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Absrracr -In this paper, a new digital filter structure is developed for 

the implementation of two-dimensional (2-D) recursive filters for real-time 

image processing. The proposed structure has a short clock cycle time or a 

high data throughput rate, independent of the order of the filter. Parallel- 

ism and pipelining are the two features of the proposed filter structure that 

contribute to its high-speed performance. The filter can be implemented 

without multipliers. Using standard integrated circuits and memories, the 

new filter is capable of filtering images of size up to 512~ 512 pixels with 

a TV scan rate of 30 frames/s in real time. The effects of the finite 

precision arithmetic have been considered. Scaling and overflow problems 

are studied to give insight into the choice of a proper scaling factor, so that 

an adequate signal-to-noise ratio at the filter output can be obtained. 

I. INTRODUCTION 

I N THE PAST FEW years, real-time image processing 
using two-dimensional (2-D) digital filters has become a 

rapidly growing field in the industrial and biomedical 
environments, as the need for the fast processing of large 
amounts of data became evident. The term “real-time 
image processing” can be defined as “the processing of 
images at a speed such that the data rate of the processed 
images is the same as that of the input images.” If one 
considers an image of size M x N pixels and a TV scan 
rate of L frames/s, and if R arithmetic operations are 
required for each output pixel, the total number of arith- 
metic operations that have to be performed in one second 
is A4 X N X L X R [l]. We now summarize a number of 
filter structures that are already known to operate at high 
speed. 

Peled and Liu [2] described an implementation of digital 
filters by distributed arithmetic. This method has proved 
its advantage with respect to speed, cost, and power dis- 
sipation by storing all possible binary sums of the filter 
coefficients in a programmable read only memory (PROM). 
Distributed arithmetic implementation of 2-D digital filters 
can be found in [3] and [4]. Where the variability of the 
filter coefficients is important, the Canonical Sign Digit 
(CSD) representation of the filter coefficients [5] and the 
use of stored square ROM [6] have been suggested. Re- 
sidue Number System Arithmetic results in a highly paral- 
lel hardware design with characteristically high computa- 
tional speed [7]. More recently, a new memory-oriented 
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implementation of 2-D digital filters with each coefficient 
expressed by an algebraic sum of power-of-a terms has 
been presented [8]. The stored product digital filter archi- 
tecture as formulated in [9] and [lo] presents another 
alternative for the elimination of the multipliers through 
the use of ROM’s. 

A general configuration for 1-D recursive digital filters 
[ll] has shown that high-speed, 10 MHz or higher, word 
throughput rates for parallel operations in two’s comple- 
ment fixed point arithmetic are feasible with reasonable 
memory size and standard logic devices. The high operat- 
ing speed of the filter is due to its parallel-pipelined 
structure. This approach is different from the other imple- 
mentation schemes, in the sense that “a minimum number 
of arithmetic operations are required in one clock cycle.” 
If we consider an input data rate of S samples/s, the 
quantity l/S is the duration of one clock cycle. The main 
advantage of this method is that the data throughput rate 
is independent of the order of the filter. 

The purpose of this paper is to present a 2-D recursive 
digital filter structure (also valid for nonrecursive digital 
filters) that can operate at a very high speed. Section II 
describes the detailed development of the new 2-D digital 
filter structure that has a short critical path, from both the 
theoretical and practical points of view. Section III con- 
tains the hardware description of a second-order 2-D 
recursive filter for filtering of images of size up to 512 X 512 
pixels with a TV scan rate of 30 frames/s in real time. In 
Section IV, error analysis of the new 2-D filter structure is 
presented. Scaling, overflow problem, and experimental 
results with real images are covered in Section V. Section 
VI, finally, presents a summary of contributions made in 
this research. 

II. HIGH SPEEDTWO-DIMENSIONAL RECURSIVE 

DIGITALFILTER 

A 2-D causal recursive digital filter is described by the 
linear difference equation 

,,,,,,= ? 2 ai,,x,-i,n-j- 2 Z bk,lYm-k,n-l (1) Y 
;=l-Jj=(J 

kks? ‘r,” 

where x and y are the input image arrays, respectively, 
and a,, j and b, , are the filter coefficients of the nonrecur- 
sive and recursive blocks, respectively. MA and NA de- 
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scribe the size of the input mask, whereas MB and NB B 
describe the size of the output mask. 

: __ ,_ __ __ . . . . . . . . . . . . 

Some of the 2-D recursive digital filters described by (1) 
Adder Tree 

11 

which claim the capability of filtering images in real-time 
have a structure similar to that as shown in Fig. 1, this 

ia, ,I- cnqlmuaoul “mu .‘I ! 

kind of filter structure will be referred to as “direct form” .._ ___ ___ _. 
implementation. The structure is so named because the : ,.__.. .._.....__,,, ,...,,..,.......... . i 

output of the filter, y,,,, is computed directly from the ,?B .‘B ,‘# ,‘rl ,.B ,‘# 
difference equation (1). Although this filter structure ex- i, =.a-, +.-r, L-l L-2 y--p-x, 

hibits high parallelism, its main disadvantage is the limita- I 
tion in speed due to the propagation of the intermediate 
results through the adder tree in the computational unit. 

