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Abstract

Directional association measured by functional dependency can answer important questions on 

relationships between variables, for example, in discovery of molecular interactions in biological 

systems. However, when one has no prior information about the functional form of a directional 

association, there is not a widely established statistical procedure to detect such an association. To 

address this issue, here we introduce an exact functional test for directional association by 

examining the strength of functional dependency. It is effective in promoting functional patterns 

by reducing statistical power on non-functional patterns. We designed an algorithm to carry out the 

test using a fast branch-and-bound strategy, which achieved a substantial speedup over brute-force 

enumeration. On data from an epidemiological study of liver cancer, the test identified the 

hepatitis status of a subject as the most influential risk factor among others for the cancer 

phenotype. On human lung cancer transcriptome data, the test selected 1049 transcription start 

sites of putative noncoding RNAs directionally associated with lung cancers, stronger than 95% of 

589 curated cancer genes. These predictions include non-monotonic interaction patterns, to which 

other routine tests were insensitive. Complementing symmetric (non-directional) association 

methods such as Fisher’s exact test, the exact functional test is a unique exact statistical test for 

evaluating evidence for causal relationships.

Index Terms

Directional association; functional dependency; exact test; branch-and-bound; liver cancer; lung 

cancer; noncoding RNA; biomarker

1 Introduction

Uncovering casual mechanisms to explain a phenomenon is central to scientific endeavors. 

In cancer research, one is often charged with identifying environmental factors or genes that 

can be responsible for tumor development using data generated from observational studies. 

Complex non-monotonic functional relationships (Fig. 1) from gene to cancer have been 

increasingly observed. Abate-Shen and colleagues suggested a model of prostate cancer 
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progression as a non-monotonic function of p27 gene dosage [1]; indeed, genes in many 

cancer pathways showed a low-high-low expression pattern in response to an increasing p27 

dosage in mouse papillomas [2]. In breast cancer, the SKI gene can be either pro- or anti-

oncogenic [3], depending on the status of the TGFβ signaling pathway. Many studies also 

implicated the TLR4 gene to have both pro and anti-cancer effects [4]. Detecting such non-

monotonic functional patterns requires statistical methods sensitive to directional 

association. We focus on evaluating directional association via the functional dependency of 

a dependent variable (child) on independent variables (parents). We categorize a parent-child 

pattern into three types: (1) functional, (2) dependent non-functional, and (3) independent. In 

a functional pattern, the child is strictly a non-constant function of the parents. In a 

dependent non-functional pattern, the child can not be a function of the parents but they 

must be statistically dependent on each other. In an independent pattern, the child and the 

parents are statistically independent. Parametric regression [5] reveals functional 

dependencies among random variables but requires prior knowledge about the functional 

forms—often unavailable in not well-understood biological systems. Nonparametric 

regression [6] such as smoothing splines [7] relies on the given parametric form of splines. 

To be free from parametric assumptions, one can discretize continuous random variables, 

form contingency tables, and test associations using the classical Pearson’s chi-square [8] or 

Fisher’s exact test [9], [10] (Supplementary Note 1, 2). These tests, however, are insensitive 

to the direction of association. Sharply differing from previous methods, a recently 

developed asymptotic functional chi-square test (FunChisq) [11] uncovers directional 

functional dependencies among discrete random variables. The test statistic follows an 

asymptotic null chi-square distribution and has a unique property of asymmetric functional 

optimality (Theorem 8 [11]) that benefits causal inference. These theoretical properties of 

the asymptotic FunChisq may explain its outstanding performance at HPN-DREAM Breast 

Cancer Network Inference Challenges [12].

However, the inexact chi-square null distribution may prevent FunChisq from achieving a 

high statistical power when the sample size is modest. This motivated us to design a new 

exact functional test using the multivariate hypergeometric distribution for the null 

hypothesis to complement the FunChisq test. This distribution allows the calculation of the 

exact significance level (p-value) of functional dependency, by summing up the probabilities 

of those contingency tables from the null population that are no less extreme than the 

observed table. Next, we developed a practically efficient branch-and-bound algorithm to 

compute the exact p-value, attaining a substantial speedup over brute-force enumeration. 

