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For decades optical time-domain searches have been tuned to find ordinary supernovae,

which rise and fall in brightness over a period of weeks. Recently, supernova searches have

improved their cadences and a handful of fast-evolving luminous transients (FELTs) have

been identified1–5. FELTs have peak luminosities comparable to Type Ia supernovae, but rise

to maximum in < 10 days and fade from view in <month. Here we present the most extreme

example of this class thus far, KSN2015K, with a rise time of only 2.2 days and a time above

half-maximum (t1/2) of only 6.8 days. Here we show that, unlike Type Ia supernovae, the

light curve of KSN2015K was not powered by the decay of radioactive elements. We further

argue that it is unlikely that it was powered by continuing energy deposition from a central

remnant (a magnetar or black hole). Using numerical radiation hydrodynamical models, we

show that the light curve of KSN2015K is well fit by a model where the supernova runs into

external material presumably expelled in a pre-supernova mass loss episode. The rapid rise

of KSN2015K therefore probes the venting of photons when a hypersonic shock wave breaks

out of a dense extended medium.

We identified KSN2015K as an unusual transient in the K2 Campaign 6 data from the ex-

tended Kepler mission6. While we have several ground-based optical programs to find super-

novae during a K2 Campaign, KSN2015K was identified in February 2016 after the Campaign 6

data were publicly released. Re-analysis of images taken by the Dark Energy Camera (DECam)

and SkyMapper clearly show the transient, but it was not flagged because it only appeared on

one epoch. We therefore could not obtain a spectrum of the transient itself. The host has a

redshift of 0.090 implying a luminosity distance of 410 Mpc (assuming a flat cosmology with
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H0 = 70 km s−1 Mpc−1).

The K2 light curve of KSN2015K seems to have four phases (see Figures 1 and 2). The rise

is well fit by a quadratic function starting 1.6 days before maximum. Before that, the light rises

like t2 and suggest the explosion occurred 2.2± 0.1 days before peak brightness. After maximum,

KSN2015K shows a decline followed by a plateau and finally a power-law decay. Additional,

ground-based photometry from DECam and SkyMapper show the color to be quite blue (see sup-

plemental material). At peak, KSN2015K’s color is r− i = −0.15±0.05, and ∼ 8 days after peak

its color remains quite blue at g − r = −0.17± 0.20 even after fading to half its peak brightness.

KSN2015K’s host is a star-forming spiral galaxy and the transient is seen projected on a

spiral arm (see Figure 1 and the Methods section). If the transient is associated with the arm,

the environment suggests a relatively short time between birth and the transient outburst, but both

thermonuclear and core-collapse supernovae are found in young, star-forming populations.

The progenitors of FELTs and the energy source that powers the light curve have been de-

bated. Members of the class could originate from more than one type of progenitor. The high-

cadence time-sampling of KSN2015K allows us to establish strong constraints on the origin of this

particular event.

If FELT light curves are powered by an internal energy source, such as the decay of ra-

dioactive isotopes or a central engine, then the light curve rise time is set by the photon diffusion

timescale through the remnant, tdiff ∝ (Mκ/v)1/2 where M is the remnant mass, v the expansion
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velocity, and κ the opacity. The rise time of KSN2015k was ∼ 8 times shorter than that of Type Ia

supernovae (which have mass ≈ 1M⊙), implying an ejected mass of only a few times ∼ 10−2 M⊙.

Differences in the velocity and opacity of the ejecta are unlikely to change this estimate by more

than a factor of several. This mass constraint, however, does not apply to mechanisms that directly

deposit thermal energy near the ejecta surface, such as the blast wave from the explosion or shocks

from circumstellar interaction.