Fig, 1. Direct form implementation of a 2-D recursive digital filter. X 
-multiplier, B-number of bits used for the input/output, t-num- 

Our aim is to replace the adder tree by a more rational ber of bits used for the intermediate results. 

design of 2-D recursive digital filter structure so that the 
new filter will have a higher operating speed [12]-[14]; 

The causal digital filter described by (1) has the transfer 
function 

jFo jEoai, jzCizTj 

fm,,‘z,) = (2) 

l+ z c” b,,,Z,kZ,’ 

E ‘2 

where Z;’ and Z;’ represent row and column delays, 
respectively. Denote the numerator of the filter transfer 
function by N( Z,, Z,) and the denominator by D( Z,, Z,). 
Using Homer’s rule [15], N(Z,, Z,) can equivalently be 
expressed as 

N(Z,,Z,)=a,,,+Z;‘(a,,,+ ... +Z;‘(a,,NA).-.) 

+Z;l[al,o+Z;l(a,,,+ ... 

+Z;l(a,,,A)..-)+ ... 

+ Z,l a,A,o + Z;‘( a,A,I + . . . 
[ 

+Z;l(a,A,NA).-. ..- . )I 1 (3) 

Similarly, D( Z,, Z,) can also expressed as 

D(Z,,Z,)=l+Z;l(b,,,+...+Z;‘(b,,.B)...) 

+Z,’ bIo+Z;‘(b,,+ ... 
[ ’ 

+Z;l(b,,NB)--)+ .-. 

+ z,’ &,O [ 
+ Z;‘( bw,,l + . . . 

+ Z;1(b,w8,N,) 1.. )] . . -1. 

The schematic block diagrams ‘of N(Z,, Z,) and 
l/D( Z,, Z,) for a second-order 2-D digital filter are shown 
in Fig. 2a and 2b, respectively. Both N(Z,, Z,) and 

C4) 

l/D(Z,, Z,) have a transposed structure [16]. The cascade (b) 

of these two blocks will result in the original filter transfer Fig. 2. (a) Nonrecursive block N( Z,, Z,) of the second-order 2-D 
digital filter. (b) Recursive block l/D( Z,, Z,) of a second-order 2-D 

function given by (2). digital filter. 
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All signals are represented in fixed point two’s comple- 
ment code. The input samples and the output signals, 
assumed to be bounded by kl, have B bits of accuracy 
including the sign bit. All other intermediate results have 1 
bits of accuracy with t > B. Thus, the first block of the 
cascaded structure has B input bits and t output bits, 
while the second block has t input bits and B output bits. 
There are two ways of cascading these two blocks. The 
criteria is to design a filter structure with a short critical 
path, which is defined as the longest path among all the 
possible paths from the output of delay element to the 
input of the next one. Thus, the maximum operating speed 
of any filter is determined by the length of its critical path. 
The critical path contains one multiplication and three 
additions when the recursive block is followed by the 
nonrecursive block. This path is shown in Fig. 2b in bold 
lines. When the two blocks are interchanged, the critical 
path contains two multiplications and three additions. It is 
possible to further reduce the number of arithmetic oper- 
ations in the critical path, as in the 1-D case [ll]. The 
minimum number of arithmetic operations required in the 
critical path of a 2-D recursive digital filter has to be 
figured out first. 

For 1-D digital filters, a configuration for which the 
critical’path contains no more than one multiplication and 
one addition has been derived [ll]. For 2-D digital filters, 
the critical path should contain only one more addition 
than that of the 1-D filter. The extra addition is required 
for adding the intermediate results from the 2; ’ and Z;’ 
blocks. In order to obtain the desired critical path, the 
original 2-D filter transfer function should be modified so 
that the new transfer function fi(Z,, Z,) should have the 
form 

A( z,, z,) = H( z,, z*)z;pz;q 

with p and q being nonnegative integers. The use of 
latency makes it possible to complete all the arithmetic 
operations required for an output in more than one clock 
cycle, thus resulting in a shorter clock cycle. It is desirable 
to have the minimum possible latency, which is defined as 
the time interval separating the appearance of an input 
sample at the input port from the appearance of the 
corresponding output at the output port. This can be 
achieved by setting p = 1 and q = 0. Thus, the output of 
new filter jm n is delayed by only one pixel compared with 
the original filter output y,,, (i.e., jm,, = y,,-i, .). With 
the chosen values for p and q, the new equation describing 
the input and output relationship in the 2-D z-domain is 

i=Oj=O ” 

