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Abstract

The FFTW library for computing the discrete Fourier trans-

form (DFT) has gained a wide acceptance in both academia

and industry, because it provides excellent performance on

a variety of machines (even competitive with or faster than

equivalent libraries supplied by vendors). In FFTW, most of

the performance-critical code was generated automatically

by a special-purpose compiler, called ★✪✩✬✫✣✭✮✭✰✯ , that outputs

C code. Written in Objective Caml, ★✪✩✬✫✪✭✮✭✱✯ can produce

DFT programs for any input length, and it can specialize

the DFT program for the common case where the input data

are real instead of complex. Unexpectedly, ★✪✩✬✫✪✭✰✭✰✯ “discov-

ered” algorithms that were previously unknown, and it was

able to reduce the arithmetic complexity of some other ex-

isting algorithms. This paper describes the internals of this

special-purpose compiler in some detail, and it argues that a

specialized compiler is a valuable tool.

1 Introduction

Recently, Steven G. Johnson and I released Version 2.0 of

the FFTW library [FJ98, FJ], a comprehensive collection of

fast C routines for computing the discrete Fourier transform

(DFT) in one or more dimensions, of both real and complex

data, and of arbitrary input size. The DFT [DV90] is one

of the most important computational problems, and many

real-world applications require that the transform be com-

puted as quickly as possible. FFTW is one of the fastest

DFT programs available (see Figures 1 and 2) because of two

unique features. First, FFTW automatically adapts the com-

putation to the hardware. Second, the inner loop of FFTW
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Figure 1: Graph of the performance of FFTW versus Sun’s Per-

formance Library on a 167 MHz UltraSPARC processor in single

precision. The graph plots the speed in “mflops” (higher is better)

versus the size of the transform. This figure shows sizes that are

powers of two, while Figure 2 shows other sizes that can be fac-

tored into powers of 2, 3, 5, and 7. This distinction is important

because the DFT algorithm depends on the factorization of the size,

and most implementations of the DFT are optimized for the case

of powers of two. See [FJ97] for additional experimental results.

FFTW was compiled with Sun’s C compiler (WorkShop Compilers

4.2 30 Oct 1996 C 4.2).

(which amounts to 95% of the total code) was generated au-

tomatically by a special-purpose compiler written in Objec-

tive Caml [Ler98]. This paper explains how this compiler

works.

FFTW does not implement a single DFT algorithm, but it

is structured as a library of codelets—sequences of C code

that can be composed in many ways. In FFTW’s lingo, a

composition of codelets is called a plan. You can imagine

the plan as a sort of bytecode that dictates which codelets

should be executed in what order. (In the current FFTW

implementation, however, a plan has a tree structure.) The

precise plan used by FFTW depends on the size of the in-

put (where “the input” is an array of ✵ complex numbers),

and on which codelets happen to run fast on the underly-
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Figure 2: See caption of Figure 1.

ing hardware. The user need not choose a plan by hand,

however, because FFTW chooses the fastest plan automat-

ically. The machinery required for this choice is described

elsewhere [FJ97, FJ98].

Codelets form the computational kernel of FFTW. You

can imagine a codelet as a fragment of C code that computes

a Fourier transform of a fixed size (say, 16, or 19).1 FFTW’s

codelets are produced automatically by the FFTW codelet

generator, unimaginatively called ★✪✩✬✫✣✭✮✭✰✯ . ★✪✩✬✫✪✭✰✭✰✯ is an

unusual special-purpose compiler. While a normal compiler

accepts C code (say) and outputs numbers, ★✣✩✬✫✪✭✮✭✰✯ inputs

the single integer ✵ (the size of the transform) and outputs

C code. The codelet generator contains optimizations that

are advantageous for DFT programs but not appropriate for

a general compiler, and conversely, it does not contain opti-

mizations that are not required for the DFT programs it gen-

erates (for example loop unrolling).

★✣✩✬✫✪✭✮✭✰✯ operates in four phases.

1. In the creation phase, ★✣✩✬✫✪✭✮✭✰✯ produces a directed

acyclic graph (dag) of the codelet, according to some

well-known algorithm for the DFT [DV90]. The gen-

erator contains many such algorithms and it applies the

most appropriate.

2. In the simplifier, ★✪✩ ✫✪✭✮✭✰✯ applies local rewriting rules

to each node of the dag, in order to simplify it. In tradi-

tional compiler terminology, this phase performs alge-

braic transformations and common-subexpression elim-

ination, but it also performs other transformations that

are specific to the DFT. For example, it turns out that if

all floating point constants are made positive, the gener-

ated code runs faster. (See Section 5.) Another impor-

tant transformation is dag transposition, which derives

from the theory of linear networks [CO75]. Moreover,

1In the actual FFTW system, some codelets perform more tasks, how-

ever. For the purposes of this paper, we consider only the generation of

transforms of a fixed size.

besides noticing common subexpressions, the simplifier

also attempts to create them. The simplifier is written in

monadic style [Wad97], which allowed me to deal with

the dag as if it were a tree, making the implementation

much easier.

3. In the scheduler, ★✪✩✬✫✪✭✰✭✰✯ produces a topological sort of

the dag (a “schedule”) that, for transforms of size
✂☎✄

,

provably minimizes the asymptotic number of register

spills, no matter how many registers the target machine

has. This truly remarkable fact can be derived from

the analysis of the red-blue pebbling game of Hong and

Kung [HK81], as we shall see in Section 6. For trans-

forms of other sizes the scheduling strategy is no longer

provably good, but it still works well in practice. Again,

the scheduler depends heavily on the topological struc-

ture of DFT dags, and it would not be appropriate in a

general-purpose compiler.

4. Finally, the schedule is unparsed to C. (It would be easy

to produce FORTRAN or other languages by changing

the unparser.) The unparser is rather obvious and unin-

teresting, except for one subtlety discussed in Section 7.

Although the creation phase uses algorithms that have

been known for several years, the output of ★✣✩✬✫✪✭✮✭✰✯ is at

times completely unexpected. For example, for a complex

transform of size ✵✝✆✟✞✡✠ , the generator employs an algo-

rithm due to Rader, in the form presented by Tolimieri and

others [TAL97]. In its most sophisticated variant, this al-

gorithm performs 214 real (floating-point) additions and 76

real multiplications. (See [TAL97, Page 161].) The gener-

ated code in FFTW for the same algorithm, however, con-

tains only 176 real additions and 68 real multiplications, be-

cause ★✣✩✬✫✪✭✮✭✰✯ found certain simplifications that the authors

of [TAL97] did not notice.2

The generator specializes the dag automatically for the

case where the input data are real, which occurs frequently

in applications. This specialization is nontrivial, and in the

past the design of an efficient real DFT algorithm required

a serious effort that was well worth a publication [SJHB87].

★✪✩ ✫✪✭✮✭✰✯ , however, automatically derives real DFT programs

from the complex algorithms, and the resulting programs

have the same arithmetic complexity as those discussed by

[SJHB87, Table II].3 The generator also produces real vari-

ants of the Rader’s algorithm mentioned above, which to my

knowledge do not appear anywhere in the literature.

2Buried somewhere in the computation dag generated by the algorithm

are statements of the form ☛✌☞✎✍✑✏✓✒ , ✔✕☞✎✍✗✖✘✒ , ✙✚☞✎☛✛✏✓✔ . The

generator simplifies these statements to ✙✜☞✣✢ � ✍ , provided ☛ and ✔ are

not needed elsewhere. Incidentally, [SB96] reports an algorithm with 188

additions and 40 multiplications, using a more involved DFT algorithm that

I have not implemented yet. To my knowledge, the program generated by✤✦✥★✧✦✩✪✩✪✫ performs the lowest known number of additions for this problem.
3In fact, ✤✦✥★✧✦✩✪✩✪✫ saves a few operations in certain cases, such as ✬✭☞✯✮✱✰ .
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I found a special-purpose compiler such as the FFTW

codelet generator to be a valuable tool, for a variety of rea-

sons that I now discuss briefly.�
Performance was the main goal of the FFTW project,

and it could not have been achieved without ★✪✩✬✫✪✭✰✭✰✯ .