The run time is reduced by taking advantage of the lower and upper bounds that we 

established for the test statistic. Our simulation study shows that the exact functional test 

promotes functional patterns over dependent non-functional patterns, by suppressing the 

statistical power on the latter. This is in contrast to Fisher’s exact test which performs 

similarly to the exact functional test in absolute statistical power for functional patterns, but 

has a higher statistical power for non-functional patterns than the exact functional test. This 

distinction enables the exact functional test to favor functional over non-functional patterns 

more than Fisher’s exact test. In addition, on independent patterns, the exact functional test 

maintains a similar level of type I error to Fisher’s exact test.
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Then we applied the exact functional test to reveal complex patterns in cancer biology. On 

data from a previous epidemiological study on four environmental or genetic risk factors to 

liver cancer, the test revealed hepatitis as the most important risk factor to the CpG island 

methylator phenotype of several tumor suppressor genes—an indicator of liver cancer; while 

such directional associations were not available in the original report [13] that used Fisher’s 

exact test and Pearson’s chi-square test. We further demonstrate the utility of the exact 

functional test by identifying 1049 potential noncoding RNA genes that are directionally 

associated with lung cancer phenotypes from FANTOM5 data [14]. The significance levels 

of these candidate genes are higher than 95% of 589 curated cancer genes from COSMIC 

Cancer Gene Census [15]. Several cases of gene-lung cancer association show non-

monotonic patterns, suggesting a possible context-dependent role of these genes ranging 

from oncogenic to tumor suppressing in lung cancer; meanwhile, routine tests including t-

test or logistic regression cannot detect such non-monotonic patterns. With both the 

theoretical arguments and experimental evidence, the exact functional test is uniquely 

advantageous in evaluating asymmetric functional dependency. Given the importance of 

functional dependency as evidence for causality [16], when asymptotic tests become 

inadequate, the exact functional test can serve as a useful instrument for exposing directional 

associations in many scientific applications beyond cancer biology.

2 Methods

2.1 Problem statement and notation

The problem is to test whether there is a functional relationship Y = f(X) from discrete 

random variable X to Y. The input data is a contingency table with observed counts of 

variable X and Y. The outcome of the test is the statistical significance of the functional 

relationship Y = f(X). Here X can be a compound variable composed of multiple variables 

and is called the parent variable, and Y is the child variable.

A contingency table is an r × c matrix O, where the r rows represent the levels of parent 

variable X and the c columns are levels of child variable Y. Let Oi,j at row i and column j of 

matrix O represent the sample count when X = i and Y = j. Let n be the sample size or the 

total number of observations in table O. Let Oi. be the sum of row i and O.j be the sum of 

column j in O, respectively defined as O
i · = ∑

j = 1
c

O
i, j

 and O · j
= ∑

i = 1
r

O
i, j

.

The asymptotic functional chi-square test (FunChisq) determines directionality of 

interactions and represents a paradigm shift from Pearson’s chi-square test [8]. FunChisq 

differentiates the parent-to-child from child-to-parent functional dependencies. The 

functional chi-square statistic of observed table O is defined by [11]

χ f
2(O) = ∑

i = 1

r

∑
j = 1

c (Oi, j − Oi ·/c)2

Oi ·/c
− ∑

j = 1

c (O · j − n/c)2

n/c
(1)
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which asymptotically follows a chi-square distribution [11] with (r − 1) × (c − 1) degrees of 

freedom under the null hypothesis of X and Y being statistically independent and the 

assumption that Y is uniformly distributed. The statistical significance can thus be computed 

by the upper-tail probability of the chi-square distribution. The optimality of χ
f
2(O) for 

functional dependencies has also been established [11].

However, the chi-square distribution approximates the p-value well only when the sample 

size is sufficiently large, and is inexact when the sample size is small. This is a major 

motivation to develop an exact functional test.