There are several explosive scenarios that may lead to the ejection of such a small radioac-

tive mass (10−4
− 10−1 M⊙), such as the thermonuclear explosion of a shell of accreted Helium

on the surface of a white dwarf7, the accretion induced collapse of a white dwarf to a neutron

star8, 9, the merger of two neutron stars (i.e. kilonova) 10, 11 (see Figure 3), or the core collapse

of massive stars if little ejecta is produced12, 13. While radioactive models of these scenarios can

reproduce the timescales observed for the KSN2015K light curve, they fail to reproduce its peak

brightness7, 9, 14–16 on rather general physical grounds. The peak luminosity of a radioactive super-

nova is approximately (to within a factor of ∼ 2) given by the instantaneous rate of heating by

decay. The heating rate for radioactive isotopes with half-lives in excess of a few days (such as

56Ni at ∼ 3 × 1010 ergs s−1 g−1) requires a radioactive mass of ∼ 0.1 M⊙ to power the peak of

KSN2015K. This conflicts with the ∼ 10−2 M⊙ limit on the total ejecta mass inferred from the

light curve risetime. This tension is not likely resolved by arguing for an anomalously low opacity

in KSN2015K, since the luminosity and hence thermal state are similar to that of ordinary SNe.

Figure 4 quantifies the allowed range of radioactive powered light curves and shows that such a

source can be ruled out for KSN2015K.
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An alternative possible power source for supernova light curves is energy deposition from a

central engine, such as a rotating magnetized neutron star17, 18 (a magnetar) or an accreting black

hole19. Such compact objects may be formed in the core collapse of a rotating massive star, and

have been suggested to power the most luminous supernovae. The ejecta mass constraints above

apply to central engine heating, but the peak luminosity can be substantially greater than is possible

with radioactivity. However, explaining KSN2015K with a central engine implies extreme or fine-

tuned parameters. A magnetar with rotational energy Em and spindown time tm produces a peak

light curve luminosity of approximately20 L ∼ Em tm/t
2
diff . For an aligned force free wind21,

the quantity Em tm is independent of the magnetar spin period and depends only on the surface

equatorial dipole magnetic field, B, as Emtm ≈ 6 × 1084B−2. The properties of KSN2015K

(L ≈ 1043 ergs s−1 and tdiff ≈ 2 days) then suggest an extreme field of order B ∼ 5× 1015 Gauss.

A magnetar model could be constructed to fit the light curve of KSN2015K, but it would require

invoking both an exceptionally strong magnetar and an unusually small ejecta mass.

For a black hole model, the small ejecta mass of KSN2015K would indicate a nearly failed

supernova where all but . 1% of the star remained bound to the black hole. The power from

fallback accretion can be estimated22 as P = ǫ Mfb/tfb (t/tfb)
−5/3, where Mfb is the fallback mass,

tfb the fallback time, and ǫ the accretion efficiency. For Mfb ≈ M⊙ and adopting a relatively short

fallback time tfb ∼ 1 hour (characteristic of compact stripped star with R ∼ R⊙) the accretion

power will far exceed the luminosity of KSN2015K at t = 2 days unless the efficiency is ǫ ∼ 10−5,

which is much less than the characteristic value ǫ ∼ 0.1. To reconcile the difference would require

fine tuning the fallback dynamics and/or accretion disk formation such that only a tiny fraction of
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the infalling material was tapped to power the light curve.

Long gamma-ray bursts (GRBs) result from the core-collapse of very massive stars23 that

drive collimated relativistic jets. When a jet is viewed off axis, no gamma-rays are seen, but the

shocked circumstellar gas may be visible as an “orphan afterglow”. The light curve of KSN2015K

is a good match to orphan afterglow models (see the Supporting Material). However, GRBs are

very rare compared to SNe, so the chance of having found a GRB afterglow during the K2 mission

is exceedingly small (see Supporting Materials).

A final class of models for KSN2015K suggests that the transient is powered by energy

deposited by a hydrodynamical shock, either the shock of the supernova explosion itself or one

occurring post-explosion due to the interaction of the stellar ejecta with the circumstellar medium

(CSM)24–28. An explosion shock carries energy to the outer layers of the star and eventually vents

in a shock breakout event at a radius R where the optical depth τ is low enough that the radiative

diffusion timescale, td ≈ τ R/c, becomes comparable to the dynamical time, R/vs, where vs

is the shock velocity. This occurs at an optical depth τ ≈ c/vs ≈ 30 for a shock velocity

vs = 104 km s−1.