For example, the codelet that performs a DFT of size 64

is used routinely by FFTW on the Alpha processor. The

codelet is about twice as fast as Digital’s DXML library

on the same machine. The codelet consists of about

2400 lines of code, including 912 additions and 248

multiplications. Writing such a program by hand would

be a formidable task for any programmer. At least for

the DFT problem, these long sequences of straight-line

code seem to be necessary in order to take full advan-

tage of large CPU register sets and the scheduling capa-

bilities of C compilers.� Achieving correctness has been surprisingly easy. The

DFT algorithms in ★✪✩ ✫✪✭✮✭✰✯ are encoded straightfor-

wardly using a high-level language. The simplifica-

tion phase transforms this high-level algorithm into op-

timized code by applying simple algebraic rules that

are easy to verify. In the rare cases during develop-

ment when the generator contained a bug, the output

was completely incorrect, making the bug manifest.�
Rapid turnaround was essential to achieve the perfor-

mance goals. For example, the scheduler described in

Section 6 is the result of a trial-and-error process in

search of the best result, since the schedule of a codelet

interacts with C compilers (in particular, with register

allocators) in nonobvious ways. I could usually imple-

ment a new idea and regenerate the whole system within

minutes, until I found the solution described in this pa-

per.� The generator is effective because it can apply problem-

specific code improvements. For example, the sched-

uler is effective only for DFT dags, and it would per-

form poorly for other computations. Moreover, the sim-

plifier performs certain improvements that depend on

the DFT being a linear transformation.� Finally, ★✪✩✬✫✪✭✮✭✱✯ derived some new algorithms, as in

the example ✵ ✆ ✞ ✠ discussed above. While this pa-

per does not focus on these algorithms per se, they are

of independent theoretical and practical interest in the

Digital Signal Processing community.

This paper, of necessity, brings together concepts from

both the Programming Languages and the Signal Processing

literatures. The paper, however, is biased towards a reader

familiar with compilers [ASU86], programming languages,

and monads [Wad97], while the required signal-processing

knowledge is kept to the bare minimum. (For example, I am

not describing some advanced number-theoretical DFT algo-

rithms used by the generator.) Readers unfamiliar with the

discrete Fourier transform, however, are encouraged to read

the good tutorial by Duhamel and Vetterli [DV90].

The rest of the paper is organized as follows. Section 2

gives some background on the discrete Fourier transform

and on algorithms for computing it. Section 3 overviews re-

lated work on automatic generation of DFT programs. The

remaining sections follow the evolution of a codelet within

★✪✩ ✫✪✭✮✭✰✯ . Section 4 describes what the codelet dag looks like

and how it is constructed. Section 5 presents the dag simpli-

fier. Section 6 describes the scheduler and proves that it min-

imizes the number of transfers between memory and regis-

ters. Section 7 discusses some pragmatic aspects of ★✪✩✬✫✪✭✮✭✱✯ ,

such as running time and memory requirements, and it dis-

cusses the interaction of ★✪✩✬✫✪✭✮✭✱✯ ’s output with C compilers.

2 Background

This section defines the discrete Fourier transform (DFT),

and mentions the most common algorithms to compute it.

Let
✁

be an array of ✵ complex numbers. The (forward)

discrete Fourier transform of
✁

is the array ✂ given by

✂☎✄ ✆✞✝ ✆
✟✡✠☞☛✌✍✏✎☞✑ ✁ ✄ ✒✓✝✕✔ ✠✗✖ ✍✟ ✘ (1)

where ✔ ✟ ✆✚✙✜✛✏✢✤✣ ✠✥☛✏✦✏✟ is a primitive ✵ -th root of unity, and✧✩★ ✆✫✪ ✵ . In case
✁

is a real vector, the transform ✂ has

the hermitian symmetry✂✬✄ ✵✮✭✯✆✞✝ ✆✰✂✲✱✓✄ ✆✞✝ ✘
where ✂ ✱ ✄ ✆✞✝ is the complex conjugate of ✂ ✱ ✄ ✆✳✝ .

The backward DFT flips the sign at the exponent of ✔ ✟ ,

and it is defined in the following equation.

✂☎✄ ✆✞✝ ✆
✟✴✠✥☛✌✍✏✎✥✑ ✁ ✄ ✒✓✝✵✔ ✖ ✍✟✷✶ (2)

The backward transform is the “scaled inverse” of the for-

ward DFT, in the sense that computing the backward trans-

form of the forward transform yields the original array mul-

tiplied by ✵ .

If ✵ can be factored into ✵ ✆ ✵ ☛ ✵ ✛ , Equation (1) can be

rewritten as follows. Let ✒ ✆✷✒ ☛ ✵ ✛✹✸ ✒ ✛ , and ✆ ✆✺✆ ☛ ✸ ✆ ✛ ✵ ☛ .
We then have,✂☎✄ ✆ ☛ ✸ ✆ ✛ ✵ ☛ ✝ ✆ (3)✟✼✻✽✠☞☛✌✍ ✻ ✎✥✑

✾✿❁❀❂ ✟❄❃❅✠☞☛✌✍ ❃ ✎✥✑ ✁ ✄ ✒ ☛ ✵ ✛✹✸ ✒ ✛ ✝✵✔ ✠❆✖❇❃ ✍ ❃✟❄❃ ❈❉ ✔ ✠✗✖❊❃ ✍ ✻✟ ❋● ✔ ✠✗✖✕✻ ✍ ✻✟✼✻ ✶
This formula yields the Cooley-Tukey fast Fourier trans-

form algorithm (FFT) [CT65]. The algorithm computes ✵ ✛
3



transforms of size ✵ ☛ (the inner sum), it multiplies the result

by the so-called twiddle factors ✔ ✠✗✖❊❃ ✍ ✻✟ , and finally it com-

putes ✵ ☛ transforms of size ✵ ✛ (the outer sum).

If
�✂✁☎✄✝✆ ✵ ☛ ✘ ✵ ✛ ✞ ✆ ✞ , the prime factor algorithm can be

applied, which avoids the multiplications by the twiddle fac-

tors at the expense of a more involved computation of in-

dices. (See [OS89, page 619].) If ✵ is a multiple of ✟ ,

the split-radix algorithm [DV90] can save some operations

with respect to Cooley-Tukey. If ✵ is prime, ★✪✩✬✫✪✭✮✭✱✯ uses

either Equation (1) directly, or Rader’s algorithm [Rad68],

which converts the transform into a circular convolution of

size ✵ ✭ ✞ . The circular convolution can be computed re-

cursively using two Fourier transforms, or by means of a

clever technique due to Winograd [Win78] ( ★✪✩ ✫✪✭✮✭✰✯ does not

employ this technique yet, however). Other algorithms are

known for prime sizes, and this is still the subject of active

research. See [TAL97] for a recent compendium on the topic.

Any algorithm for the forward DFT can be readily adapted to

compute the backward DFT, the difference being that certain

complex constants become conjugate. For the purposes of

this paper, we do not distinguish between forward and back-

ward transform, and we simply refer to both as the “complex

DFT”.

In the case when the input is purely real, the transform

can be computed with roughly half the number of operations

of the complex case, and the hermitian output requires half

the storage of a complex array of the same size. In gen-

eral, keeping track of the hermitian symmetry throughout

the recursion is nontrivial, however. This bookkeeping is

relatively easy for the split-radix algorithm, and it becomes

particularly nasty for the prime factor and the Rader algo-

rithms. The topic is discussed in detail in [SJHB87]. In the

real transform case, it becomes important to distinguish the

forward transform, which takes a real input and produces an

hermitian output, from the backward transform, whose input

is hermitian and whose output is real, requiring a different

algorithm. We refer to these cases as the “real to complex”

and “complex to real” DFT, respectively.

In the DFT literature, unlike in most of Computer Sci-

ence, it is customary to report the exact number of arith-

metic operations performed by the various algorithms, in-

stead of their asymptotic complexity. Indeed, the time com-

plexity of all DFT algorithms of interest is ✠ ✆ ✵☛✡✌☞ � ✵ ✞ , and

a detailed count of the exact number of operation is usually

doable (which by no means implies that the analysis is easy

to carry out). It is no problem for me to follow this conven-

tion in this paper, since ★✪✩ ✫✪✭✮✭✰✯ produces an exact arithmetic

count anyway.

In the literature, the term FFT (“fast Fourier trans-

form”) refers to either the Cooley-Tukey algorithm or to any

✠ ✆ ✵☛✡✍☞ � ✵ ✞ algorithm for the DFT, depending on the author.

In this paper, FFT denotes any ✠ ✆ ✵✎✡✍☞ � ✵ ✞ algorithm.

3 Related work

Researchers have been generating FFT programs for at least

twenty years, possibly to avoid the tedium of getting all the

implementation details right by hand. To my knowledge, the

first generator of FFT programs was FOURGEN, written by

J. A. Maruhn [Mar76]. It was written in PL/I and it generated

FORTRAN.4 FOURGEN is limited to transforms of size
✂☎✄

.

Perez and Takaoka [PT87] present a generator of Pascal

programs implementing a prime factor FFT algorithm. This

program is limited to complex transforms of size ✵ , where

✵ must be factorable into mutually prime factors in the set✏ ✂ ✘ ✠ ✘ ✟ ✘✒✑✴✘✒✓✴✘✕✔ ✘✕✖ ✘ ✞☎✗✙✘ .
Johnson5 and Burrus [JB83] applied dynamic program-

ming to the automatic design of DFT modules. Selesnick

and Burrus [SB96] used a program to generate MATLAB

subroutines for DFTs of certain prime sizes. In many cases,

these subroutines are the best known in terms of arithmetic

complexity.