-?(Z,, Z,) 2 2 bk,,ZckZ;? (6) 

We now propose the new filter structure for the mod- 
ified 2-D filter transfer function. Let 

A = x( z,, z,) z z a;,jZ;iZ;’ (7) 
i=Oj=CJ 
i+i #o 

B = - ?(Z,, Z,) T b,,,Z,(‘-‘) 
i=2 

c = ~O,OX(Zl? &I 

(8) 

(9) 
D=A+B+C 00) 

E = - b,,,?( Z,, Z,) 

F=Z,‘(D+ E) 02) 

G= - ?(Z,, Z,) 2 2 bk.,Z,kZ,’ 63) 
k=ll=O 

I=F+G. (14) 

The relationships among all these signals of a second-order 
filter are shown in Fig. 3. It can easily be proven that 
Y(Z,, Z,) = I. With the assumption that a multiplication 
takes at least twice the amount of time required for an 
addition, the critical path is the one shown in bold lines 
and contains only one multiplication and two additions. 
Moreover, this critical path is independent of the order of 
the filter. The new filter has a very regular structure, with 
identical building blocks. This regularity property provides 
a simple hardware structure for the implementation of the 
filter. The new filter also has a small hardware size since 
the input to the multiplier block has only B bits. 

III. HARDWAREFORREAL-TIME 

IMAGE PROCESSING 

Consider the processing of an image of size 512 x 512 
pixels with a TV scan rate of 30 frames/s in real time, the 
required data throughput rate S is 512x512~30 = 7.86 x 
lo6 pixels/s or one pixel every 127 ns. For a reasonable 
gray level resolution, the input and the final output signals 
are represented in B = 8 bits. All intermediate results have 
t = 16 bits of accuracy. The hardware of the new filter of 
second order with the above specifications will be outlined 
in this section. 

The new parallel-pipelined structure of a 2-D recursive 
digital filter consists mainly of three building blocks: 1) 
delay units, 2) multipliers, and 3) adders/subtracters. In- 
put to the multipliers of the nonrecursive block is the serial 
sampled video data resulting from the raster scan of an 
image of size 512X 512 pixels, whereas the input to the 
multipliers of the recursive block is the most recently 
computed output. High-speed multipliers are very expen- 
sive and are not economical for the implementation of fast 
filters. One method of replacing the multipliers, namely 
the “stored product” method [ll], is considered in the 
hardware implementation. 
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(b) 
Fig. 3. (a) Modified nonrecursive block of a second-order 2-D digital 

filter. (b) Modified recursive block of a second-order 2-D digital filter. 

The Z;’ delay elements can be configured from SN 
743174 (hex D-type flip-flops), which has a maximum 
propagation delay of 17 ns and a minimum set up time of 
5 ns [17]. The Z;’ delay elements, which consist of 16 
parallel 512-bit shift registers, can be configured from 
TDC 10065 (1 X 256) having a maximum propagation de- 
lay of 30 ns and a minimum setup time of 0 ns. It requires 
two TDC 10065 chips for the implemetation of one 512-bit 
shift register. The number of IC chips required for SN 
74S174 and TDC 10065 are 32 and 128, respectively. Since 

951 

the sum of the propagation delay and the set up time of 
SN 74S174 is shorter than that of TDC 10065, it is 
desirable to drive two different shift registers with two 
different clock signals, one being the delayed version of the 
other, so that the outputs of the two different shift reg- 
isters will be available at almost the same instant. From 
the specifications of the shifts registers, the clock signal 
driving the single-bit shift register should be the one 
driving the 512-bit shift register delayed by 5 to 13 ns,. 

Each 16-bit adder is constructed from four 74LS181 
4-bit ALU’s and one 74LS182 carry look ahead generator. 
Addition of two 16-bit binary numbers takes 19 ns [18]. 
The 16 adders, required for the 16 additions in a second- 
order 2-D difference equation, take 16 x 5 = 80 IC chips. 

Using the stored product method, the multipliers are 
replaced by memories. The memories, if constructed from 
AM 27820 (256 X4) PROM’s, which have an access time 
of 45 ns [18], would require 36 packages and 32 packages 
for the nonrecursive block and the recursive block, respec- 
tively. 

The cycle time of the new filter, built with the above 
components, consists of one memory access time, two 
addition times, and the sum of the propagation delay and 
setup time of the 512-bit shift register. The new filter can 
process images at a data throughput rate of one pixel every 
113 ns (i.e., 45 + 19 X 2+ 30 ns), which is less than the 
maximum allowable time (127 ns) required for real-time 
processing. 

In addition to the cycle time, another measurement for 
the filter performance is the latency. The latency for the 
proposed filter structure is the sum of the following (see 
Fig. 3): 

i) one cycle time (127 ns for the processing of an image 
of size 512~512 pixels with a TV scan rate of 30 
frames/s). 

ii) propagation delay of the 512-bit shift registers (30 
ns), and 

iii) one addition time (19 ns). 