To explain the rapid rise of KSN2015K as a shock breakout event requires that the diffusion

time from the shock td ≈ 30 R/c be of order 2 days, which implies R ≈ 2 × 1014 cm. This

is larger than typical radii of red supergiant supernova progenitor stars29. The effective radii of

red supergiants could be increased just prior to explosion by envelope inflation or enhanced mass

loss through winds. However, if the progenitor had been a supergiant with a wind, the explosion
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would have resulted in a long lasting light curve similar to a Type IIP at later times30 (i.e., L ≈

1042 ergs s−1 at t ≈ 50 days), which is inconsistent with the rapid dimming of KSN2015K. We

therefore conclude that the progenitor was more compact (e.g., a helium or carbon/oxygen star)

with radius ≈ 1011 cm and interacted with a dense and extended CSM at radius of several times

1014 cm. Shock breakout thus occurs in the extended CSM shell24.

We can make an order of magnitude estimate of the minimum mass loss rate required to

explain the KSN2015K light curve. Assuming constant density, the CSM mass required to produce

τ ≈ c/v is M ≈ 4π R2 c κ vs ≈ 10−2 M⊙ for κ = 0.34 cm2 g−1. This CSM must have

been lost within a time tcsm ≈ R/vcsm before explosion, where vcsm is the CSM velocity. For

vcsm = 10 km s−1 (typical of a red-giant wind) we have tcsm ≈ 6 years and an effective mass

loss rate of Ṁ ≈ 2 × 10−3 M⊙ yr−1. For the more likely case of a stripped envelope progenitor,

the characteristic escape velocity is vcsm = 1000 km s−1 which implies a mass loss episode with

Ṁ ≈ 2× 10−1 M⊙ yr−1 occurring tcsm ≈ 20 days before the explosion. Such mass loss rates are

much greater than typical winds from massive stars, but could be produced in episodic mass loss

outbursts.

To test whether the shock breakout in CSM can explain the light curve of KSN2015K, we ran

numerical radiation-hydrodynamical simulations of a supernova running into a circumstellar shell

(see SM). Figure 1 shows that for a model with CSM masses and radii roughly in the range esti-

mated above, the venting of the post-shock energy at breakout can explain KSN2015K’s very rapid

rise to a luminous peak. The post maximum luminosity is due to the diffusion of shock deposited
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energy from deeper layers. At later times (t & 10 days) the decline of the KSN2015k light curve

becomes shallower and it is possible that radioactive 56Ni decay contributes to the luminosity. The

numerical calculation suggests a somewhat higher CSM mass (≈ 0.15 M⊙) than the simple min-

imum mass analytic estimates above, although this number can depend upon specific details of

opacity and composition. As the shape and brightness of the model light curves are sensitive to

the CSM and ejecta parameters (Supplementary Figure 1) the full coverage high sampling of the

KSN2015K light curve provides strong constraints on the conditions of shock breakout in a dense

circumstellar medium.

Fast transients are difficult to discover and follow-up, and sufficient numbers have been dis-

covered only in recent years due to surveys with improved cadence and depth like Pan-STARRS1

(PS1) and Palomar Transient Factory (PTF). One of the earliest fast-transients identified was

SN2002bj, which was initially postulated to be a “.1a” event1, but its high luminosity makes this

unlikely. The spectrum of SN2002bj was similar to a SNIa except for a prominent Helium line

suggesting that it might be a stripped core-collapse event with a Helium envelope. The very bright

SN2015U rose in less than 10 days and its time above half maximum was t1/2 = 12 days. It

showed narrow Helium features4, implying that interaction with a hydrogen-poor CSM does occur

in rapidly evolving events. Similarly, SN2010X had a rise of less than 10 days and t1/2 = 15 days,

but was four times fainter than SN2002bj1, 2. The rapid evolution and lower luminosity means

SN2010X could be powered by radioactive decay of thermonuclear products. The blue and fast

transient iPTF 16ASU31 has a comparable color and rise-time than KSN2015K, but it is signifi-

cantly brighter and the overall event duration is also longer by at least a factor of two. In Figure 3,

8



we compare the light curve of KSN2015K with SN2002bj and SN2015U.