The EXTENT system by Gupta and others [GHSJ96] gen-

erates FORTRAN code in response to an input expressed in

a tensor product language. Using the tensor product ab-

straction one can express concisely a variety of algorithms

that includes the FFT and matrix multiplication (including

Strassen’s algorithm).

Another program called ★✪✩✬✫✣✭✮✭✰✯ generating Haskell FFT

subroutines is part of the ✫✛✚✰✭✢✜☎✣ benchmark for Haskell

[Par92]. Unlike my program, this ★✪✩✬✫✪✭✮✭✱✯ is limited to trans-

forms of size
✂ ✄

. The program in ✫✙✚✰✭✢✜✤✣ is not documented

at all, but apparently it can be traced back to [HV92].

Veldhuizen [Vel95] used a template metaprograms tech-

nique to generate ✥✧✦✧✦ programs. The technique exploits the

template facility of ✥✧✦✧✦ to force the ✥✧✦✧✦ compiler to perform

computations at compile time.

All these systems are restricted to complex transforms,

and the FFT algorithm is known a priori. To my knowl-

edge, the FFTW generator is the only one that produces real

algorithms, and in fact, which can derive real algorithms by

specializing a complex algorithm. Also, my generator is the

only one that addressed the problem of scheduling the pro-

gram efficiently.

4 Creation of the expression dag

This section describes the creation of an expression dag. We

first define the ✫✛✚✩★✣✩ data type, which encodes a directed

acyclic graph (dag) of a codelet. We then describe a few

4Maruhn argues that PL/I is more suited than FORTRAN to this

program-generation task, and has the following curious remark.

One peculiar difficulty is that some FORTRAN systems pro-

duce an output format for floating-point numbers without the

exponent delimiter “E”, and this makes them illegal in FOR-

TRAN statements.

5Unrelated to Steven G. Johnson, the other author of FFTW.
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Figure 3: Objective Caml code that defines the ✮☛✯✱✰✳✲ data type,

which encodes an expression dag.

ancillary data structures and functions that provide complex

arithmetic. Finally, the bulk of the section describes the func-

tion ✭✰✭✰✯✮★✪✩✬✫ , which actually produces the expression dag.

We start by defining the ✫✛✚✂★✣✩ data type, which encodes

an arithmetic expression dag. Each node of the dag rep-

resents an operator, and the node’s children represent the

operands. This is the same representation as the one gen-

erally used in compilers [ASU86, Section 5.2]. A node in

the dag can have more than one “parent”, in which case the

node represents a common subexpression. The definition

of ✫✛✚✂★✣✩ is given in Figure 3, and it is straightforward. A

node is either a real number (encoded by the abstract data

type
✝✂✟☛✠ ✣ ✩✌☞✎✍ ✫ ✟☛✠ ✣ ✩✌☞ ), a load of an input variable, a store of

an expression into an output node, the sum of the children

nodes, the product of two nodes, or the sign negation of a

node. For example, the expression ✴ ✭✶✵ , where ✴ and ✵ are

input variables, is represented by
✧ ✖ ✟✩★✸✷✚✏ ✚✂✒✩★☎✴✺✹ ✬✌✠ ✜✕✫ ✟✻★✼✽✏ ✚✂✒✩★✔✵✳✾❀✿ .

The structure
✝✂✟✡✠ ✣ ✩✌☞ maintains floating-point constants

with arbitrarily high precision (currently, 50 decimal digits),

in case the user wants to use the quadruple precision floating-

point unit on a processor such as the UltraSPARC.
✝✂✟☛✠ ✣ ✩✌☞ is

implemented on top of Objective Caml’s arbitrary-precision

rationals. The structure ✓✕✒✌☞ ✜✡✒ ✣✗✖✰✩ encodes the input/output

nodes of the dag, and the temporary variables of the gener-

ated C code. Variables can be considered an abstract data

type that is never used explicitly in this paper.

The ✫✛✚✩★✮✩ data type encodes expressions over real num-

bers, since the final C output contains only real expressions.

For creating the expression dag of the codelet, however, it

is convenient to express the algorithms in terms of com-

plex numbers. The generator contains a structure called

✥ ✚ ✠ ✁ ✖✰✩✌❁ , which implements complex expressions on top of

the ✫✛✚✩★✣✩ data type, in a straightforward way.6 The type

✥ ✚ ✠ ✁ ✖✰✩✌❁✎✍ ✩✌❁ ✁ ☞ (not shown) is essentially a pair of ✫✙✚✩★✣✩ s.

We now describe the function ✭✮✭✰✯✰★✪✩✬✫ , which creates a

dag for a DFT of size ✵ . In the current implementation,

✭✮✭✰✯✰★✪✩✬✫ uses one of the following algorithms.

6One subtlety is that a complex multiplication by a constant can be im-

plemented with either 4 real multiplications and 2 real additions, or 3 real

multiplications and 3 real additions [Knu98, Exercise 4.6.4-41]. The cur-

rent generator uses the former algorithm, since the operation count of the

dag is generally dominated by additions. On most CPUs, it is advantageous

to move work from the floating-point adder to the multiplier.

� A split-radix algorithm [DV90], if ✵ is a multiple of ✟ .

Otherwise,� A prime factor algorithm (as described in [OS89, page

619]), if ✵ factors into ✵ ☛ ✵ ✛ , where ✵ ✖❃❂✆ ✞ and�✂✁☎✄✝✆ ✵ ☛ ✘ ✵ ✛ ✞ ✆ ✞ . Otherwise,� The Cooley-Tukey FFT algorithm (Equation (3)) if ✵
factors into ✵ ☛ ✵ ✛ , where ✵ ✖❄❂✆ ✞ . Otherwise,� ( ✵ is a prime number) Rader’s algorithm for transforms

of prime length [Rad68] if ✵✌✆ ✑ or ✵❆❅ ✞ ✠ . Otherwise,� Direct application of the definition of DFT (Equa-

tion (1)).

We now look at the operation of ✭✮✭✰✯✮★✪✩ ✫ more closely.

The function has type

✭✮✭✱✯✮★✪✩✬✫❃❇ ✜✕✫✣✯❉❈❋❊ ✼ ✜✕✫✣✯✫❈❋❊ ✥ ✚ ✠ ✁ ✖✰✩✌❁✎✍ ✩✌❁ ✁ ☞✩✾●❈❋❊
✜✕✫✣✯❉❈❋❊ ✼ ✜✕✫✣✯✫❈❋❊ ✥ ✚ ✠ ✁ ✖✰✩✌❁✎✍ ✩✌❁ ✁ ☞✩✾

The first argument to ✭✰✭✰✯✮★✪✩✬✫ is the size ✫ of the trans-

form. The second argument is a function ✜ ✫ ✁ ✟ ✯ with type

✜✕✫✮✯❉❈✂❊ ✥ ✚ ✠ ✁ ✖✰✩✌❁❍✍✛✩✌❁ ✁ ☞ . The application
✼ ✜✕✫ ✁ ✟ ✯ ✜❋✾ re-

turns a complex expression that contains the ✜ -th input. The

third argument
★ ✜ ★✰✫ is either ✞ or ✭ ✞ , and it determines the

direction of the transform.

Depending on the size ✵ of the requested transform,

✭✮✭✱✯✮★✪✩✬✫ dispatches one of the algorithms mentioned above.

We now discuss how the Cooley-Tukey FFT algorithm is im-

plemented. The implementation of the other algorithms is

similar, and it is not shown in this paper.

The Objective Caml code that implements the Cooley-

Tukey algorithm can be found in Figure 4. In order to un-

derstand the code, recall Equation (3). This equation trans-

lates almost verbatim into Objective Caml. With reference

to Figure 4, the function application ✯ ✠ ✁❏■▲❑❋▼ computes the

inner sum of Equation (3) for a given value of ✒ ✛ , and it re-

turns a function of ✆ ☛ . ( ✯ ✠ ✁◆■ is curried over ✆ ☛ , and therefore✆ ☛ does not appear explicitly in the definition.) Next,
✼ ✯ ✠ ✁❏■❑❋▼ ✜ ■ ✾ is multiplied by the twiddle factors, yielding ✯ ✠ ✁✗▼ ,

that is, the expression in square braces in Equation (3). Next,

✯ ✠ ✁✗❖ computes the outer summation, which is itself a DFT

of size ✵ ✛ . (Again, ✯ ✠ ✁✛❖ is a function of ✆ ☛ and ✆ ✛ , curried

over ✆ ✛ .) In order to obtain the ✆ -th element of the output of

the transform, the index ✆ is finally mapped into ✆ ☛ and ✆ ✛ and✼ ✯ ✠ ✁✗❖ ✜ ■ ✜ ▼ ✾ is returned.

Observe that the code in Figure 4 does not actually per-

form any computation. Instead, it builds a symbolic expres-

sion dag that specifies the computation. The other DFT al-

gorithms are implemented in a similar fashion.

At the top level, the generator invokes ✭✮✭✰✯✮★✪✩ ✫ with

the size ✫ and the direction
★ ✜ ★✰✫ specified by the user.