This latency of 176 ns is independent of the order of the 
filter, which is another attractive feature of the new filter. 
A summary of the hardware and throughput rate of the 
new filter structure is shown in Tables I and II. 

, IV. ERROR ANALYSIS 

The effects of finite precision are considered in the new 
2-D recursive digital filter. Errors are introduced in quan- 
tizing the input and in the roundoff accumulation of 
the intermediate results. In this section, and analysis of the 
steady-state statistics of such errors is presented. The 
analysis is based on recursive implementation, but the 
results for nonrecursive implementation can also be ob- 
tained by specializing the obtained results. Two’s comple- 
ment fixed point arithmetic is used and the distinction 
between rounding and truncation is made. 
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TABLE I 
HARDWARECOMPONENTSANDCOSTSOFSTOREDPRODUCTIMPLEMENTATIONSCHEMESOFA SECOND-ORDER 

2-D RECURSIVE DIGITALFILTERFORTHE PROCESSINGOF IMAGESOF S1~~~512~512 PIXELS 

Components Part Number Organization # of It’s 
Estimated Cost 
1984 (U.S. $) 

PROM’s 
256 x 16 
ALU’s 

Carry Look 
Ahead 

Generator 
Shift Register 

1x512 
1x1 

AM27S20 
SN74S181 

SN74S182 

TDC1006J 
SN74S174 

256x4 

1x256 
Hex D 

Flip-flops 

68 $170 
64 $256 

16 $32 

128 $5120 
32 $50 

Total 308 $5628 

TABLE II 
CYCLETIMEANDLATENCYOFTHESTORED 

PRODUCT~MPLEMENTION 

With the stored product method, the finite precision 
representation of (1) becomes 

T, Cycle time 

T Latency 

T, Time for 16-bit addition 
T WI” Memory access time 

r, 512-bit shift register setup time 
T Pd 512-bit shift register propagation delay time 

T Tm,+2T,+T,+Tpd 
=45+2xl9+0+30ns 
=113 ns 
i 127 ns 

T,, increases 
with the Order 
of the Filter 

No 

T 127ns+T,+T,,+T, 
=127+0+30+19ns 
= 176 ns 

T/ increases 
with the Order 
of the Filter 

No 

To simplify the analysis, some assumptions about the 
statistical properties of the quantization errors are made. 

i) The sequence of error samples is a sample sequence of 
a stationary random process. 

ii) The quantization process is white. The random vari- 
ables representing the error process are uncorrelated, inde- 
pendent of the sampling rate. 

iii) The error sequence is uncorrelated with the sequence 
of exact samples. 

iv) The quantization error has a unifrom density func- 
tion. This implies that the signal is equally likely to be 
anywhere within a quantization interval. 

v) Overflow does not occur at the output of the filter. 
Quantization errors are caused by either truncation or 

rounding, each mode resulting in a different error effect. 
The filter output error is independent of the factor Z;’ 
associated with the modified filter transfer and, for sim- 
plicity, we will use the original difference equation (1) 
describing the 2-D recursive digital filter in the analysis. 

.L,n = 

i 

? 2 (ai,jx,-i,“-j)t 

i=O j=O 

+ ? ii! (-bk,‘jiz-k,n-‘)r 1 05) kk’+(: ‘rc? B 

where (*), and [ *] B represent the quantization of * to t 
bits and B bits of precision, respectively. The coefficient 
quantization error is not present because all coefficients 
can still in very high precision, instead of t bits, before 
multiplications. All products and sums are represented in t 
bits and final output is quantized to B bits. Denoting the 
errors introduced by (Ui,jxm-i,n-j)t, (- bk,,J,,-k,n-,)l, 
and [ *] B by cj, j, c:,, and c’,~, respectively, (15) becomes 

Ym,, = igo j~o(ui,j’m-i,n-j+c~,j) 

+ c c (- b,,,j,,-,,,-, + d,,) + cr’B. (16) 

Let em,n be the quantization error in the input and f,,, 
be the error in the output with 

ow 
(17b) 

Finally, (l), (16) (17a), and (17b) result in 

i=O j=O i=Oj=O 

- F 2 E;,,-cr,B - F 2 b,,,f,,-,,,-‘. (18) 

kks: ‘2 “,r? ‘2 
The first term describes the effect of input quantization 
error. The second, third, and fourth terms describe the 
roundoff accumulation error. The uncorrelated assumption 
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allows the total error to be considered as a linear combina- x~~-2 
tion of two independent sources of errors. 