2.2 The exact functional test

We describe a novel exact test for functional dependency using an exact null distribution, of 

the test statistic also applied in the FunChisq test. We assume that the row and column sums 

of the contingency tables in the population are fixed to those of the observed contingency 

table O. The null hypothesis is that the parent and child variables are statistically 

independent. Thus, the probability of observing a table under the null hypothesis follows a 

multivariate hypergeometric distribution.

Let  be the set of all null contingency tables with the same row and column sums of O:

� = {A ∣ Ai · = Oi ·, i ∈ [1, r] and A · j = O · j, j ∈ [1, c]} (2)

where the row and column sums of A are defined as A
i · = ∑

j = 1
c

A
i, j

 and A · j
= ∑

i = 1
r

A
i, j

. 

The probability of observing A ∈  can be exactly described by a multivariate 

hypergeometric distribution for sampling without replacement [10]:

Pr (A) =
∏i = 1

r
Ai ·! · ∏ j = 1

c
A · j!

n! · ∏i = 1
r ∏ j = 1

c
Ai, j!

(3)

which is true under the null hypothesis of the exact functional test. Table A is no less 

extreme than O if A has a functional chi-square statistic no less than O. Let e(O) denote 

the set of all such extreme tables:

�e(O) = A χ f
2(A) ≥ χ f

2(O) and A ∈ � (4)

The statistical significance of O is defined exactly by the one-sided p-value

p‐value = ∑
A ∈ �

e
(O)

Pr (A) (5)
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The only non-constant functional pattern of a 2×2 table O is linear functions. As the inverse 

of a linear function is another linear function, it implies that the transposed table O⊤ has the 

same strength of functional dependency with O. Indeed, we proved in Theorem 1 

(Supplementary Note 3) that the exact functional test on any 2×2 table always returns a 

significance level equal to its transpose.

2.3 A fast and exact algorithm by branch and bound

To compute the exact p-value by definition, one must enumerate all tables in the null 

population . To reduce the burden of brute-force enumeration, we present a branch-and-

bound algorithm (Supplementary Note 4) to speed up the calculation by skipping or 

including an entire branch of tables. The fast algorithm took advantage of both mathematical 

upper and lower bounds for the FunChisq test functional chi-square statistic when a table is 

only partially enumerated. The two bounds were established based on Theorem 2 

(Supplementary Note 5) and Theorem 3 (Supplementary Note 6) on quadratic programming, 

respectively.

The strategy is illustrated by Fig. 2. A table A of with given row and column sums is 

enumerated element-wise and row by row. The descendants of Ai,j are the values of 

unenumerated elements after cell (i, j) in A. Let χ
f
2(A) be the functional chi-square statistic 

on table A. Considering elements in A to be enumerated, we determine both an upper bound 

UB(χ
f
2(A)) and a lower bound LB(χ

f
2(A)) of χ

f
2(A). Let O be the observed contingency table. 

We skip the entire branch to be enumerated if the upper bound is less than χ
f
2(O); and 

accumulate the probability of the entire branch if the lower bound is greater than or equal to 

χ
f
2(O). When an instance of A is fully enumerated, we will accumulate the probability Pr(A) 

if and only if χ
f
2(A) ≥ χ

f
2(O).

The run time of the branch-and-bound algorithm depends on sample size n, table size r × c, 

and also the given marginal sums {Ai.} and {A.j }. Let T (n, r, c, {Ai.}, {A.j }) be the total 

number of tables the algorithm has to examine. It is bounded above by the total number of 

unique tables with the given marginal sums. This total number, however, does not have a 

closed form and must be computed iteratively [17]. A less tight upper bound is the total 

number of unique ways of drawing n samples to generate tables with fixed marginal sums, as 

given below:

T(n, r, c, {Ai ·}, {A · j}) ≤
n!

∏i = 1
r

Ai ·!
·

n!