The largest sample of fast transients3, discovered in the PS1 survey, has rise time upper-

limits of 3 to 5 days and peak luminosities similar to KSN2015K (see Figure 4 for a comparison of

rise times and absolute magnitudes). These PS1 transients also show very blue colors with typical

g − r = −0.2 mag near maximum light and only a slow reddening afterwards. Thus, the PS1

transients are very similar to KSN2015K in all their photometric properties. Using the 3 FELT

rate from PS1 (see Supporting Material), we expect to find a small number of FELTS in K2. Fast

transients from the Supernova Legacy Survey5, the Palomar Transient Factory5, and the Subaru

telescope32, are brighter, have significantly longer rise times and/or longer event durations, and are

therefore likely to be different to FELTs.

We find that KSN2015K and the fast transients from the PS1 sample are most consistent with

the shock-breakout into a dense circumstellar shell. It reproduces the significant characteristics of

FELTs (fast, bright, blue) without much fine tuning. Even though models with a central engine

can fit the light curve of KSN2015K and other FELTs, it requires an unlikely confluence of rare

occurrences, and therefore is less likely. All of the other models of the power source of these events

cannot explain at least one of their main properties.
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Figure 1: The K2 light curve of KSN2015K. Blue dots are individual 30-minute cadence observa-

tions while the red points represent 3-hour median-value bins. The image cutouts in the inset show

60 second i-band DECam images from UT July 7th 2015 (2 months before peak) and August 1st

2015 (around peak) in the top and bottom panels, respectively. KSN2015K is marked with a red

circle in the bottom panel. The photometric uncertainty is seen as the scatter of the K2 observations

before the outburst.
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Figure 2: KSN2015K’s rise to maximum light. Red points are 3 hour median bins of the K2 long

cadence data. Error bars are 3σ uncertainties on the binned photometry points. The blue line is a

quadratic fit to the points between −1.64 < t < 0.0 days. The green line is a (t − t0)
2 fit to data

between −2.2 < t < −1.64 days. The uncertainty on each point is estimated from the scatter of

the six measurements averaged in each bin.
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Figure 3: Light curve comparison. The KSN2015K light curve (red dots) assuming H0 = 70

km s−1 Mpc−1 and a Milky Way extinction of AV = 0.10 mag. The light curve of another Ke-

pler type Ia supernova (blue line) is shown for comparison. Also shown are light curves of the

fast transients SN2002bj and SN2015U, and the kilonova AT2017gfo/SSS17a10, 11. The black line

shows the best fit shock breakout in circumstellar material model. The detection significance for

KSN2015K is indicated at the lower left of the figure as the number of standard deviations (σ)

from the average background.
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Figure 4: Peak luminosity versus rise time: The peak luminosity versus rise time at optical wave-

lengths for fast transients (blue) and type Ia supernovae (green) from SDSS-II. The red star shows

the position of KSN2015K. Purple diamonds show “.1a” models7. Dotted lines show Arnett’s rule

for a range of synthesized 56Ni masses. The dashed line is a thermonuclear scenario where a pure

56Ni envelope is ejected at 10000 km s−1. Events to the left of the dashed line cannot be fully

powered with radioactive decay. The errors on the rise times are taken from the literature. For

KSN2015K, the uncertainty is smaller than the symbol size and is estimated from the data show in

Figure 2.
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Methods

Additional Photometry DECam on the CTIO 4-meter observed the transient on BJD=2457236.523,

only 1.4 days after maximum light. Using template subtraction, an SDSS-i band magnitude of

19.55±0.02 was measured for this observation at R.A.=13:31:51.64 and Dec=-10:44:09.48. Im-

ages taken 12 and 16 days later finds the transient has faded below the 5σ detection limits of 22.41

mag and 22.87 respectively.

