
A Fast Fourier Transform Algorithm
Using Base 8 Iterations

By G. D. Bergland

1. Introduction. Cooley and Tukey stated in their original paper [1] that the

Fast Fourier Transform algorithm is formally most efficient when the number of

samples in a record can be expressed as a power of 3 (i.e., N = 3m), and further that

there is little efficiency lost by using N = 2m or N = 4™.

Later, however, it was recognized that the symmetries of the sine and cosine

weighting functions made the base 4 algorithms more efficient than either the base

2 or the base 3 algorithms [2], [3]. Making use of this observation, Gentleman and

Sande have constructed an algorithm which performs as many iterations of the

transform as possible in a base 4 mode, and then, if required, performs the last itera-

tion in a base 2 mode.

Although this "4 + 2" algorithm is more efficient than base 2 algorithms, it is

now apparent that the techniques used by Gentleman and Sande can be profitably

carried one step further to an even more efficient, base 8 algorithm. The base 8

algorithms described in this paper allow one to perform as many base 8 iterations

as possible and then finish the computation by performing a base 4 or a base 2 itera-

tion if one is required. This combination preserves the versatility of the base 2 algo-

rithm while attaining the computational advantage of the base 8 algorithm.

2. The Basic Algorithms. Fast Fourier Transform recursive equations for

N = r-iTo. • • -r„ can be derived in either of two different forms [4]. The second of these

forms is

Ap(j0, Jl, ■ • 'tJp-l, kn-p-l, • ■ -, Ko)
Tp-1

(1) =2-1 Ap-i(jo, jl, • ■ -,jp-1, kn-p, • • -, fco)
*n—p"0

'W Jp— 1**n~~ J>(rjH-l"**rn^-r-£0)(n-*Tp_i)

p = 1, 2, • • •, n , Wn = exp (2iri/N) ,

where

/2\ 3 = ¿«-i(»W • -n-i) + jn-i(r\r2- • -r„_2) + • • • + jxr\ + Jo

k = kn-i(r2rz- ■ -rn) + fc„_2(r3r4- • -r») + • • • + fcar„ + k0

subject to the constraints

/gs J.-1 = 0, 1, 2, ■ • -, rv - 1 , lá»án

k„ = 0, 1, 2, • • •, rn~v — 1 , 0|»Sn-l.

The last array calculated gives the Fourier sums as

Received June 16, 1967.

275
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

276 G. D. BERGLAND

(4) ^(j'n-1, • • • , Jo) = i»0'o, • • • , Jn-l) •

In some cases the total computation required to evaluate these equations can

be reduced by grouping these equations in a slightly different manner. For N =

r\r2 •••?•„, this regrouping takes the form

Aj,(jO, • • ', Jp-l, kn—p—l, • • • , Ko)

(5)

--P-1 "I

D ViO'o, • • •, J'p-2, kn-p, • • •, h)W3rp-lkn-*

.W Jp—l(*n—j>— l(.rp+2---rri)-f-rk\rn+kü)(rir2-..rp-i) •

Note that the bracketed term in (5) represents a set of rp-point Fourier trans-

forms and that the complex exponential weights outside the brackets simply re-

reference each set of results to a common time origin. (In Gentleman and Sande's

paper this rereferencing is termed twiddling.) The term

Wrp = WNN/rp = e2"'/rp

forms the basis for the complex exponential weights required in evaluating each rp

point transform, and j'j,_i and kn-p are the two indices of the transform.

An analogous regrouping can be performed on the original Cooley-Tukey re-

cursive equations. For N = nr2 • • -rn, these take the form [4]

Ap(jo,jl, • • 'Jp-l, fcn-p-l, • • -, Ko)
rp-i

(6) = X -4p-l(j0, Jl, • • • , Jp-2, kn-p, ■ ■ ■, k0)
A"n—p= Ô

_-^N'.Íp-l(.rír2-..rp-\)+-.-+ití)kn-p(.rp+l---rn) n = l 2 ••■ W.

When these equations are regrouped, the rereferencing of iteration p + 1 must be

performed before the r^+i point transform instead of after it. This can be done by

performing the p + 1 iteration rereferencing at the end of the pth iteration. If these

rereferenced Ap terms are labeled Ap, we have

Ap(jO, • • " , Jp-l, K„_p_i, • • •, Ko)

(7) = i E 3p-l(j0, • • •, Jp-2, kn-p, • • • , ko)WJrp-lk"-P 1
Lkn-p=0 -I

, ~IV '3P— lCrlr2'","p— l)+'"+.il»l+-?0)tn—p— l(rp_|_2- • r„)

This expression is valid for p = 1, 2, • • • ,n provided that we define (rp+2 ■ • -rn) = 1

for p > n — 2 ,and define fc_i = 0. Note that the bracketed term of (7) is identical

to the bracketed term of (5).

Each iteration of both (5) and (7) is thus conveniently divided into two steps.

The first step involves performing a set of r^-point Fourier transforms, and the

second step involves use of the Fourier transform shifting theorem to rereference

the resulting spectral estimates to the correct time origins. These two operations

are performed during each iteration.