∏ j = 1
c

A · j!
(6)

This upper bound is also no greater than (r × c)n, the total number of unique ways of 

drawing n points into the r × c table without marginal sum constraints. This upper bound is 

exponential in n and polynomial in r and c.
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2.4 Simulating noisy discrete patterns

We used a simulator implemented in the function simulate_tables [18] from R package 

FunChisq [19] to produce noisy random contingency tables with functional, dependent non-

functional, or independent patterns. The first two pattern types have a uniform row marginal 

distribution for the parents. In independent tables both row and column sums are uniformly 

distributed. The simulator generates noise-free patterns first and then applies noise on the 

tables using the discrete house noise model [20], defined in Supplementary Note 7 and 

visualized in Supplementary Figure 1. To evaluate the performance of the exact functional 

test, we generated 8,100 contingency tables of three sizes (2×3, 3×3, and 4×4) and three 

sample sizes (30, 40, and 50) at three noise levels (0, 0.1, 0.5), covering three pattern types 

(functional, dependent non-functional, and independent), with 100 table instances for each 

unique setup.

3 Results

3.1 Performance evaluation

Exact functional test favored functional patterns by demoting non-functional 

patterns—We first applied the exact functional test on noise-free 3×3 tables of sample size 

50 to illustrate the statistical power for functional, dependent non-functional patterns and the 

null distribution for independent patterns. Distributions of p-values calculated for the three 

pattern types are shown in Figure 3. They suggest that the exact functional test is most 

powerful on functional patterns, much less powerful on non-functional patterns, and most 

insensitive to independent patterns.

Next, we compared the exact functional test and Fisher’s exact test [9] [10]. We applied both 

tests on each of the 8,100 tables to calculate two p-values (one for the exact functional test 

and one for Fisher’s exact test). Figure 4 shows histograms of p-value ratios of the exact 

functional test over Fisher’s exact test on 3×3 tables of sample size 50, for functional, 

dependent non-functional and null independent patterns. Fig. 4a suggests both tests promote 

functional patterns with a comparable level of statistical power. However, the positive 

skewness of the ratio distributions in Fig. 4b suggests that the exact functional test more 

heavily demotes dependent non-functional patterns, implying that exact functional test is 

more specific to differ functional and dependent non-functional patterns than Fisher’s exact 

test. In Fig. 4c, both tests have similar p-value distributions with ratios close to 1 for 

independent patterns representing the null hypothesis, suggesting comparable type I error 

rates. At the noise level of 0.5, both tests performed comparably in all three types as the 

noise has destroyed the patterns.

Supplementary Files 2, 3, and 4 show p-value distributions on all three table sizes and all 

three sample sizes. The behaviors of the two tests are consistent with Fig. 4 for 3×3 tables at 

a sample size of 50. Moreover, the p-value ratio on non-functional patterns shifted to greater 

values with increased sample sizes on tables of the same sizes. This suggests that the exact 

functional test demotes nonfunctional patterns more heavily when the sample size is large. 

No such strong effects are observed for functional or independent patterns.
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Therefore, although both tests are similar in absolute statistical power for functional 

patterns, the exact functional test suppressed the statistical power for non-functional patterns 

more than Fisher’s exact test. This gives the exact functional test a distinct advantage in 

promoting functional patterns.

Branch-and-bound reduced empirical run time—We evaluated the computational 

efficiency of the branch-and-bound algorithm over a brute-force implementation. We ran 

both implementations on 840 random contingency tables with increasing table and sample 

sizes. Fig. 5 shows the average run time as a function of sample size for the two 

implementations on 3×3, 4×4 and 5×5 contingency tables. As the sample size increases, the 

run time of the brute-force implementation becomes practically intractable. However, the 

fast branch-and-bound implementation remarkably reduced the run time for all table sizes 

and is practical on large tables. This indicates that a large number of branches could be cut 

or included during table enumeration in calculating the exact p-value.