SKYMAPPER observed the transient on BJD=2457242.906 (7.8 days after maximum) and

obtained magnitudes of 20.01±0.12 and 20.18±0.17 in SDSS-g and SDSS-r bands respectively.

The g−r color is −0.17±0.20, which is quite blue despite having faded to half its peak brightness.

We can compare the DECam i-band magnitude to the K2 brightness obtained at the same time

to approximate a SDSS r − i color. The K2 bandpass can be approximated as Kp = 0.3g + 0.7r

which is approximately r when g − r ≈ 0. So the K2 magnitude at the time of the DECam

observation was r=19.40±0.05 resulting in a color of r − i = −0.15± 0.05 mag.

Rise Time Time of maximum light is 2402.09 = BJD – 2457235.1±0.1 estimated using 3rd order

fit around peak. The earliest 3σ detection is −2.02± 0.02 rest frame days from max light. The rise

in flux, F , is well fit by a quadratic polynomial

F (t < 0)/Fpeak = −0.3550 t2 − 0.100 t+ 1.00

where t is the age in days (a negative number before maximum). The fit reaches zero flux at

t = −1.83 days. The quadratic model fails to fit the earliest significant detections before t < −1.7
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days, so we add a “toe” rising like t2 to join with the quadratic and allow the time of explosion to be

a free parameter. The result suggests the explosion occurred at −2.2± 0.1 days before maximum

light.

Shock Breakout in Circumstellar Material (CSM) Model In order to model the CSM shock-

powered scenario, we carry out one-dimensional radiation hydrodynamical simulations in spheri-

cal symmetry using CASTRO 1, 2. We solve the equations of radiation hydrodynamics with a gray

flux-limited non-equilibrium diffusion approximation. We model the supernova ejecta as a homol-

ogously expanding broken power-law3, characterized by an ejecta mass Mej, outer ejecta velocity

Vej, and outer radius Rej, with a temperature Tej = 104 K. The CSM is modeled as a constant-

density shell with mass Mcsm at radius Rcsm and thickness ∆Rcsm. The shell is initially “cold”

with Tcsm = 103 K and moving at Vcsm = 100 km s−1. We assume the opacity is dominated by

electron scattering, where κes = 0.4 cm2 g−1 for ionized hydrogen. Recombination effects are

modeled by an opacity drop-off at the hydrogen recombination temperature Trec ≈ 5000 K.

The best-fit CSM model of KSN2015K is shown in Supplementary Figure 1. The rise time

is set by the shell thickness, trise ∼ ∆R/Vej ∼ 2 days and required a thin shell of ∆Rcsm/Rcsm ≈

0.25 to capture the rapid rise of KSN2015K. Overall, the thin-shell CSM interaction model pro-

vides a reasonably good fit to the KSN2015K data, matching well the rise, peak, and decline of

the light curve. A more systematic exploration of FELTs due to CSM shock interaction will be

forthcoming (Khatami et al. in prep).

While the inferred parameters don’t provide any constraint on the exact mass-loss mechanism
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to produce a thin dense shell, the best-fit model gives reasonable ejecta parameters and CSM mass

and radius. If we assume the mass loss is steady over a finite interval with a constant velocity of

Vcsm ∼ 1000 km s−1, the CSM is ejected roughly tcsm ∼ Rcsm/Vcsm ∼ 0.13 years prior to the

supernova, and occurred over a time ∆tcsm ∼ ∆Rcsm/Vcsm ∼ 11 days.