The statistics of the total error f,,,, are found to be [19] 

E[f] = -E[e] yj;jiBo - + MB 
c c bw c c b/c,, 

k=O I=0 k=O I=0 

u’=u,’ f 5 h* m..+[~o~~L] 
J.---b-- 

/ Scaling Factor 
m=O n=O Fig. 4. Mean of the error at the output of filter #l using the stored 

CT?,, + : ; IIf;,, + I& 1 
product method (rounding). 

(19b) 

kks(: ‘2,” 
x10-3 

where E[f] and a,* are the mean and the variance of the -1’9 
total error at the output of the filter, and d,,, is the 
inverse z-transform of l/D( Z,, Z,). Lines Theoretical Results Points Simulation Results 

If all the coefficients of the nonrecursive block a,, j’s are 
multiplied by a scaling factor p, the new statistics of the -2.0. 

‘total error at the output of the filter are given by 

E[f] = -pE[e] ii:‘iBo 

1 

+ MB Ns 

c c bk,, c c bk., 
k=O I=0 k=O I=0 

r MA NA Ma Na 

i 

- 2 2 Epj]- 2 2 E[r:,,]-E[P] 

i=O j=O 

kk f(: ‘ro” 

(20a 

-2.1. 

Fig. 5. Mean of the error at the output of filter #2 using the stored 
product method (rounding). 

4 

respectively. Thus, a fixed amount of distortion is always 
present in the output of the filter no matter what the 
scaling factor p is. 

Theoretical and simulation results of the error at the 
output of the stored product 2-D recursive digital filters 
were obtained. Double precision arithmetic was used for 
the simulation of the ideal (infinite precision) filter. The 
main advantage of using computer simulation to compute 
the statistics of the quantization error is the possibility of 
studying the rounding effects, the truncation effects, and 
the scaling effects separately, with few changes in the 
filtering algorithm. 

Deterministic signals and random signals were used as 
input images. A first-order (filter #l) and a second-order 
(filter #2) 2-D filter, drawn from [20], of the form 

(21) 

k=O I=0 

were used for simulation, with p being the scaling factor. 
The specifications of the two filters are given in Tables III 
and IV. The inputs and final outputs can each be trun- 
cated or rounded., Two sets of simulations were carried 
out; the first one with all signals and results truncated, 
whereas the second one with feedback truncated and all 
other signals rounded. The results of the second set of 
simulations are shown in Figs. 4-6. It was verified that the 
theoretical results agreed very well with the simulated 
results for t =16, B = 8. The main sources of the filter 
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d 
.2 .u 6 ” 1 

sca1ini: PecLor 

Fig. 6. Variance of the error at the out ut of filter #2 using the stored 
product me t& od. 

Coefficients of the Numerator Coefficients of the Denominator 

TABLE III 
SPECIFICATIONSOF FILTER #l 

Coefficients of the Numerator Coefficients of the Denominator 

00.0 = 1 ho,0 = 1 
a 0.1 = - 0.04668 b,,, = - 0.42602 
u 1,o = - 0.04668 b,,, = - 0.42602 
ul.l = -0.46761 b,., = 0.10692 

1.43075 
m=On=O 

c-3 cc 

,go ,l&o’h-,n’ 2.93811 

1.58463 

TABLE IV 
SPECIFICATIONSOF FILTER #2 

output error are the input quantization error and roundoff 
accumulation error, especially the quantization of the 16-bit 
results to 8 bits in the final output and the feedback. 

V. SCALING OF THE TRANSFER FUNCTION 

If the amplitude of the output signal of a recursive 
digital filter in a fixed point implementation is allowed to 
exceed the dynamic range, overflow will occur and the 
output signal will be severely distorted. This is due to the 
fact that output error due to overflow is fedback into the 
recursive filter. On the other hand, if the output signal 
amplitude is unduly low, the filter is operating ineffi- 
ciently, and the signal-to-noise ratio will be poor. There- 
fore, for optimum filter performance, suitable scaling must 
be employed to adjust the output signal levels. 

A 2-D recursive difference equation can always be writ- 
ten as 

m,n = p E 2 hk,lXm-k,n-l Y 
k=O I=0 

(22) 

where p is a positive scaling factor. Evidently, the magni- 

U&O = - 0.1557553 x10-1 
ao,l =0.468344x10-’ 
a o,* = - 0.399411 x10-2 
a,,, = 0.4951426 x10-i 
a 1,1 = - 0.2103131 x10-i 
a 1,2 = - 0.2237115 
a2,o =0.411281x10-* 
a 2,1 = - 0.2336235 
a 7 7 = 0.707513 

bo,o = 1 
b,,, = 0.223576 
bo,* =0.7149619x 10-i 
b,,, =0.22108698 
b,,, = 0.1544512 
b,,, =0.1057191 
b,,, =0.9173054x 10-i 
b,,, = 0.1020029 
b, , = 0.15625 