The more extreme an observed table is, the more the run time will decrease, as more 

branches can be avoided. The worst-case run time of branch-and-bound is exponential, with 

very few branches to be cut, and comparable to brute-force enumeration. The best case for 

branch-and-bound occurs when the p-value approaches either 0 or 1, with the run time 

enormously reduced due to the extremity of the test statistic.

3.2 Evaluating liver cancer risk factors

To illustrate how directional functional dependency can extend an association study further, 

we examined an epidemiology study [13] that investigated four risk factors for 

hepatocellular carcinoma, a type of liver cancer. The risk factors of a person include (1) p53 

mutation, (2) cirrhosis, (3) hepatitis, and (4) country risk, called country of origin by Shen et 

al [13]. The variable of country risk takes a value of low if a patient was from a country or 

region of a low liver-cancer risk, including the United Kingdom, Europe, and the United 

States; otherwise, the value is high if a patient was from China, Egypt, or East Asia 

countries of a high liver-cancer risk. These four factors were studied for their effects on the 

CpG island methylator phenotype (CIMP). CpG islands are genomic regions enriched of CG 

nucleotide pairs on one DNA strand. The CIMP status is a global measure of CpG island 

hypermethylation in promoter regions of multiple tumor suppressor genes [13]. The level of 

CIMP was used as a direct measure of liver cancer risk, where an elevated CIMP level is 

associated with carcinogenesis. CIMP is negative (no methylated tumor suppressor genes), 

intermediate (1 or 2 methylated genes), or positive (>2 methylated genes). Table 1 gives the 

original data set as contingency tables formed between all risk factor-CIMP pairs. Using 

Pearson’s chi-square or Fisher’s exact test, the original study reported statistically significant 

associations between CIMP and all risk factors (Table 2).

However, the statistical methods used in the original study [13] are not designed to provide 

evidence for directional associations. We therefore performed the exact functional test on the 

tables separately in each direction from risk factors to CIMP (Table 3) and from CIMP to 

risk factors (Table 4). The results are consistent with the association tests (Table 2) in that at 

least one direction of each pair is statistically significant. All significant (p-value ≤ 0.05) 
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directional interactions obtained by the exact functional test constitute a dependency 

network shown in Fig. 6.

In the direction of primary interest (risk factor to CIMP), directional associations from both 

hepatitis and p53 mutation to CIMP are statistically significant, consistent with the logistic 

regression analysis result [13]. The exact functional test is more general as it does not 

assume a parametric form, while the logistic regression assumed the log odd as a linear 

function of the risk factors. With the lowest p-value, hepatitis is the most significant risk 

factor for liver cancer among the four. p53 mutation is the only other risk factor that is also 

significant. Meanwhile, country risk with the highest p-value is an insignificant risk factor. 

Although the original study [13] concluded that geographic factors, i.e. “country of origin”, 

may have influenced the methylation of tumor suppressor genes, our analysis suggests that 

the microenvironment created by hepatitis or p53 mutation may have a much stronger 

impact on CIMP than country risk.

In the direction of secondary interest from CIMP to risk factors, all risk factors are strongly 

functionally dependent on CIMP, with CIMP to hepatitis the most significant. A possible 

causal explanation for the directional association from CIMP to country risk would be that 

an elevated CIMP of citizens in a country may cause the country to be classified as of high 

liver-cancer risk.

3.3 Novel noncoding transcripts directionally associated with lung cancer

We sought to identify unannotated transcripts as potential novel noncoding RNAs on which 

cancer phenotypes functionally depend. FANTOM5 [14] offers an atlas of whole-body 

human gene expression at the promoter resolution and includes a large number of normal 

and pathological human cells and tissues. Using a published tissue catalog [21] on 

FANTOM5 samples, we selected a total of 32 samples classified as lung: 17 lung cancer 

samples were from cell lines covering 11 lung cancer subtypes; 15 normal lung samples 

included 12 samples of four types of primary lung cell and also three normal lung tissues. 

FANTOM5 used CAGE technology to capture a short sequence expressed from each 

transcription start site (TSS) [14].