Of particular interest in this paper are the algorithms which result when as many

of the rv terms as possible are set to 8. When this is done, the bracketed terms repre-

sent a large number of 8-point Fourier transforms. The complex exponential weights

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

A FAST FOURIER TRANSFORM ALGORITHM

: +

te te
CM ^

I
CM

+

1—I

I
IN

c

=-

S 0)

CM 3
^ o

d S ö
"■o43 S

>
eu

tí

+

I

o

fe!
CM

+

T—i

I
00

+

te;
l-H

I
oc

(N

+

te;
cm

+

te
^?
i

o +
§~ fe;
te; ^
co i

CM

—

te;

+
te;

CM

£
o

e

(M -Í3

S <a ■■•43+=

|^
(S
>

cX
t¡
3
eu

Pi

-S

S
o

Ü

c-i

+

te
CM

I

+

te

■*

te
Oí

+

te;

«5

te;
ce

+

te;

o

o

a
ci

00 d
\ o
tefe

d S ö

goo g

ri
>
Pu

eu
PS

o

a

S?" il
s eu

T—I O

d
tO

.S'5

1 eu
¡H

c^

CU

-d

CM o

8< Il
ri fe ,
pq£ g

.-= 6 CM
^ .—* ..
o w _T"

<3 i. o

"* " Il

.■g s oî

'S ,o
» " ||
gteM

m£ g

o ¿^
¿PcV
Ô3W

eu ïg;

ri
pq.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

278 G. D. BERGLAND

required in performing these transforms are: ±1, ±i, ± exp (+zV/4), and

± exp (—¿7r/4). Since use of the first 2 weights requires no multiplications and

the product of a complex number and either of the last 2 weights requires only 2

real multiplications, a total of only 4 real multiplications is required in evaluating

each 8-point Fourier transform.

Thus the weights used in evaluating an 8-point Fourier transform all have

symmetries which can be profitably exploited. Considerable use of these symmetries

is being made since the base 8 algorithm forces us to compute N/8, 8-point trans-

forms during each iteration.

3. Computation Required by Base 2, Base 4, Base 8, and Base 16 Algorithms.

When N can be expressed as a power of 2, the recursive equations (5) and (7) can

be specialized such that ri = r2 = • • • = rn-\ — 2q and rn = 2r, where N = 2m and

r = m — q(n — 1) 5Î q. That is N = 2«25- • •292r. If 2" is referred to as the base of

the algorithm, we can compare the computation required by base 2, base 4, base 8,

and base 16 algorithms for N being any power of 2. The number of real multiplica-

tions and real additions required for various values of m is expressed in Table I.

Although these expressions are only exact for values of N which are integral powers

of 2, 4, 8, and 16, respectively, they are good approximations for any integral value

of m.

The real multiplications and additions required for m = 12 are given exactly

by these expressions and are expressed in Table II.

Table II
Real multiplications and additions required in performing base 2, base 4, base 8

and base 16 Fast Fourier Transform algorithms for N = 4096.

Algorithm
Number of real
Multiplications

Number
of real

Additions

Base 2 (N = (2)12)

Base 4 (N = (22)6)

Base 8 (N = (23)4)

Base 16 (N = (24)3)

139,266

126,978

126,978

125,442

In counting the number of multiplications and additions required by each of

these algorithms, it is assumed that each rereferencing operation requires one com-

plex multiplication except when the multiplier is IF0.* It is also assumed that the

basic transform of each algorithm is performed in the most efficient manner possible.

Thus as the number base gets progressively higher, the 2" point transform becomes

more and more specialized but the total computation required decreases.

* Rereferencing operations involving a multiplication by ±i or + exp(±iV/4) could be per-

formed with less arithmetic operations at the expense of having to locate these special products.

Since only the rereferencing products involving W° are easily located, present implementations of

these algorithms only treat rereferencing products involving W as special cases.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

A FAST FOURIER TRANSFORM ALGORITHM 279

4. Conclusions. It is apparent from Table I that performing as many high base

iterations as possible, reduces the total computation. As the base of the algorithm

increases, however, the basic 2" point transform becomes more involved, and it be-

comes increasingly difficult to let N be an arbitrary power of 2. A reasonable compro-

mise appears to be the base 8 algorithm. The computation required is very nearly

minimized while the 8-point transforms required are still relatively easy to compute.

A Fortran II subroutine, using the base 8 algorithm, has been written for use on

the G.E. 635 computer. The execution time is approximately 60iVra microseconds

(where N =2m), which is more than 40% faster than the base 2 programs previously

used and 20% faster than Gentleman and Sande's "4 + 2" subroutine.

5. Acknowledgments. The author wishes to thank W. M. Gentleman, G. Sande,

and W. L. Zweig for their suggestions which led to what appears to be the mini-

mum number of computations required in executing the base 16 algorithm.

Bell Telephone Laboratories, Incorporated

Whippany, New Jersey

1. J. W. Cooley & J. W. Tukey, "An algorithm for the machine calculation of complex
Fourier series," Math. Comp., v. 19, 1965, pp. 297-301. MR 31 #2843.

2. W. M. Gentleman & G. Sande, "Fast Fourier transforms for fun and profit," Fall Joint
Computer Conference Proceedings, Vol. 29, 1966, pp. 563-578.

3. R. E. Miller & S. Winogbad, Private Communication.
4. G. D. Bergland, "The fast Fourier transform recursive equations for arbitrary length

records," Math. Comp., v. 21, 1967, pp. 236-238.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