The ✜✕✫ ✁ ✟ ✯ function is set to ✭ ✟ ✫ ✜☎❈✂❊ ✥ ✚ ✠ ✁ ✖✰✩✌❁❍✍P✖✩✚❋✒✩★✼ ✓✕✒✌☞ ✜✡✒ ✣✗✖✰✩✘✍ ✜✕✫ ✁ ✟ ✯ ✜❋✾ , i.e., a function that loads the ✆ -th

input variable. Recall now that ✭✮✭✰✯✰★✪✩✬✫ returns a function

5



✖✰✩✱✯✤☞✪✩ �✁� ✚✩✚✕✖✰✩ �✄✂ ✯ ✟✆☎ ✩ � ✫ ■ ✫ ▼ ✜✕✫ ✁ ✟ ✯ ★ ✜ ★✰✫ ✄
✖✰✩✱✯ ✯ ✠ ✁❏■ ❑❋▼ ✄ ✭✮✭✰✯✮★✪✩ ✫ ✫ ■✼ ✭ ✟ ✫ ❑✩■ ❈✂❊ ✜✕✫ ✁ ✟ ✯ ✼ ❑✩■ ✥ ✫ ▼ ✦ ❑❋▼ ✾✂✾ ★ ✜ ★✰✫ ✜✕✫
✖✰✩✱✯ ✯ ✠ ✁✗▼ ✜ ■✶❑❋▼ ✄

✩✌❁ ✁ ✫ ✼ ★ ✜ ★✱✫ ✥ ✜ ■ ✥ ❑❋▼ ✾✞✝✗✥ ✯ ✠ ✁❏■▲❑❋▼ ✜ ■ ✜✕✫
✖✰✩✱✯ ✯ ✠ ✁✗❖ ✜ ■ ✄ ✭✮✭✰✯✮★✪✩ ✫ ✫ ▼ ✼ ✯ ✠ ✁✗▼ ✜ ■ ✾ ★ ✜✕★✰✫
✜✕✫ ✼ ✭ ✟ ✫ ✜ ❈❋❊ ✯ ✠ ✁✗❖ ✼ ✜ ✠ ✚✩★ ✫ ■ ✾ ✼ ✜✠✟ ✫ ■ ✾❋✾

Figure 4: Fragment of the FFTW codelet generator that imple-

ments the Cooley-Tukey FFT algorithm. The infix operator ✡☞☛
computes the complex product. The function ✲✍✌✏✎●✮✒✑ computes

the constant exp ✓✕✔✗✖✙✘✛✚ ✜✣✢✥✤✥✦★✧ .
✚ ✟ ✯ ✁ ✟ ✯ , where

✼ ✚ ✟ ✯ ✁ ✟ ✯ ✜✂✾ is a complex expression that

computes the ✆ -th element of the output array. The top level

builds a list of
✢ ✯✙✚✌☞✣✩ expressions that store

✼ ✚ ✟ ✯ ✁ ✟ ✯ ✜❋✾
into the ✆ -th output variable, for all

✧✰★ ✆✬✪ ✵ . This list

of
✢ ✯✙✚☛☞✪✩ s is the codelet dag that forms the input of subse-

quent phases of the generator.

We conclude this section with a few remarks. According

to the description given in this section, ✭✮✭✰✯✰★✪✩✬✫ contains no

special support for the case where the input is real. This

statement is not completely true. In the actual implemen-

tation, ✭✮✭✰✯✰★✪✩✬✫ maintains certain symmetries explicitly (for

example, if the input is real, then the output is known to

have hermitian symmetry). These additional constraints do

not change the final output, but they speed up the genera-

tion process, since they avoid computing and simplifying the

same expression twice. For the same reason, the actual im-

plementation memoizes expressions such as ✯ ✠ ✁❏■ ✜ ▼ ✜ ■ in

Figure 4, so that they are only computed once.7

At this stage, the generated dag contains many redundant

computations, such as multiplications by ✞ or
✧
, additions

of
✧
, and so forth. ✭✮✭✰✯✰★✪✩✬✫ makes no attempt to eliminate

these redundancies. Figure 5 shows a possible C translation

of a codelet dag at this stage of the generation process.

5 The simplifier

In this section, we present FFTW’s simplifier, which trans-

forms code such as the one in Figure 5 into simpler code.

The simplifier transforms a dag of ✫✛✚✩★✣✩ s (see Section 4) into

another dag of ✫✛✚✂★✣✩ s. We first discuss how the simplifier

transforms the dag, and then how the simplifier is actually

implemented. The implementation benefits heavily from the

use of monads.

5.1 What the simplifier does

We first illustrate the improvements applied by the simplifier

to the dag. The simplifier traverses the dag bottom-up, and it

7These performance improvements were important for a user of FFTW

who needed a hard-coded transform of size 101, and had not obtained an

answer after the generator had run for three days. See Section 7 for more

details.

✯ ✠ ✁❏■ ✄✪✩✛✫✭✬ ✏ ✼ ✜✕✫ ✁ ✟ ✯ ✷✯✮ ✿✻✾❏✹
✯ ✠ ✁✄✰ ✄✪✩✛✫✭✬ ✏ ✼ ✜✕✫ ✁ ✟ ✯ ✷✯✮ ✿✻✾❏✹
✯ ✠ ✁✄✱ ✄✳✲✵✴✭✬✆✶ ✼ ✜✕✫ ✁ ✟ ✯ ✷✯✮ ✿✻✾❏✹
✯ ✠ ✁✗▼ ✄✳✲✵✴✭✬✆✶ ✼ ✜✕✫ ✁ ✟ ✯ ✷✯✮ ✿✻✾❏✹
✯ ✠ ✁✗❖ ✄✪✩✛✫✭✬ ✏ ✼ ✜✕✫ ✁ ✟ ✯ ✷ ■ ✿✻✾❏✹
✯ ✠ ✁✄✷ ✄✪✩✛✫✭✬ ✏ ✼ ✜✕✫ ✁ ✟ ✯ ✷ ■ ✿✻✾❏✹
✯ ✠ ✁✄✸ ✄✳✲✵✴✭✬✆✶ ✼ ✜✕✫ ✁ ✟ ✯ ✷ ■ ✿✻✾❏✹
✯ ✠ ✁✆✹ ✄✳✲✵✴✭✬✆✶ ✼ ✜✕✫ ✁ ✟ ✯ ✷ ■ ✿✻✾❏✹
✩✛✫✭✬ ✏ ✼ ✚ ✟ ✯ ✁ ✟ ✯ ✷✺✮ ✿✻✾ ✄ ✼❋✼ ■ ✥ ✯ ✠ ✁◆■ ✾✦❈ ✼✻✮ ✥ ✯ ✠ ✁✗▼ ✾✂✾

✦ ✼✂✼ ■ ✥ ✯ ✠ ✁✗❖ ✾✦❈ ✼✼✮ ✥ ✯ ✠ ✁✆✹ ✾❋✾❏✹
✲✵✴✭✬✆✶ ✼ ✚ ✟ ✯ ✁ ✟ ✯ ✷✺✮ ✿✻✾ ✄ ✼❋✼ ■ ✥ ✯ ✠ ✁✛▼ ✾ ✦ ✼✻✮ ✥ ✯ ✠ ✁❏■ ✾✂✾

✦ ✼✂✼ ■ ✥ ✯ ✠ ✁✆✹ ✾ ✦ ✼✼✮ ✥ ✯ ✠ ✁✗❖ ✾❋✾❏✹
✩✛✫✭✬ ✏ ✼ ✚ ✟ ✯ ✁ ✟ ✯ ✷ ■ ✿✻✾ ✄ ✼❋✼ ■ ✥ ✯ ✠ ✁✽✰ ✾✦❈ ✼✻✮ ✥ ✯ ✠ ✁✄✱ ✾✂✾

✦ ✼✂✼ ❈ ■ ✥ ✯ ✠ ✁✄✷ ✾ ❈ ✼✻✮ ✥ ✯ ✠ ✁✄✸ ✾❋✾❏✹
✲✵✴✭✬✆✶ ✼ ✚ ✟ ✯ ✁ ✟ ✯ ✷ ■ ✿✻✾ ✄ ✼❋✼ ■ ✥ ✯ ✠ ✁✽✱ ✾ ✦ ✼✻✮ ✥ ✯ ✠ ✁✄✰ ✾✂✾

✦ ✼✂✼ ❈ ■ ✥ ✯ ✠ ✁✄✸ ✾ ✦ ✼✻✮ ✥ ✯ ✠ ✁✄✷ ✾❋✾❏✹
Figure 5: C translation of a dag for a complex DFT of size 2,

as generated by ✾✵✾✵✿✍❀✳✲✱✮ . Variable declarations have been omitted

from the figure. The code contains many common subexpression

(e.g., ✿❂❁❃✎✆❄ and ✿✥❁❃✎❆❅ ), and redundant multiplications by ❇ or ✢ .
applies a series of local improvements to every node. For ex-

planation purposes, these improvements can be subdivided

into three categories: algebraic transformations, common-

subexpression elimination, and DFT-specific improvements.