We first applied the exact functional test on two genes known to be associated with lung 

cancer: ARID4A and CENPC1. ARID4A, a chromatin remodeling gene [22], may be either 

an oncogene or a tumor suppressor depending on the context [23]. ARID4A has been 

identified as a suppressor gene in mice leukemia [22] and an associated antigen in human 

breast cancer [24], [25]. However, Wu et al [26] showed that ARID4A mutation may also 

promote cancer development by cooperating with the PI3K/Akt pathway. Disruption of 

CENPC1 (CENP-C ) function was suggested as a cause of some human cancers [27]. 

CENPC1 is associated with MAD2 expression; MAD2 is a tumor suppressor in human 

somatic cells [28] and can also promote tumorigenesis in mice [29]. We examined the 

abundance of two TSSs p1@ARID4A and p1@CENPC1, where p1 specifies the most 

transcribed promoter of a gene. Figure 7 shows the expression of both TSSs in normal and 

cancer lung samples. The TSSs in normal samples, similarly distinguishable from those in 

the cancer samples, show non-monotonicity, suggesting diverse gene expression programs 

among lung cancer subtypes represented by the different lung cancer cell lines. Figure 7 also 
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indicates how well the expression of both TSSs can predict lung cancer using three methods 

including the exact functional test, logistic regression, and t-test. The latter two were chosen 

because both are widely used to identify interesting gene candidates. Logistic regression was 

applied to the original continuous values of gene expression and unpaired t-test with unequal 

variance on the normalized continuous data. In both cases, the exact functional test reported 

significant p-values (<0.05), but logistic regression and t-test missed both. This outcome is 

expected because neither logistic regression nor t-test was designed to detect non-monotonic 

patterns.

Next, we used the exact functional test to screen potential noncoding RNAs involved in lung 

cancer from 91,213 unannotated but robustly expressed TSSs in FANTOM5. We found 1049 

unannotated TSSs on which lung cancer phenotypes exhibited stronger dependencies than 

95% of the 589 curated cancer genes from COSMIC Cancer Gene Census [15]. 

Supplementary File 7 lists all detected 1049 unannotated TSSs with coordinates based on the 

human reference genome version hg19; these TSSs constitute our hypotheses of novel 

noncoding RNAs associated with lung cancer. The main steps of this screening are described 

in Supplementary Note 8.

Figure 8 highlights the expression pattern of two of the 1049 TSSs in lung cancer cell-lines 

versus normal lung tissues. The first TSS (p@chr1:2159463..2159483,+) in Fig. 8a is 

located in a DNase hypersensitive genomic region on a CpG island along the forward strand 

of chromosome 1. On human reference genome assembly hg19 in UCSC Genome Browser 

[30] with regulatory elements from ENCODE [31], twenty transcription factors bind to this 

site, with POLR2A and TAF1 having the strongest binding signals. POLR2A has been 

identified to be an indispensable gene in the proximity of cancer gene TP53 [32]. TAF1 

mutation has been reported to be associated with multiple cancer types including lung cancer 

[33]. Furthermore, histone mark H3K27ac is observed at and around this TSS site, 

suggesting active enhancers among those marked by H3K4me1 only [34]. In addition, the 

gene SKI, noted for its role in breast cancer [3], is 651bp downstream of this TSS. Its 

proximity to a cancer gene adds additional evidence to its tumor involvement. Figure 8b 

presents another TSS (p@chr2:232325416..232325485,+) that is antisense exonic to gene 

NCL on chromosome 2. Antisense long non-coding RNAs (lncRNAs) can play a role in 

regulating their neighboring genes [35]. Moreover, NCL was observed to be highly 

expressed on the surface of lung cancer cells, and its NCL-targeting aptamer (aptNCL ) was 

considered to be a promising tumor cell-specific targeting carrier to recognize the NCL-

expressing cells [36]. Given the strong lung-cancer specific expression patterns and 

supporting evidence from the literature, we hypothesize both unannotated TSSs may be 

putative lung cancer-associated non-coding transcripts and merit further biological 

investigation.