2 c lh,,nl 

0.823602923 

2.24766023 
m=On=O 

co n!odi,n 1.12468584 

tude of the output signal 1 y,,,, nl is 

IYm,nl=P iz f hk,lXmA,n-l 
k=O I=0 

k=O I=0 

=P ft f h,,bm-k,n-,I. 
k=O I=0 

(23) 

If Ix, n I G 1 for all m and n, the magnitude of the output 
signal is given by 

Ivm,nl G P it i? Ihd- 
k=O I=0 

(24) 

To ensure absolutely no overflow in the output, i.e., Iy,,,l 
G 1, scaling factor p must satisfy the condition 

P i f lhk,,l’<l. (25) 
k=O I=0 

or 

1 

pG YE fi 
Ih,c,,l, 

k=ll=O 

(26) 

We don’t have to worry about the overflows that can occur 
in the intermediate results. This is due to the fact that if 

Y m,n has no overflow, it is always evaluated correctly in 
two’s complement arithmetic, even if overflows do occur in 
the partial sums. 

In this section, we are going to present some experimen- 
tal results of the filtering real images using two different 
filters scaled by different scaling factors. The main objec- 
tive of these filtering experiments is to estimate an opti- 
mum scaling factor for given 2-D recursive digital filter 
used for image processing. 

The filtering process is simulated on VAX 11/780 com- 
puter. Only the coefficients of the nonrecursive block are 
scaled by p. The scaling of an input might cause an 
overflow at the input port of the filter. The first filter used 
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Fig. 7. Original “Yogourt” image. Fig. 10. “Yogourt” processed by filter #3 with scaling factor being 1.5. 

Fig. 8. “Yogourt” processed by filter #2 with scaling factor being 2.5. 

Fig. 9. “Yogourt” processed by filter #2 with scaling factor being 3. 

for image processing is filter #2 (which is one of the filters 
used in Section IV for simulation) and the second one is 
filter #3 drawn from [21] (with specifications shown in 
Table V). Filter # 2 is a high-emphasis filter, whereas filter 
# 3 is a high-pass filter. Input images are of size 256 X 256 
pixels with a gray level resolution of 256 levels. The pixel 
values are from 0 to.255. In order that the input image can 

Fig. 11. “Yogourt” processed by filter #3 with scaling factor being 2. 

TABLE V 
SPECIFICATIONS OF FILTER # 3’ 

Coefficients of the Numerator Coefficients of the Denominator 

oo.o = 0.1 
ao,l = 0.230133 
(I = 0.2 0.1 
q. = 0.230133 
a = 1.1 - 1.31453 
q2 = 0.230133 
a*,0 = 0.1 
a2,1 = 0.230133 
a*.* = 0.1 

00 m 

m=On=O 
m m 

c c et.” 

b,.,l =l 
b,,, = -0.337625 x10-l 
bo.2 =0.134809x10-’ 
b,., = -0.337625 x10-l 
b,., = 0.1139973932 x lo-* 
b,,, = - 0.4551623672 x 1O-3 
b,., = 0.134809 x 10-l 
b,,, = - 0.4551623672 x lo- 3 
b,,, = 0.1817346648 x 1O-3 

m=On=O 

be processed by the filter, the input values must lie be- 
tween - 1 and +l. Using fixed point two’s complement 
code and 8 bits of accuracy, the pixel value 0 is mapped to 
- 1 while 255 is mapped to 1- 2-‘. 

Fig. 7 shows the original image “Yogourt.” Figs. 8-11 
are the filtered images processed with different scaling 
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TABLE VI 
SIGNAL-TO-N• ISERATIOOFTHE~YOGOURT) IMAGEAFTERFILTERINGWITHFILTER #2 USING DIFFERENTSCALE FACTORS 

Filter Scale Overflow # of pixels # of pixels Signal/Noise 
Implementation Factor (Yes/No) with value > 1 with value < - 1 (dB) 

Stored Product 1 No - 32.3382 
Method 2 No - - 38.3703 

2.5 Yes 43 60 18.3824 
3 Yes 339 2345 4.1492 

TABLE VII 
SIGNAL-TO-NOISE RATIOOFTHE“YOGOURT"IMAGEAFTERFILTERINGWITHFILTER #3 USING DIFFERENT SCALE FACTORS 

Filter Scale Overflow # of pixels # of pixels Signal/Noise 
Implementation Factor (Yes/W with value > 1 with value < - 1 CdB) 

Stored Product 1 No - 32.3096 
Method 1.5 Yes . 10 8 16.8932 

2 Yes 325 223 3.4184 

factors. When the scaling factor is too low, the output 
dynamic range cannot be fully utilized. However, when the 
scaling factor is too high, overflows occur, as we can 
obviously notice from Figs. 9 and 11. Although the scaling 
factor from (26) does not result in any overflows both the 
signal-to-noise and the visual effect of the processed image 
are not very good. In order that the full output dynamic 
range can be utilized, a suitable scaling factor should be 
used for the scaling of the filter transfer function. There 
are no general rules for choosing the new scaling factor as 
this factor is image and filter dependent. Nevertheless, 
experiments with the filtering of these real images have 
shown that the scaling factor should be about 3 to 4 times 
the value given by (26) for the two filters mentioned in 
order that both the subjective (visual) and objective (sig- 
nal-to-noise ratio) measurements of performance can be 
improved. The signal-to-noise here is defined as the ratio 
of the variance of the ideal filter output signal to the 
variance of the output error. 

