 0.728 0.00807
kmeans. d2.EIHIMEI- 0.714 0.518 0.728 0.00400
kmeans. d2.EIHIMEI 0.714 0.518 0.728 0.00399
kmeans. dd2.EIHIMEI 0.714 0.518 0.728 0.00464
svc. dd2.EIHIMEI 0.714 0.518 0.728 0.02424
complete. d2.EIHI 0.714 0.517 0.718 0.00401
complete. dd2.EIHI 0.714 0.517 0.718 0.00000
ward.D2. d2.EIHIMEI 0.714 0.520 0.718 0.00000
kkmeans. d2.EIHIMEI 0.714 0.555 0.706 0.01244

Nevertheless, the value of F-measure is smaller becausewhen
focusing on the configuration of a concrete group, although
the number of observations in the group seems to be cor-
rect, the observations inside that group are misclassified. For
example, when looking at the Pacific group in Table 28, 6
observations are considered instead of 5, but only 2 out of
the 6 are real Pacific observations.

For the functional k-means procedure (Table 29), the best
result is obtained when considering the truncated Maha-
lanobis distance (RI=0.784, F-measure=0.613). Among test-
based k-means (Table 30), the best result is obtained
with a hierarchical clustering initialization (RI=0.764, F-
measure=0.613). Baseclust, fitfclust, distclust and curvclust
do not provide competitive results in terms of RI compared to
the other three approaches. Modelcf, with RI equal to 0.745,
is the only approach from the five in Yassouridis and Leisch
(2017) obtaining a closer value of RI, although it is not the
best approach (see Table 31).

Regarding the execution time, the only alternative to EHy-
Clus is baseclust, but it obtains the worst results in all the
classification metrics. Thus, EHyClus appears as the best
alternative.
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Table 28 Confusionmatrix obtained fromcomparing real classification
to that obtained with our proposal

Artic Atlantic Continental Pacific Total

Artic 3 0 0 0 3

Atlantic 1 8 2 4 15

Continental 1 1 10 0 12

Pacific 0 3 0 2 5

Total 5 12 12 6 35

Table 29 Mean values of Purity, F-measure, Rand Index and execution
time for the functional k-means procedure with truncated Mahalanobis
distance, generalizedMahalanobis distance and L2 distance to data from
the Canadian weather data set

Purity Fmeasure RI Time

dk, k = 3 0.771 0.634 0.784 0.7937

dρ, ρ = 1 0.743 0.598 0.770 0.7697

dρ, ρ = 100 0.743 0.552 0.746 0.7462

dk, k = 2 0.686 0.503 0.694 0.6941

dρ, ρ = 0.001 0.686 0.489 0.681 0.6807

dρ, ρ = 1e + 08 0.657 0.424 0.681 0.6807

L2 0.686 0.489 0.681 0.6807

dρ, ρ = 0.02 0.657 0.473 0.671 0.6706

Table 30 Mean values of Purity, F-measure, Rand Index and execution
time for the test-based k-means procedure with four different initializa-
tions to simulated data from the Canadian weather data set

Purity Fmeasure RI Time

hclust 0.771 0.613 0.764 0.12433

kmeans 0.714 0.532 0.731 0.08789

kmeans ++ 0.685 0.508 0.717 0.36513

random 0.600 0.427 0.657 0.12229

Table 31 Mean values of Purity, F-measure, Rand Index and execu-
tion time for the five different procedures described in Yassouridis and
Leisch (2017) to data from the Canadian weather data set

Purity Fmeasure RI Time

baseclust 0.629 0.468 0.661 0.02593

fitfclust 0.657 0.534 0.704 12.6607

distclust 0.571 0.437 0.640 1.54100

modelcf 0.743 0.548 0.745 0.05882

curvclust 0.657 0.492 0.681 1.1376

6 Discussion

In summary, this paper proposes EHyClus, a new method-
ology for clustering functional data that is competitive with

Fig. 19 The three elections to be made during the proposed procedure

respect to the existing ones. EHyClus is based on transform-
ing a functional problem into a multivariate one through the
use of the epigraph, the hypograph indexes, their generalized
versions and multivariate clustering techniques. It has been
compared to seven different clustering procedures, outper-
forming them in most of the cases in terms of classification
metrics and execution time. Finally, the code needed to carry
out this analysis and to apply EHyClus is available in the
GitHub repository: https://github.com/bpulidob/EHyClus.

In order to automatically implement a data-driven pro-
cedure able to choose the best combination based on the
intrinsic characteristics of the data, further research is needed.
Currently, the best combination is obtained based on external
validation methods. That is, all the combinations are created,
all the clusteringmethods are applied, andfinally, one of them
is chosen based on these metrics. To improve this procedure,
these elections may be carried out as independent processes,
as illustrated in Fig. 19.

The election of the best combination for a given data set
without knowing the ground truth is a question for future
research. Two possibilities arise in this line. One consists
of using internal validation indexes, based on the intrisic
information of the data. (Manning et al. 2009). The Calinski-
Harabasz index (Calinski and Harabasz 1974), the Silhouette
index (Rousseeuw 1987), and the Davies-Bouldin index
(Davies and Bouldin 1979) are examples of these valida-
tion measures. The other one consists of studying in depth
the a priori potential information given by each combina-
tion. For this purpose, different statistical techniques such
as the generalized variance proposed in Wilks (1932) could
be considered. This methodology leads to a vast reduction
in the number of combinations to process. The execution
time needed to complete the process would also be reduced.
Moreover, these two approaches could be combined if the
clustering method is not fixed in advance.
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Table 32 Distribution of the number of clusters suggested when apply-
ing Silhouette for each Scenario simulated 100 times

2 3 4 5 6

S 1-2 99 0 0 0 1

S 1-3 100 0 0 0 0

S 1-4 100 0 0 0 0

S 1-5 62 5 5 7 21

S 1-6 72 5 4 6 13

S 1-7 89 2 1 3 5

S 1-8 100 0 0 0 0

S 1-9 100 0 0 0 0

S 10-11 71 15 8 4 2

S 10-12 73 15 5 3 4

S 15-16-17 84 16 0 0 0

S 18-19-20 100 0 0 0 0

S 21-22-23 100 0 0 0 0

It is now generally accepted to fix the number of clusters
in advance. This paper has dealt with this issue in that way.
The same approach was followed by Martino et al. (2019),
Zambom et al. (2019), and (Yassouridis and Leisch 2017).
The election of the number of groups may constitute the
object of future studies. See for example (Akhanli andHennig
2020).

Some tests have been carried out, such as the Silhouette
index, in order to determine the number of clusters. Each sce-
nario has been simulated 100 times, and the results are given
in Table 32. In view of the results, this methodology seems to
work well when the number of clusters is two. However, for
three groups, the results were unacceptable. As an alterna-
tive, the R package ‘NbClust’ has also been considered (see
Charrad et al. 2012). However, the results were not as good
as expected, concluding that further research is still needed.
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