4 Discussion

We have presented a novel exact functional test to detect functional dependency in 

contingency tables based on the exact null multivariate hypergeometric distribution. It is the 

only exact statistical inference instrument for directional association as far as we are aware. 
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Our simulation studies have also shown that the exact functional test outperformed Fisher’s 

exact test in reducing statistical power on nonfunctional patterns to favor functional patterns.

As Fisher’s exact test detects symmetric—instead of directional—association among 

discrete random variables, it is sensitive to both dependent non-functional and functional 

patterns, limiting its effectiveness on recognizing functional relationships.

The fast branch-and-bound algorithm for the exact functional test is practically efficient to 

use—the more extreme the true p-value is, the more remarkable the run time reduction. The 

table enumeration problem is considered to be challenging, where a specific exact test 

involving Pearson’s chi-square was proved to be NP-hard [37]. We thus postulate that the 

exact functional test may also be NP-hard.

The two cancer biology applications not only revealed key liver cancer risk factors and new 

potential biomarkers for lung cancers, but also illustrated how the exact functional test 

addressed complex pattern recognition questions not easily answered by existing statistical 

association tests. We anticipate the exact functional test to become an important 

methodology, to be used in conjunction with or in place of Fisher’s exact test, for scientific 

discovery via directional associations.

Software availability

The exact functional test is implemented as the fun.chisq.test(…, method=“exact”, 

…) function within the R package FunChisq (≥2.4.3) in Comprehensive R Archive 

Network. The branch-and-bound algorithm is internally coded in C++. The package is freely 

downloadable from https://CRAN.R-project.org/package=FunChisq

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. A discrete non-monotonic functional pattern represented as a contingency table

A non-monotonic function exists from X to Y, whose inverse is not a mathematical function. 

The number in each cell is the frequency that a specific combination of X and Y is observed.
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Fig. 2. The branch-and-bound algorithm for the exact functional test

The contingency table A is enumerated element wise and row-by-row, such that it has the 

same row and column sums of the observed table O. If upper bound UB(χ
f
2(A)) < χ

f
2(O), Ai,j 

will not lead to any A with χ
f
2(A) ≥ χ

f
2(O) and this branch is abandoned. Otherwise, it is 

promising to enumerate Ai,j. If this branch has a lower bound LB(χ
f
2(A)) ≥ χ

f
2(O), all 

instances of Ai,j and its descendants (other unenumerated cells) will guarantee 

χ
f
2(A) ≥ χ

f
2(O). The total probability contributed by all tables under this branch will be 

calculated by evaluating a single formula, and then the enumeration of the entire branch is 

completed. Otherwise, Ai,j will be enumerated and the probabilities of those instances of A 

with χ
f
2(A) ≥ χ

f
2(O) are summed table-by-table to compute the exact p-value.
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Fig. 3. The exact functional test can effectively separate functional, non-functional, and 
independent patterns

The p-value distributions of the exact functional test on three types of pattern are shown. On 

the left, the p-value distribution suggests the test has the highest power on functional 

patterns. In the middle, the test is less powerful on dependent non-functional patterns than 

functional patterns. On the right, the test is least sensitive to independent patterns, with p-

values approaching 1 as expected. Exactly 100 noise-free tables of size 3×3 and sample size 

50 were simulated to generate each distribution.
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Fig. 4. The effectiveness of exact functional test is in reduced statistical power on dependent non-
functional patterns over Fisher’s exact test

The histograms show distributions of p-value ratios of the exact functional test over Fisher’s 

exact test on three types of pattern. Exactly 100 tables of size 3×3 and sample size 50 were 

simulated to generate each distribution. Each type of table was subjected to house noise at 

three levels of 0, 0.1 and 0.5. (a) On functional patterns, the ratio distributions are tightly 

centered around 1, suggesting similar p-values of both tests with a comparable statistical 

power. (b) On dependent non-functional patterns, the right-skewed ratios for most tables are 

higher than 1 and some can be as high as 100, indicating that the exact functional test is less 

sensitive to non-functions with a lower statistical power than Fisher’s exact test. (c) On 

independent patterns from the null hypothesis, both tests have a similar p-value distribution, 

indicating a comparable type-I error rate.
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Fig. 5. Empirical run time of the exact functional test by brute force and branch-and-bound