The objective measurement of the filtering of the image 
in Fig. 7 using different scaling factors are shown in Tables 
VI and VII. From the tables, we can conclude that 
whenever overflows have occurred, the signal-to-noise ratio 
is no longer a good indication of the quality of the 
processed image. The visual effect is still very good even 
though there are some overflows. Most of the overflows 
occur when there is a uniform background1 

VI. CONCLUSIONS 

This paper has considered a new 2-D filter structure 
which results in a very high operating speed for a 2-D 
recursive digital filter. The throughput rate is independent 
of the filter order. The modification made is minimal to 
the extent that the output sequence of the filter is only 
delayed by one pixel when compared with the original one. 
By storing the products in programmable read only mem- 
ories (PROM’s), multipliers can be eliminated completely. 
This filter configuration provides an economical way of 
implementing a filter that does not require varying filter 
coefficients. High-data throughput rate (i.e., 8 MHz) has 
been shown to be feasible. A simple hardware implementa- 

tion requiring standard TTL and MOS devices and two 
clock signals, one being the delayed version of the other, to 
drive the two different shift registers has been outlined. 
The proposed hardware is characterized by a regular struc- 
ture, which consists of identical building blocks. 

The noise properties of the new filter implemented by 
the stored product method have been studied. Expressions 
for estimating the mean and the variance of the noise at 
the filter output have been derived. Simulation results have 
been obtained and they agreed very well with the theoreti- 
cal results. 

Finally, the problem of the scaling of the filter transfer 
function was investigated. Results from the processing of 
images using a high-pass filter and a high-emphasis filter 
have shown that a better visual effect of the processed 
images can be obtained if the scaling factor is three to four 
times the value given by 

P = l 03 Ihk,,l. 

cc 
k=O I=0 

ACKNOWLEDGMENT 

K. M. Ty would like to express his sincere gratitude to 
Prof. A. N. Venetsanopoulos for his invaluable advice and 
guidance. 

111 

PI 

131 

[41 

151 

161 

REFERENCES 

A. N. Venetsanopoulos and V. Cappellini, “Real-time image 
processing, ” in Multidimensional Systems: Techniques and Applica- 
tions, S. G. Tzafestas, Ed. New York: Marcel Dekker, 1986, pp. 
345-399. 
A. Peled and B. Liu, “A new hardware realization of digital filters,” 
IEEE Trans. Acoust., Speech, Signul Processing, vol. ASSP-22, no. 
6, pp. 456-462, Dec. 1974. 
H. Jaggemauth and A. N. Venetsanopoulos, “Distributed arith- 
metic implementation of two-dimensional filters,” in Proc. IEEE 
Canadian Communication und Energy Conf., Oct. 1982, pp. 407-410. 
H. Jaggemauth and A. N. Venetsanopoulos, “Real-time image 
processing through distributed arithmetic,” m Proc. IEEE Int. 
Symp. Circuits Sysr. (Newport Beach, CA), May 1-4, 1983, pp. 
394-397. 
E. Luder, “Increased speed in digital filters without multipliers,” 
Arch. Elek. Ubertragung., pp. 345-348, 1982. 
T. Tjahjadi and W. Steenaart, “On the accuracy of ROM stored 
square multipliers,” IEEE Trans. Circuits Syst., vol. CAS-29, pp. 
441-447, July 1982. ’ 



TY AND VENETSANOPOULOS: REAL-TIME IMAGE PROCESSING 957 

171 

PI 

[91 

DOI 

[111 

WI 

u31 

1141 

1151 

P61 

v71 

WI 

[I91 

WI 

PI 

N. S. Szabo and R. I. Tanaka, Residue Arithmetic and ifs Applica- 
tions to Computer Technology. New York: McGraw-Hill, 1967. 
G. L. Sicuranza, “Memory-oriented realizations of 2-D digital 
filter,” in Proc. Sixth Eur. Conf. Circuif Theory and Design (Stutt- 
gart, Federal Republic of Germany), 1983, pp. 447-449. 
0. Monkewich and W. Steenaart, “Companding for digital filters,” 
in Proc. IEEE ISCAS, 1975, pp. 68-71. 
0. Monkewich and W. Steenaart, 
with non-linear quantization,” 

“Stored product digital filtering 

157-160. 
in Proc. IEEE ISCAS, 1976, pp. 