Since the first two kinds are well-known [ASU86], I just dis-

cuss them briefly. We then consider the third kind in more

detail.

Algebraic transformations reduce the arithmetic complex-

ity of the dag. Like a traditional compiler, the simplifier per-

forms constant folding, and it simplifies multiplications by✧
, ✞ , or ✭ ✞ , and additions of

✧
. Moreover, the simplifier

applies the distributive property systematically. Expressions

of the form ❈✛❉ ✸ ❈✛❊ are transformed into ❈ ✆ ❉ ✸ ❊ ✞ . In the

same way, expressions of the form ❈ ☛ ❉ ✸ ❈ ✛ ❉ are transformed

into
✆ ❈ ☛ ✸ ❈ ✛ ✞ ❉ . In general, these two transformations have

the potential of destroying common subexpressions, and they

might increase the operation count. This does not appear to

be the case for all DFT dags I have studied, although I do not

fully understand the reason for this phenomenon.

Common-subexpression elimination is also applied sys-

tematically. Not only does the simplifier eliminate common

subexpressions, it also attempts to create new ones. For ex-

ample, it is common for a DFT dag (especially in the case of

real input) to contain both ❉ ✭❋❊ and ❊✹✭❋❉ as subexpressions,

for some ❉ and ❊ . The simplifier converts both expressions

to either ❉ ✭●❊ and ✭ ✆ ❉✮✭❍❊ ✞ , or ✭ ✆ ❊☎✭●❉ ✞ and ❊ ✭●❉ , de-

pending on which expression is encountered first during the

dag traversal.

The simplifier applies two kinds of DFT-specific improve-

ments. First, all numeric constants are made positive, possi-

bly propagating a minus sign to other nodes of the dag. This

curious transformation is effective because constants gener-

ally appear in pairs ❈ and ✭■❈ in a DFT dag. To my knowl-
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Figure 6: Illustration of “network” transposition. Each graph de-

fines an algorithm for computing a linear function. These graphs

are called linear networks, and they can be interpreted as follows.

Data are flowing in the network, from input nodes to output nodes.

An edge multiplies data by some constant (possibly ✢ ), and each

node is understood to compute the sum of all incoming edges. In

this example, the network on the left computes

✝✟✞ ✆ ✄✡✠ ✁ ✂ and� ✞ ✔ ✄☛✠ ☎ ✂ . The network on the right is the “transposed” form

of the first network, obtained by reversing all edges. The new net-

work computes the linear function ✄ ✞ ✆ ✝ ✠ ✔ � and ✂ ✞ ✁ ✝ ✠ ☎ � .
In general, if a network computes ✄ ✞✌☞ ✂ for some matrix

☞
,

the transposed network computes ✂ ✞✍☞✏✎ ✄ . (See [CO75] for a

proof.) These linear networks are similar to but not the same as ex-

pression dags normally used in compilers and in ❀✳✲✱✮✵✾✵✾✵✿ , because

in the latter case the nodes and not the edges perform computation.

A network can be easily transformed into an expression dag, how-

ever. The converse is not true in general, but it is true for DFT dags

where all multiplications are by constants.

edge, every C compiler would store both ❈ and ✭■❈ in the

program text, and it would load both constants into a register

at runtime. Making all constants positive reduces the number

of loads of constants by a factor of two, and this transforma-

tion alone speeds up the generated codelets by 10-15% on

most machines. This transformation has the additional effect

of converting subexpressions into a canonical form, which

helps common-subexpression elimination.

The second DFT-specific improvement is not local to

nodes, and is instead applied to the whole dag. The trans-

formation is based on the fact that a dag computing a lin-

ear function can be “reversed” yielding a transposed dag

[CO75]. This transposition process is well-known in the Sig-

nal Processing literature [OS89, page 309], and it operates a

shown in Figure 6. It turns out that in certain cases the trans-

posed dag exposes some simplifications that are not present

in the original dag. (An example will be shown later.) Ac-

cordingly, the simplifier performs three passes over the dag.

It first simplifies the original dag ✑ yielding a dag ✒ . Then,

it simplifies the transposed dag ✒✔✓ yielding a dag ✕✡✓ . Fi-

nally, it simplifies ✕ (the transposed dag of ✕ ✓ ) yielding a

dag ✖ .8 Figure 7 shows the savings in arithmetic complex-

ity that derive from dag transposition for codelets of various

sizes. As it can be seen in the figure, transposition can re-

duce the number of multiplications, but it does not reduce

the number of additions.

Figure 8 shows a simple case where transposition is bene-

8Although one might imagine iterating this process, three passes seem

to be sufficient in all cases.

adds muls adds muls

size (not transposed) (transposed)

complex to complex

5 32 16 32 12

10 84 32 84 24

13 176 88 176 68

15 156 68 156 56

real to complex

5 12 8 12 6

10 34 16 34 12

13 76 44 76 34

15 64 31 64 25

complex to real

5 12 9 12 7

9 32 20 32 18

10 34 18 34 14

12 38 14 38 10

13 76 43 76 35

15 64 37 64 31

16 58 22 58 18

32 156 62 156 54

64 394 166 394 146

128 956 414 956 374

Figure 7: Summary of the benefits of dag transposition. The table

shows the number of additions and multiplications for codelets of

various size, with and without dag transposition. Sizes for which

the transposition has no effect are not reported in this table.

ficial. The network in the figure computes ✗ ✆ ✟✙✘ ✆ ✂ ✴ ✸ ✠✂✵ ✞
.

It is not safe to simplify this expression to ✗✌✆ ✔ ✴ ✸ ✞ ✂ ✵ ,
since this transformation destroys the common subexpres-

sions
✂ ✴ and ✠✌✵ . (The transformation destroys one operation

and two common subexpressions, which might increase the

operation count by one.) Indeed, the whole point of most

FFT algorithms is to create common subexpressions. When

the network is transposed, however, it computes ✴✓✆ ✂ ✘ ✟✚✗
and ✵✜✆ ✠✔✘ ✟✛✗ . These transposed expressions can be safely

transformed into ✴ ✆ ✔ ✗ and ✵✛✆✎✞ ✂ ✗ because each transfor-

mation saves one operation and destroys one common subex-

pression. Consequently, the operation count cannot increase.

In a sense, transposition provides a simple and elegant way

to detect which dag nodes have more than one parent, which

would be difficult to detect when the dag is being traversed.

5.2 Implementation of the simplifier

The simplifier is written in monadic style [Wad97]. The

monad performs two important functions. First, it allows

the simplifier to treat the expression dag as if it were a tree,

which makes the implementation considerably easier. Sec-

ond, the monad performs common-subexpression elimina-

tion. We now discuss these two topics.

Treating dags as trees. Recall that the goal of the sim-

7
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✢

✁

Figure 8: A linear network where which dag transposition exposes

some optimization possibilities. See the text for an explanation.

plifier is to simplify an expression dag. The simplifier, how-

ever, is written as if it were simplifying an expression tree.

The map from trees to dags is accomplished by memoization,

which is performed implicitly by a monad. The monad main-

tains a table of all previously simplified dag nodes, along

with their simplified versions. Whenever a node is visited

for the second time, the monad returns the value in the table.

In order to continue reading this section, you really should

be familiar with monads [Wad97]. In any case, here is a

very brief summary on monads. The idea of a monadic-style

program is to convert all expressions of the form

✖✰✩✱✯✤❁✫✄✫✒ ✜✕✫ ✼ ✣✔❁✩✾
into something that looks like

✒ ❊❋❊✌✄ ✭ ✟ ✫✔❁ ❈✂❊☎☞✪✩✬✯ ✟ ☞✰✫✆✴ ✼ ✣✫❁✻✾
The code should be read “call ✭ , and then name the result

❁ and return
✼ ✣✫❁✻✾ .” The advantage of this transformation

is that the meanings of “then” (the infix operator ❊❋❊☛✄ ) and

“return” (the function ☞✪✩✱✯ ✟ ☞✰✫✆✴ ) can be defined so that they

perform all sorts of interesting activities, such as carrying

state around, perform I/O, act nondeterministically, etc. In

the specific case of the FFTW simplifier, ❊❋❊☛✄ is defined so

as to keep track of a few tables used for memoization, and

☞✪✩✱✯ ✟ ☞✰✫✆✴ performs common-subexpression elimination.

The core of the simplifier is the function ✒✕✖✬★ ★ ✜ ✠ ✁ ✴ , as

shown in Figure 9. ✒❋✖✬★ ★ ✜ ✠ ✁ ✴ dispatches on the argument

❁ (of type ✫✛✚✂★✣✩ ), and it calls a simplifier function for the

appropriate case. If the node has subnodes, the subnodes are

simplified first. For example, suppose ❁ is a
✪ ✜ ✠ ✩ ★ node.