We recorded the average empirical run time for the two implementations on 840 random 

contingency tables with increasing table and sample sizes. The fluctuations in run time were 

due to the randomness of table marginals. The empirical run time as a function of sample 

size is shown for (a) 3×3, (b) 4×4, and (c) 5×5 contingency tables.
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Fig. 6. CIMP-risk factor functional dependency network for liver cancer

The CIMP status (diamond node) is an epigenetic feature summarizing the number of tumor 

suppressor genes methylated in their promoter regions leading to function impairment. The 

oval nodes are risk factors of liver cancer. The edges pointing to CIMP represent the 

influence of risk factors on the CIMP status—the primary objective of the original study. 

The edges originating from CIMP represent its predictive power on the risk factors. The 

network was obtained by the exact functional test and includes only interactions with p-

value ≤ 0.05. More significant interactions are indicated by wider directed edges.
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Fig. 7. Non-monotonic functional dependency of lung cancer phenotype on the expression level of 
two known cancer genes

The horizontal axis is the abundance of TSS in a sample in tags per million. We compared 

the exact functional test with unpaired t-test (unequal variance) and logistic regression in 

finding cancer associations with these genes. (a) Non-monotonic functional dependency of 

lung cancer on gene p1@ARID4A. (b) Non-monotonic functional dependency of lung 

cancer on gene p1@CENPC1.
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Fig. 8. Two putative noncoding RNAs with unannotated transcript start sites that are 
directionally associated with lung cancer phenotype

The legend is the same with Fig. 7. (a) An intergenic TSS repressed in cancer is located on 

the forward strand of chromosome 1. (b) An antisense exonic TSS, induced in cancer, is 

located within known cancer gene NCL on the forward strand of chromosome 2.
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TABLE 1

Clinicopathology correlates of CpG island methylator phenotype (CIMP) status. This table is adapted from 

Shen et al [13].

CpG Island Methylator Phenotype (CIMP)

Negative Intermediate Positive

Hepatitis

 Negative 12 12 8

 Positive 5 22 22

p53 mutation

 No 12 26 18

 Yes 0 8 12

Country risk

 Low risk 14 17 14

 High risk 3 19 18

Cirrhosis

 Negative 12 16 10

 Positive 5 18 21
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TABLE 2

Statistical significance (p-value) of the non-directional association between the CIMP status and liver cancer 

risk factors [13].

Non-directional Association p-value

Hepatitis ↔ CIMP 0.010* (Pearson’s chi-square test)

p53 mutation ↔ CIMP 0.017* (Fisher’s exact test)

Country risk ↔ CIMP 0.021* (Fisher’s exact test)

Cirrhosis ↔ CIMP 0.038* (Pearson’s chi-square test)

The p-values highlighted in bold with * are no more than 0.05. The last column is p-values from either Pearson’s chi-square or Fisher’s exact test. 

If the expected counts in all cells are greater than or equal to 5, Pearson’s chi-square test was applied; otherwise, Fisher’s exact test was used.
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TABLE 3

Directional association: statistical significance (p-value) of the CIMP status as a function of liver cancer risk 

factors.

Directional Association Exact functional test

Hepatitis → CIMP 0.0301*

p53 mutation → CIMP 0.0426*

Country risk → CIMP 0.0716

Cirrhosis → CIMP 0.0706
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TABLE 4

Directional association: statistical significance (p-value) of liver cancer risk factors as a function of the CIMP 

status.

Directional Association Exact functional test

CIMP → Hepatitis 0.0108*

CIMP → p53 mutation 0.0273*

CIMP → Country risk 0.0243*

CIMP → Cirrhosis 0.0424*
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