D. Dubois and W. Steenaart, “High speed stored product recursive 
digital filter,” IEEE Trans. Circuits Syst., vol. CAS-29, pp. 390-393, 
.Jme 1983 _-___ ___-. 
K. M. Ty, “Two-dimensional digital filters with minimum cycle 
time,” M. A. SC. thesis. Dent. Elec. Ens.. Univ. Toronto. Toronto. 
Ontario, Canada, Jan. 1985: 

II 

K. M. Ty and A. N. Venetsanopoulos, “Two-dimensional digital 
filters with minimum cycle time,” in Proc. ICASSP (Tampa, FL), 
Mar. 26-29, 1985, vol. 4, pp. 1527-1530. 
K. M. Ty and A. N. Venetsanopoulos, “A high speed two-dimen- 
sional digital filter structure,” in Proc. of 28th Midwest Symp. 
Circuits Sysr. (Louisville, KY), Aug. 19-20, 1985, pp. 44-444. 
V. A. Dyck, J. D. Lawson, and J. A. Smith, Introduction to 
Computing. Reston, Virginia: Reston Publishing 1979. 
A. V. Oppenheim and R. W. Schafer, Digital Signal Processing. 
Englewood Cliff, NJ: Prentice-Hall, 1975. 
The TTL Data Book for Design Engineers, Texas Instrument Incor- 
porated, 2nd ed., 1981. 
~Advunced Micro Devices Condensed Catalog, Advanced Micro De- 
vices. Inc.. 1981. 
A. N. Venetsanopoulos, B. G. Mertzios, and S. H. Mneney, “Ef- 
fects of finite precision m two-dimensional recursive digital filters,” 
Int. J. Electron., vol. 58, no. 1, pp. 159-174, 1985. 
E. L Hall, “A comparison of computations for spatial frequency 
filtering,” Proc. IEEE, vol. 60, pp. 887-890, July 1972. 
B. George, “Design of a 2-D recursive digital filter on the basis of 
quadrantal symmetry,” Master thesis, Dept. Elec. Eng., Univ. 
Toronto, 1981. 

Fellowship in 1986. 

9 

Kich M. Ty (s’85) received the B.A.Sc. (with 
honors) and M.A.Sc. degrees in electrical en- 
gineering from the University of Toronto, Ont., 
Canada, in 1982 and 1985, respectively. He is 
now working towards his Ph.D. degree at the 
same university. He was awarded the J. E. Reid 
Memorial Prize (communications) from the 
University of Toronto in 1982, postgraduate fel- 
lowships from the same university in 1982,1983, 
and 1985, the Connaught Scholarship from the 
same university in 1984, and Mary. H. Beatty 

His interests include digital signal processing, image processing and 
analysis, digital video, high-speed processing architecture, and digital 
communications. 

Anastasios N. Venetsanopoulos (S’66-M’69- 
SM’791 received the B.S. degree in electrical and 
mechanical engineering from the National Tech- 
nical University of Athens, Greece (1965), and 
the M.S. (1966), the M. Phil. (1968), and the 
Ph.D. (1969) degrees in electrical engineering, all 
from Yale University. He joined the University 
of Toronto, Canada, in September 1968, where 
he is now Professor and Chairman of the 
Communications Group, Department of Electri- 
cal Engineering. He held visiting posts at NTU, 

the Federal University of Rio de Janeiro, and the University of Florence. 
He was on research leave at the University of Grenoble, the Imperial 
College of Science and Technology, and was Adjunct Professor at Con- 
cordia University (1981-84). 

He has been lecturer of numerous short courses to industry and 
continuing education programs; contributor to eight books and over 200 
papers in digital communications, digital filters, and image processing, 
and consultant to several organizations. He served as the Assistant Editor 
(1979-80) and Editor (1981-83) of the Canadian Electrical Engineering 
Journal, the President of the Canadian Society for Electrical Engineering, 
and Vice-President of the Engineering Institute of Canada (1983-86). He 
was Fulbright Scholar, an A. F. Schmitt Scholar, and recipient of the J. 
Vakis Award. He is a member of the New York Academy of Sciences, 
Sigma Xi, and the Technical Chamber of Greece, a Fellow of the 
Engineering Institute of Canada, and is a registered Professional Engineer 
in Ontario and Greece. 

Dr. Venetsanopoulos was Program Chairman of the International 
Communications Conference (ICC’78) and ICC’86. He served as Chair- 
man of the Central Canada Council of IEEE, is presently Associate 
Editor for Digital Signal Processing of the IEEE TRANSACTIONS ON 
CIRCUIT AND SYSTEMS, and will be the Guest Editor of the special issue 
of the same TRANSACTIONS on Digital Image Processing (November 
1987). 