Since a
✪ ✜ ✠ ✩ ★ node has two subnodes ✒ and ✣ , the function

✒✕✖✬★ ★ ✜ ✠ ✁ ✴ first calls itself recursively on ✒ , yielding ✒✄✂ , and

then on ✣ , yielding ✣☎✂ . Then, ✒❋✖✬★ ★ ✜ ✠ ✁ ✴ passes control to the

function
★ ✯ ✜ ✠ ✩ ★ ✴ . If both ✒✄✂ and ✣✆✂ are constants,

★ ✯ ✜ ✠ ✩ ★ ✴
computes the product directly. In the same way,

★ ✯ ✜ ✠ ✩ ★ ✴
takes care of the case where either ✒✄✂ or ✣✆✂ is

✧
or ✞ , and so

on. The code for
★ ✯✢✜ ✠ ✩ ★ ✴ is shown in Figure 10.

The neat trick of using memoization for graph traversal

was invented by Joanna Kulik in her master’s thesis [Kul95],

as far as I can tell.

Common-subexpression elimination (CSE) is per-

formed behind the scenes by the monadic operator ☞✪✩✱✯ ✟ ☞✰✫✆✴ .

The CSE algorithm is essentially the classical bottom-up

✖✰✩✬✯✔☞✣✩ � ✒❋✖✬★ ★ ✜ ✠ ✁ ✴ ❁ ✄✠ ✩ ✠ ✚✛✜✞✝✢✜✕✫✣★✼ ✭ ✟ ✫ � ✯✢✜ ✚✬✫✝✌✟☛✠ ✒✫❈❋❊ ★ ✫ ✟✡✠ ✴ ✒✆✞✧ ✖ ✟✩★ ✒✫❈✂❊✠ ✒ ✁ ✴✫✒❋✖✬★ ★ ✜ ✠ ✁ ✴✤✒ ❊❋❊✌✄ ★ ✁ ✖ ✟✩★ ✴✆✞✪ ✜ ✠ ✩ ★ ✼ ✒✠✟ ✣ ✾✦❈❋❊
✒✕✖✬★ ★ ✜ ✠ ✁ ✴☎✒✫❊❋❊☛✄ ✭ ✟ ✫❉✒✡✂ ❈❋❊
✒✕✖✬★ ★ ✜ ✠ ✁ ✴ ✣ ❊❋❊✌✄ ✭ ✟ ✫ ✣✆✂ ❈❋❊★ ✯✢✜ ✠ ✩ ★ ✴ ✼ ✒✄✂☛✟ ✣✆✂ ✾✆✭✬☛✠ ✜✕✫ ✟✩★ ✒ ❈❋❊

✒✕✖✬★ ★ ✜ ✠ ✁ ✴☎✒✫❊❋❊☛✄ ★❀✟✡✠ ✜✕✫ ✟✩★ ✴✆✣✢ ✯✙✚✌☞✪✩ ✼ ✙☞✟ ✒✜✾✦❈❋❊
✒✕✖✬★ ★ ✜ ✠ ✁ ✴☎✒✫❊❋❊☛✄ ✭ ✟ ✫❉✒✡✂ ❈❋❊
☞✪✩✱✯ ✟ ☞✱✫✆✴ ✼ ✢ ✯✙✚☛☞✪✩ ✼ ✙✡✟ ✒✄✂ ✾✂✾✆ ❁❉❈❋❊ ☞✪✩✱✯ ✟ ☞✰✫✆✴ ❁✩✾

❁

Figure 9: The top-level simplifier function ✌✎✍✏❀☛✏✒✑✼❁❆✎✒✓ , written in

monadic style. See the text for an explanation.

construction from [ASU86, page 592]. The monad main-

tains a table of all nodes produced during the traversal of

the dag. Each time a new node is constructed and returned,

☞✪✩✬✯ ✟ ☞✰✫✆✴ checks whether the node appears elsewhere in the

dag. If so, the new node is discarded and ☞✪✩✱✯ ✟ ☞✰✫✆✴ returns

the old node. (Two nodes are considered the same if they

compute equivalent expressions. For example, ✴ ✸ ✵ is the

same as ✵ ✸ ✴ .)

It is worth remarking that the simplifier interleaves

common-subexpression elimination with algebraic transfor-

mations. To see why interleaving is important, consider for

example the expression ✴ ✭ ✴ ✔ , where ✴ and ✴ ✔ are distinct

nodes of the dag that compute the same subexpression. CSE

rewrites the expression to ✴❁✭ ✴ , which is then simplified to
✧
.

This pattern occurs frequently in DFT dags.

6 The scheduler

In this section we discuss the ★✪✩✬✫✣✭✮✭✰✯ scheduler, which pro-

duces a topological sort of the dag in an attempt to maximize

register usage. For transforms whose size is a power of
✂
, we

prove that a schedule exists that is asymptotically optimal in

this respect, even though the schedule is independent of the

number of registers. This fact is derived from the red-blue

pebbling game of Hong and Kung [HK81].

Even after simplification, a codelet dag of a large trans-

form still contains hundreds or even thousands of nodes, and

there is no way to execute it fully within the register set of

any existing processor. The scheduler attempts to reorder the

dag in such a way that register allocators commonly used in

compilers [Muc97, Section 16] can minimize the number of

register spills. Note that the FFTW codelet generator does

not address the instruction scheduling problem; that is, the

8



✖✰✩✱✯✤☞✪✩ � ★ ✯✢✜ ✠ ✩ ★ ✴ ✄ ✭ ✟ ✫ � ✯ ✜ ✚✬✫✆ ✼ ✬☛✠ ✜✕✫ ✟✩★ ✒✠✟ ✣ ✾ ❈❋❊ ✼ ✥☎❈✂✒❉✥ ✣ ✄❋✄✛❊✤❈ ✼ ✒❉✥ ✣ ✾☎✥✕✾★ ✯ ✜ ✠ ✩ ★ ✴ ✼ ✒ ✟ ✣ ✾✦❊❋❊✌✄ ★❀✟☛✠ ✜✕✫ ✟✩★ ✴✆ ✼ ✒✠✟ ✬✌✠ ✜✕✫ ✟✩★ ✣ ✾ ❈❋❊ ✼ ✥ ✒ ✥☎❈ ✣ ✄❋✄✛❊✤❈ ✼ ✒❉✥ ✣ ✾☎✥✕✾★ ✯ ✜ ✠ ✩ ★ ✴ ✼ ✒ ✟ ✣ ✾✦❊❋❊✌✄ ★❀✟☛✠ ✜✕✫ ✟✩★ ✴✆ ✼P✝✌✟☛✠ ✒ ✟ ✝✌✟☛✠ ✣ ✾☎❈✂❊ ✼ ✥ ✠✗✟ ✖ ✯ ✜ ✁ ✖ � ✯ � ✚ ✫ ✟☛✠ ✣✪✩✌☞ ★ ✥✕✾★ ✫ ✟☛✠ ✴ ✼ ✝✂✟☛✠ ✣ ✩☛☞✎✍ ✠✗✟ ✖✶✒ ✣✩✾✆ ✼P✝✌✟☛✠ ✒ ✟ ✪ ✜ ✠ ✩ ★ ✼P✝✂✟✡✠ ✣✄✟ � ✾❋✾☎❈✂❊★ ✫ ✟☛✠ ✴ ✼ ✝✂✟☛✠ ✣ ✩☛☞✎✍ ✠✗✟ ✖✶✒ ✣✩✾☎❊❋❊☛✄ ✭ ✟ ✫✫❁❉❈❋❊★ ✯✢✜ ✠ ✩ ★ ✴ ✼ ❁✡✟ � ✾✆ ✼P✝✌✟☛✠ ✒ ✟ ✣✩✾ �✂✁ ✩✬✫ ✝✂✟☛✠ ✣ ✩☛☞✎✍ ✜ ★ ✂ ✝✣✩✌☞✙✚✶✒✫❈✂❊★ ✫ ✟☛✠ ✴ ✝✌✟☛✠ ✣ ✩✌☞❍✍ ✝✣✩✌☞✙✚ ✼ ✥ ✮ ✥ ✣ ✄❋✄✕❊ ✮ ✥✕✾✆ ✼P✝✌✟☛✠ ✒ ✟ ✣✩✾ �✂✁ ✩✬✫ ✝✂✟☛✠ ✣ ✩☛☞✎✍ ✜ ★ ✂ ✚✬✫ ✩✶✒✫❈❋❊
☞✪✩✱✯ ✟ ☞✱✫✆✴ ✣ ✼ ✥ ■ ✥ ✣ ✄❋✄✕❊ ✣ ✥✕✾✆ ✼P✝✌✟☛✠ ✒ ✟ ✣✩✾ �✂✁ ✩✬✫ ✝✂✟☛✠ ✣ ✩☛☞✎✍ ✜ ★ ✂ ✠ ✚✬✫ ✩✶✒✫❈✂❊★❀✟☛✠ ✜✕✫ ✟✩★ ✴ ✣ ✼ ✥✤❈ ■ ✥ ✣ ✄✂✄✛❊✤❈ ✣ ✥❋✾✆ ✼ ✒✠✟ ✼P✝✌✟☛✠ ✂ ✒ ★ ✣✆✂ ✾✂✾ ❈❋❊ ★ ✯ ✜ ✠ ✩ ★ ✴ ✼ ✣✆✂☛✟ ✒✜✾✆ ✼ ✒✠✟ ✣ ✾✦❈❋❊ ☞✪✩✱✯ ✟ ☞✰✫✆✴ ✼P✪ ✜ ✠ ✩ ★ ✼ ✒✠✟ ✣✩✾❋✾

Figure 10: Code for the function ✏✗✿☛✑✼❁✌✲ ✏ ✓ , which simplifies the

product of two expressions. The comments (delimited with ✄✯☛ ☛✆☎ )
briefly discuss the various simplifications. Even if it operates on a

dag, this is exactly the code one would write to simplify a tree.

maximization of pipeline usage is left to the C compiler.