Orphan Afterglow Model Long gamma-ray bursts (GRB) are the result of the core-collapse in

massive stars 4 that eject highly collimated, relativistic jets 5 into the circumstellar environment

of the progenitor. The jet generates a shock into the circumstellar gas that emits radiation at

wavelengths between the x-ray and radio domains. The high Lorentz factor, γ, of the jet means

that the shock emission is beamed. The optical light curves of GRB afterglows are generally

decaying power laws with an initial index of α1 = 1.2 ± 0.5. The beaming angle increases as

the shock slows and when the Lorentz factor becomes comparable to the inverse jet opening angle

(γ ≈ θ−1
jet) an on-axis observer can see the entire shock. At this point the power law decay slope

increases to α2 = 2.8± 0.3 6.

If we set the observed time of first light (BJD=2457232.70) to be t = 0, then after maximum

the KSN2015K light curve behaves like a broken power law (Supplementary Figure 2). The initial

decay index is a shallow 0.5 with a sharp break at about 8 rest frame days where the decay index

becomes 2.8. Unlike a GRB afterglow viewed near the jet axis, the light curve brightens over

the first 2 days. For an orphan afterglow, the viewing angle, θobs, is greater than the jet opening

angle, θjet, and no gamma-ray burst is seen, but afterglow emission may become detectable as γ

declines and the beaming angle increases 7, 8. Thus, an orphan afterglow will rise quickly, reach
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a peak and then fade like a power law or broken power law. The Totani et al. model does an

excellent job of matching the width of the transient’s light curve with power law indices that are

typical of decaying GRB afterglows ((Supplementary Figure 2). The model predicts a rise that

goes as t8, but KSN2015K increases in brightness more slowly. A better fit to the early rise can

be accomplished by shifting the assumed time of the burst by about 6 hours before the transients’s

first light. Overall, an orphan afterglow light curve is a good match to KSN2015K. However, the

ratio of GRB to core-collapse supernovae is of order 104, making it very unlikely that KSN2015K

is an orphan afterglow.

GRBs are very rare compared to SNe, e.g. there is only 1 long GRB for every 1000 SNIb/c9.

Further, SNIb/c constitute ∼10% of all core-collapse supernovae in the local universe 10. By

definition, orphan afterglows are viewed offaxis at an angle greater than the jet opening angle:

R = θobs/θjet > 1. At a fixed luminosity, the orphan rate should be higher than the GRB rate by

∼ R2. However, the peak brightness of orphan afterglows decreases quickly with viewing angle,

suppressing the chances of seeing an orphan event far off axis. For our GRB model of KSN2015K,

we find R ≈ 2. Increasing R to 3 would suppress its brightness by a factor of ten7 making it

undetectable in the K2 data. The rate of orphan afterglows with the properties of KSN2015K are,

at most, a factor of about 10 higher than the rate of long GRB. Since there has only been a handful

of core-collapse events detected by Kepler/K2, the chances of finding a GRB afterglow during the

K2 mission is exceedingly small.
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FELT rates We estimate how many FELTs we should have expected to find in the K2 Campaigns

up to Campaign 15. First, we integrate the galaxy stellar mass functions11 and integrate them back

to a redshift of zero, estimating the local stellar mass density to be between

ρM(z = 0) = 1.4− 2.5× 108M⊙Mpc−3 (1)

Based on the PS1 sample12, FELTs have a volumetric rate of

RFELT = 4800− 8000 events yr−1Gpc−3 (2)

We can combine these two measures to calculate the SN rate per unit mass13:

SNuM =
RFELT

ρM(z = 0)
(3)

We find the upper and lower limits of SNuM to be between 0.02 and 0.06, where SNuM has the

units of (100 yr)−1 (1010M⊙)
−1. A given galaxy was observed for about 0.2 yr in a K2 campaign,

with about 44,000 galaxies observed by Kepler in total until K2 Campaign 15. Assuming that the

typical mass of these galaxies is 1010M⊙, we then estimate that we should have found between 1

and 5 FELTs up to Campaign 15.