Figure 11 illustrates the scheduling problem. Suppose a

processor has 4 registers, and consider a “column major” ex-

ecution order that first executes all nodes in the diagonally-

striped box (say, top-down), and then proceeds to the next

column of nodes. Since there are 8 values to propagate from

column to column, and the machine has 4 registers, at least

four registers must be spilled if this strategy is adopted. A

different strategy would be to execute all operations in the

gray box before executing any other node. These operations

can be performed fully within registers once the input nodes

have been loaded. It is clear that different schedules lead to

different behaviors with respect to register spills.

A lower bound on the number of register spills incurred by

any execution of the FFT graph was first proved by Hong and

Kung [HK81] in the context of the so-called “red-blue peb-

bling game”. Paraphrased in compiler terminology, Theorem

2.1 from [HK81] states that the execution of the FFT graph

of size ✵✌✆ ✂ ✄ on a machine with ✝ registers (where ✝ ★ ✵ )

requires at least ✞ ✆ ✵☛✡✍☞ � ✵✠✟ ✡✌☞ � ✝ ✞ register spills.9 Aggarwal

and Vitter [AV88] generalize this result to disk I/O, where a

single I/O operation can transfer a block of elements. In ad-

dition, Aggarwal and Vitter give a schedule that matches the

lower bound. Their schedule is constructed as in the example

that follows. With reference to Figure 11, assume again that

the machine has ✝ ✆ ✟ registers. The schedule loads the

four topmost input nodes of the dag, and then executes all

nodes in the gray box, which can be done completely using

the 4 registers. Then, the four outputs of the gray box are

9The same result holds for any two-level memory, such as L1 cache vs.

L2, or physical memory vs. disk.

✡☛✡☛✡☛✡☛✡
✡☛✡☛✡☛✡☛✡
✡☛✡☛✡☛✡☛✡
✡☛✡☛✡☛✡☛✡
✡☛✡☛✡☛✡☛✡
✡☛✡☛✡☛✡☛✡
✡☛✡☛✡☛✡☛✡
✡☛✡☛✡☛✡☛✡
✡☛✡☛✡☛✡☛✡
✡☛✡☛✡☛✡☛✡
✡☛✡☛✡☛✡☛✡
✡☛✡☛✡☛✡☛✡

☞☛☞☛☞☛☞☛☞
☞☛☞☛☞☛☞☛☞
☞☛☞☛☞☛☞☛☞
☞☛☞☛☞☛☞☛☞
☞☛☞☛☞☛☞☛☞
☞☛☞☛☞☛☞☛☞
☞☛☞☛☞☛☞☛☞
☞☛☞☛☞☛☞☛☞
☞☛☞☛☞☛☞☛☞
☞☛☞☛☞☛☞☛☞
☞☛☞☛☞☛☞☛☞
☞☛☞☛☞☛☞☛☞

Figure 11: Illustration of the scheduling problem. The butterfly

graph (in black) represents an abstraction of the data flow of the

fast Fourier transform algorithm on 8 inputs. (In practice, the graph

is more complicated because data are complex, and the real and

imaginary part interact in nontrivial ways.) The boxes denote two

different execution orders that are explained in the text.

written to some temporary memory location, and the same

process is repeated for the four inputs in the bottom part of

the dag. Finally, the schedule executes the rightmost column

of the dag. In general, the algorithm proceeds by partitioning

the dag into blocks that have ✝ input nodes and ✌ ✆ ✡✍☞ � ✝ ✞
depth. Consequently, there are ✌ ✆ ✵☛✡✌☞ � ✵✠✟ ✆ ✝ ✡✌☞ � ✝ ✞ ✞ such

blocks, and each block can be executed with ✠ ✆ ✝ ✞ transfers

between registers and memory. The total number of transfers

is thus at most ✠ ✆ ✵☛✡✍☞ � ✵✠✟ ✡✌☞ � ✝ ✞ , and the algorithm matches

the lower bound.

Unfortunately, Aggarwal and Vitter’s algorithm depends

on ✝ , and a schedule for a given value of ✝ does not work

well for other values. The aim of the FFTW generator is

to produce portable code, however, and the generator cannot

make any assumption about ✝ . It is perhaps surprising that

a schedule exists that matches the asymptotic lower bound

for all values of ✝ . In other words, a single sequential order

of execution of an FFT dag exists that, for all ✝ , requires

✠ ✆ ✵☛✡✍☞ � ✵✠✟ ✡✌☞ � ✝ ✞ register spills on a machine with ✝ regis-

ters. We say that such a schedule is cache-oblivious.10

We now show that the Cooley-Tukey FFT becomes cache-

oblivious when the factors of ✵ are chosen appropriately (as

in [VS94a, VS94b]). We first formulate a recursive algo-

rithm, which is easier to understand and analyze than a dag.

Then, we examine how the computation dag of the algorithm

should be scheduled in order to mimic the register/cache be-

havior of the cache-oblivious algorithm.

Consider the Cooley-Tukey algorithm applied to a trans-

10We say “cache-” and not “register-oblivious” since this notion first

arose from the analysis of the caching behavior of Cilk [FLR98] programs

using shared memory. Work is still in progress to understand and define

cache-obliviousness formally, and this concept does not yet appear in the

literature. Simple divide-and-conquer cache-oblivious algorithms for ma-

trix multiplication and LU decomposition are described in [BFJ ✍ 96].
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form of size ✵✯✆ ✂ ✄ . Assume for simplicity that ❈ is itself a

power of two, although the result holds for any positive inte-

ger ❈ . At every stage of the recursion, we have a choice of

the factors ✵ ☛ and ✵ ✛ of ✵ . Choose ✵ ☛ ✆ ✵ ✛ ✆ � ✵ . The

algorithm computes
� ✵ transforms of size

� ✵ , followed by

✠ ✆ ✵ ✞ multiplications by the twiddle factors, followed by
� ✵

more transforms of size
� ✵ . When ✵ ✪ ✌ ✆ ✝ ✞

, the trans-

form can be computed fully within registers. Thus, the num-

ber ✁ ✆ ✵ ✞ of transfers between memory and registers when

computing a transform of size ✵ satisfies this recurrence.

✁ ✆ ✵ ✞ ✆
✂ ✂ � ✵✄✁ ✆ � ✵ ✞ ✸ ✠ ✆ ✵ ✞ when ✵✆☎ ✌ ✆ ✝ ✞✞✝
✌ ✆ ✝ ✞

otherwise ✶
The recurrence has solution ✁ ✆ ✵ ✞ ✆ ✠ ✆ ✵☛✡✍☞ � ✵✠✟ ✡✌☞ � ✝ ✞

,

which matches the lower bound.

We now reexamine the operation of the cache-oblivious

FFT algorithm in terms of the FFT dag as the one in Fig-

ure 11. Partitioning a problem of size ✵ into
� ✵ problems of

size
� ✵ is equivalent to cutting the dag with a vertical line

that partitions the dag into two halves of (roughly) equal size.

Every node in the first half is executed before any node in the

second half. Each half consists of ✌ ✆ � ✵ ✞ connected compo-

nents, which are scheduled recursively in the same way.

The ★✪✩ ✫✪✭✮✭✰✯ scheduler uses this recursive partitioning

technique for transforms of all sizes (not just powers of 2).

The scheduler cuts the dag roughly into two halves. “Half

a dag” is not well defined, however, except for the power

of 2 case, and therefore the ★✪✩✬✫✪✭✮✭✱✯ scheduler uses a simple

heuristic (described below) to compute the two halves for the

general case. The cut induces a set of connected components

that are scheduled recursively. The scheduler guarantees that

all components in the first half of the dag (the one containing

the inputs) are executed before the second half is scheduled.

For the special case ✵ ✆ ✂ ✄ , because of the previous analy-

sis, we know that this schedule of the dag allows the register

allocator of the C compiler to minimize the number of regis-

ter spills (up to some constant factor). Little is known about

the optimality of this scheduling strategy for general ✵ , for

which neither the lower-bound nor the upper-bound analy-

ses hold.

Finally, we discuss the heuristic used to cut the dag into

two halves. The heuristic consists of “burning the candle at

both ends”. Initially, the scheduler colors the input nodes

red, the output nodes blue, and all other nodes black. After

this initial step, the scheduler alternates between a red and a

blue coloring phase. In a red phase, any node whose prede-

cessors are all red becomes red. In a blue phase, all nodes

whose successors are blue are colored blue. This alternation

continues while black nodes exist. When coloring is done,

red nodes form the first “half” of the dag, and blue nodes

the second. When ✵ is a power of two, the FFT dag has a

regular structure like the one shown in Figure 11, and this

process has the effect of cutting the dag in the middle with a

vertical line, yielding the desired optimal behavior.

7 Pragmatic aspects of ★✪✩✬✫✪✭✮✭✱✯
This section discusses briefly the running time and the mem-

ory requirements of ★✪✩✬✫✪✭✰✭✰✯ , and also some problems that

arise in the interaction of the ★✪✩✬✫✪✭✮✭✱✯ scheduler with C com-

pilers.

The FFTW codelet generator is not optimized for speed,

since it is intended to be run only once. Indeed, users of

FFTW can download a distribution of generated C code and

never run ★✣✩✬✫✪✭✮✭✰✯ at all. Nevertheless, the resources needed

by ★✣✩✬✫✪✭✮✭✰✯ are quite modest. Generation of C code for a

transform of size 64 (the biggest used in FFTW) takes about

75 seconds on a 200MHz Pentium Pro running Linux 2.2 and

the native-code compiler of Objective Caml 2.01. ★✪✩✬✫✪✭✮✭✱✯
needs less than 3 MB of memory to complete the generation.

The resulting codelet contains 912 additions, 248 multiplica-

tions. On the same machine, the whole FFTW system can be

regenerated in about 15 minutes. The system contains about

55,000 lines of code in 120 files, consisting of various kinds

of codelets for forward, backward, real to complex, and com-

plex to real transforms. The sizes of these transforms in the

standard FFTW distribution include all integers up to 16 and

all powers of two up to 64.

A few FFTW users needed fast hard-coded transforms of

uncommon sizes (such as 19 and 23), and they were able

to run the generator to produce a system tailored to their

needs. The biggest program generated so far was for a com-

plex transform of size 101, which required slightly less than

two hours of CPU time on the Pentium Pro machine, and

about 10 MB of memory. Again, a user had a special need

for such a transform, which would be formidable to code by

hand. In order to achieve this running time, I was forced to

replace a linked-list implementation of associative tables by

hashing, and to avoid generating “obvious” common subex-

pressions more than once when the dag is created. The naive

generator was somewhat more elegant, but had not produced

an answer after three days.

The long sequences of straight-line code produced by

★✪✩ ✫✪✭✮✭✰✯ can push C compilers (in particular, register alloca-

tors) to their limits. The combined effect of ★✪✩ ✫✪✭✮✭✰✯ and of

the C compiler can lead to performance problems. The fol-

lowing discussion presents two particular cases that I found

particularly surprising, and is not intended to blame any par-

ticular compiler or vendor.

The optimizer of the ✩✱★ � ★ ❈ ■ ✍ ■ ✍ ■ compiler performs an

instruction scheduling pass, followed by register allocation,

followed by another instruction scheduling pass. On some

architectures, including the SPARC and PowerPC proces-

sors, ✩✱★ � ★
employs the so-called “Haifa scheduler”, which

usually produces better code than the normal ✩✬★ � ★
/ ★ �✛�

scheduler. The first pass of the Haifa scheduler, however,

has the unfortunate effect of destroying ★✪✩✬✫✪✭✰✭✰✯ ’s schedule

(computed as explained in Section 6). In ✩✱★ � ★
, the first

instruction scheduling pass can be disabled with the option
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✙✙✚ ✜ ★ ✭ ✚✩✚ ✼ ✙✙✚ ✜ ★✻✾
✙✙✚ ✜ ★ ✭✧✚✧✚ ✼ ✙✙✚✛✜ ★✻✾ �
� �

★ ✚ ✟ ✣✜✖✰✩☎✒ ✹ ★✧✚ ✟ ✣✜✖✰✩☎✒ ✹
★ ✚ ✟ ✣✜✖✰✩ ✣❍✹ ✍✂✍ ✖✛✜ ✭✣✩✱✯ ✜ ✠ ✩ ✚✰✭ ✒❃✍❋✍✁

✍❋✍ ✖✛✜ ✭✣✩✱✯ ✜ ✠ ✩ ✚✰✭✔✒ ✍❋✍ �

✍❋✍ ✖✛✜ ✭✣✩✱✯ ✜ ✠ ✩ ✚✰✭ ✣ ✍❋✍ ★✧✚ ✟ ✣✜✖✰✩ ✣✘✹✁ ✍✂✍ ✖✛✜ ✭✣✩✱✯ ✜ ✠ ✩ ✚✰✭ ✣ ✍❋✍✁
✁

Figure 12: Two possible declarations of local variables in C. On

the left side, variables are declared in the topmost lexical scope. On

the right side, variables are declared in a private lexical scope that

encompasses the lifetime of the variable.

❈✱✭✱✫✙✚✕❈ ★ � ✁ ✩✩★ ✟ ✖✰✩❋❈✛✜✕✫ ★ ✫ ★ , and on a 167 MHz UltraSPARC I,

the compiled code is between 50% and 100% faster and

about half the size when this option is used. Inspection of

the assembly code produced by ✩✱★ � ★ reveals that the differ-

ence consists entirely of register spills and reloads.

Digital’s C compiler for Alpha (DEC C V5.6-071 on Dig-

ital UNIX V4.0 (Rev. 878)) seems to be particularly sen-

sitive to the way local variables are declared. For exam-

ple, Figure 12 illustrates two ways to declare temporary

variables in a C program. Let’s call them the “left” and

the “right” style. ★✪✩✬✫✣✭✮✭✰✯ can be programmed to produce

code in either way, and for most compilers I have tried

there is no appreciable performance difference between the

two styles. Digital’s C compiler, however, appears to pro-

duce better code with the right style (the right side of Fig-

ure 12). For a transform of size 64, for example, and com-

piler flags ❈ ✫ ✩ � � ❈ � ✮ ❈✄✂ ✰ ❈✌✒✬✫ ★ ✜ ✒✕✖✛✜✡✒ ★ ❈✌✒✬✫ ★ ✜ ✒☛☞✮★ ★
❈✱✭ ✁ ☞✪✩✧✚✌☞ ★✮✩✌☞ ❈✬✯ ✟ ✫✪✩ ✁ ✚ ★ ✯✫❈ ★ ✯✧★ ■ , a 467MHz Alpha

achieves about 450 MFLOPS with the left style, and 600

MFLOPS with the right style. (Different sizes lead to sim-

ilar results.) I could not determine the exact source of this

difference.

8 Conclusion

In my opinion, the main contribution of this paper is to

present a real-world application of domain-specific compil-

ers and of advanced programming techniques, such as mon-

ads. In this respect, the FFTW experience has been very

successful: the current release FFTW-2.0.1 is being down-

loaded by more than 100 people every week, and a few users

have been motivated to learn ML after their experience with

FFTW. In the rest of this concluding section, I offer some

ideas about future work and possible developments of the

FFTW system.

The current ★✪✩✬✫✪✭✮✭✱✯ program is somewhat specialized to

computing linear functions, using algorithms whose control

structure is independent of the input. Even with this restric-

tion, the field of applicability of ★✪✩ ✫✪✭✮✭✰✯ is potentially huge.

For example, signal processing FIR and IIR filters fall into

this category, as well as other kinds of transforms used in

image processing (for example, the discrete cosine transform

used in JPEG). I am confident that the techniques described

in this paper will prove valuable in this sort of application.

Recently, I modified ★✪✩✬✫✣✭✮✭✰✯ to generate crystallographic

Fourier transforms [ACT90]. In this particular application,

the input consists of 2D or 3D data with certain symmetries.

For example, the input data set might be invariant with re-

spect to rotations of 60 degrees, and it is desirable to have

a special-purpose FFT algorithm that does not execute re-

dundant computations. Preliminary investigation shows that

★✪✩ ✫✪✭✮✭✰✯ is able to exploit most symmetries. I am currently

working on this problem.

In its present form, ★✪✩✬✫✪✭✮✭✱✯ is somewhat unsatisfactory

because it intermixes programming and metaprogramming.

At the programming level, one specifies a DFT algorithm,

as in Figure 4. At the metaprogramming level, one specifies

how the program should be simplified and scheduled. In the

current implementation, the two levels are confused together

in a single binary program. It would be nice to have a clean

separation of these two levels, but I currently do not know

how to do it.
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