Host Galaxy Properties The host galaxy of KSN2015K was cataloged by the 2MASS survey as

2MASX-J13315109-1044061 with an infrared brightness of K = 13.57 mag. For a luminosity

distance of 410 Mpc (H0 = 70 km s−1 Mpc−1) and a k-correction of −0.23 mag, the infrared lu-

minosity of the host is MK = −24.26 mag. The luminosity function of 2MASS late-type galaxies

derived by 14 has a break at MK∗ = −23.75±0.06 (H0 = 70 km s−1 Mpc−1), showing that the host

is a fairly luminous and massive galaxy. Such galaxies tend to have a gas-phase metal abundance

close to solar.
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Images of the host galaxy were obtained at the Keck telescope in 2016 June, after the tran-

sient had faded in V and I filters. The host was also imaged with the Large Binocular Camera

(LBC) using the Large Binocular Telescope (LBT) through SDSS g, r, i, and z filters, plus a

Bessel-U filter. A pseudo-color image was created from the g, V and I filters and is shown in

the top panel of Supplementary Figure 3. The galaxy is clearly an inclined spiral with a blue color

implying significant star formation. The transient was seen projected on a spiral arm 14.0 kpc from

the host center.

A spectrum of the host was obtained with the Wide Field Spectrograph (WiFeS) on the ANU

2.3-m telescope (see bottom panel of Supplementary Figure 3). The spectrum covers a wavelength

range from 360 nm to 800 nm with a resolution of 3000. The four spaxels nearest the location of

the transient were combined to make a final spectrum covering one square arcsecond on the sky,

which at the host redshift, corresponds to 1.7 kpc2. Therefore, we have a relatively local spectrum

of the host environment.

The spectrum shows a flat continuum with weak absorption features of Balmer series Hβ,

Ca II and Na I. Strong emission lines of Balmer series Hα, [NII], [OIII], [OII], and [SII] are seen.

The lines are shifted by z = 0.090±0.002 and we conclude that this is the redshift of the transient.

This location in the host appears to contain a wide range of stellar ages. The Na I absorption

suggests an old stellar population while the Hβ absorption likely comes from stars with an age of

about 0.5 Gyr. The strong Hα emission shows that the formation of new stars is on-going. The

[OIII]/Hβ ratio is consistent with solar metallicity as expected for a massive galaxy.
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Supplementary Figure 1: CSM interaction models. Left: The KSN2015K data (red points) com-

pared to numerical radiation hydrodynamics simulations of the CSM interaction models (lines).

The best-fit model (black line, parameters shown inset) is able to capture the fast rise and peak

magnitude of KSN2015K as well as the rapid decline due to cooling of the shock-heated CSM and

ejecta. Right: The CSM interaction model around peak.
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Supplementary Figure 2: Orphan afterglow models. The KSN2015K light curve (red points)

compared to orphan afterglow models (blue lines). Observing a GRB off the jet axis at an angle

larger than the jet opening angle means the gamma-rays are not seen, but the afterglow may become

visible as the shock slows and the relativistic beaming broadens. The green lines show the model

light curve if the GRB were viewed directly along the jet axis. Left: For the first model, the time

of the GRB is assumed to be at the moment of first light (∆t = 0). However the orphan afterglow

model rises too quickly to match the observed light curve. Right: In the second model, the time

of the GRB is assumed to be about 6 hours before first light (∆t = −0.26 days). This has only a

minor effect on the model itself, but forces the light curve rise more steeply and better match the

model.
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Supplementary Figure 3: Host galaxy 2MASX-J13315109-1044061. Top: Pseudo-color image

of the host galaxy of KSN2015K made using V and I band images from Keck and SDSS-g band

from the LBT. The arrow points to the position of the transient. Bottom: The WiFeS spectrum

of the host galaxy. The spectrum is the sum of four spaxels covering one square arcsecond at the

location of the transient. The large Hα equivalent width suggests on-going star-formation. The

absorption at Hβ implies a significant post-starburst population.
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