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Abstract. We propose a fast methodology for encoding graphs with information-theoretically
minimum numbers of bits. Specifically, a graph with property π is called a π-graph. If π satisfies
certain properties, then an n-node m-edge π-graph G can be encoded by a binary string X such that
(1) G andX can be obtained from each other in O(n logn) time, and (2) X has at most β(n)+o(β(n))
bits for any continuous superadditive function β(n) so that there are at most 2β(n)+o(β(n)) distinct
n-node π-graphs. The methodology is applicable to general classes of graphs; this paper focuses on
planar graphs. Examples of such π include all conjunctions over the following groups of properties:
(1) G is a planar graph or a plane graph; (2) G is directed or undirected; (3) G is triangulated,
triconnected, biconnected, merely connected, or not required to be connected; (4) the nodes of G
are labeled with labels from {1, . . . , �1} for �1 ≤ n; (5) the edges of G are labeled with labels from
{1, . . . , �2} for �2 ≤ m; and (6) each node (respectively, edge) of G has at most �3 = O(1) self-loops
(respectively, �4 = O(1) multiple edges). Moreover, �3 and �4 are not required to be O(1) for the cases
of π being a plane triangulation. These examples are novel applications of small cycle separators
of planar graphs and are the only nontrivial classes of graphs, other than rooted trees, with known
polynomial-time information-theoretically optimal coding schemes.
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1. Introduction. Let G be a graph with n nodes and m edges. This paper
studies the problem of encoding G into a binary string X with the requirement that
X can be decoded to reconstruct G. We propose a fast methodology for designing
a coding scheme such that the bit count of X is information-theoretically optimal.
Specifically, a function β(n) is superadditive if β(n1)+β(n2) ≤ β(n1+n2). A function
β(n) is continuous if β(n + o(n)) = β(n) + o(β(n)). For example, β(n) = nc logd n
is continuous and superadditive, for any constants c ≥ 1 and d ≥ 0. The continuity
and superadditivity are closed under additions. A graph with property π is called a
π-graph. If π satisfies certain properties, then we can obtain an X such that (1) G
and X can be computed from each other in O(n log n) time, and (2) X has at most
β(n)+o(β(n)) bits for any continuous superadditive function β(n) so that there are at
most 2β(n)+o(β(n)) distinct n-node m-edge π-graphs. The methodology is applicable
to general classes of graphs; this paper focuses on planar graphs.
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A conjunction over k groups of properties is a boolean property π1 ∧ · · · ∧ πk,
where πi is a property in the ith group for each i = 1, . . . , k. Examples of suitable π
for our methodology include every conjunction over the following groups:

F1. G is a planar graph or a plane graph.
F2. G is directed or undirected.
F3. G is triangulated, triconnected, biconnected, merely connected, or not re-

quired to be connected.
F4. The nodes of G are labeled with labels from {1, . . . , �1} for �1 ≤ n.
F5. The edges of G are labeled with labels from {1, . . . , �2} for �2 ≤ m.
F6. Each node of G has at most �3 = O(1) self-loops.
F7. Each edge of G has at most �4 = O(1) multiple edges.

Moreover, �3 and �4 are not required to be O(1) for the cases of π being a plane
triangulation. For instance, π can be the property of being a directed unlabeled
biconnected simple plane graph. These examples are novel applications of small cycle
separators of planar graphs [12, 11]. Note that the rooted trees are the only other
nontrivial class of graphs with a known polynomial-time information-theoretically
optimal coding scheme, which encodes a tree as nested parentheses using 2(n−1) bits
in O(n) time.

Previously, Tutte proved that there are 2β(m)+o(β(m)) distinct m-edge plane trian-
gulations where β(m) = (83 − log2 3)m+ o(m) ≈ 1.08m+ o(m) [17] and that there are

22m+o(n) distinct m-edge n-node triconnected plane graphs that may be nonsimple
[18]. Turán [16] used 4m bits to encode a plane graph G that may have self-loops.
Keeler and Westbrook [10] improved this bit count to 3.58m. They also gave coding
schemes for several families of plane graphs. In particular, they used 1.53m bits for a
triangulated simple G, and 3m bits for a connected G free of self-loops and degree-1
nodes. For a simple triangulated G, He, Kao, and Lu [5] improved the bit count to
4
3m+O(1). For a simple G that is triconnected and thus free of degree-1 nodes, they
[5] improved the bit count to at most 2.835m bits. This bit count was later reduced

to at most 3 log2 3
2 m + O(1) ≈ 2.378m + O(1) by Chuang et al. [2]. These coding

schemes all take linear time for encoding and decoding, but their bit counts are not
information-theoretically optimal. For labeled planar graphs, Itai and Rodeh [6] gave
an encoding of 3

2n log n+O(n) bits. For unlabeled general graphs, Naor [14] gave an
encoding of 1

2n
2 − n log n+O(n) bits.

For applications that require query support, Jacobson [7] gave a Θ(n)-bit encod-
ing for a connected and simple planar graph G that supports traversal in Θ(logn)
time per node visited. Munro and Raman [13] improved this result and gave schemes
to encode binary trees, rooted ordered trees, and planar graphs. For a general planar
G, they used 2m+8n+ o(m+ n) bits while supporting adjacency and degree queries
in O(1) time. Chuang et al. [2] reduced this bit count to 2m + (5 + 1

k )n + o(m + n)
for any constant k > 0 with the same query support. The bit count can be further
reduced if only O(1)-time adjacency queries are supported, or if G is simple, tricon-
nected, or triangulated [2]. For certain graph families, Kannan, Naor and Rudich [8]
gave schemes that encode each node with O(log n) bits and support O(log n)-time
testing of adjacency between two nodes. For dense graphs and complement graphs,
Kao, Occhiogrosso, and Teng [9] devised two compressed representations from adja-
cency lists to speed up basic graph search techniques. Galperin and Wigderson [4]
and Papadimitriou and Yannakakis [15] investigated complexity issues arising from
encoding a graph by a small circuit that computes its adjacency matrix.

Section 2 discusses the general encoding methodology. Sections 3 and 4 use the
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methodology to obtain information-theoretically optimal encodings for various classes
of planar graphs. Section 5 concludes the paper with some future research directions.

2. The encoding methodology. Let |X| be the number of bits in a binary
string X. Let |G| be the number of nodes in a graph G. Let |S| be the number of
elements, counting multiplicity, in a multiset S.
Fact 1 (see [1, 3]). Let X1, X2, . . . , Xk be O(1) binary strings. Let n = |X1| +

|X2|+ · · ·+ |Xk|. Then there exists an O(log n)-bit string χ, obtainable in O(n) time,
such that given the concatenation of χ,X1, X2, . . . , Xk, the index of the first symbol
of each Xi in the concatenation can be computed in O(1) time.

Let X1+X2+ · · ·+Xk denote the concatenation of χ,X1, X2, . . . , Xk as in Fact 1.
We call χ the auxiliary binary string for X1 +X2 + · · ·+Xk.

A graph with property π is called a π-graph. Whether two π-graphs are distinct
or indistinct depends on π. For example, let G1 and G2 be two topologically non-
isomorphic plane embeddings of the same planar graph. If π is the property of being
a planar graph, then G1 and G2 are two indistinct π-graphs. If π is the property of
being a planar embedding, then G1 and G2 are two distinct π-graphs. Let α be the
number of distinct n-node π-graphs. Clearly it takes 
log2 α� bits to differentiate all
n-node π-graphs. Let indexπ(G) be an 
log2 α�-bit indexing scheme of the α distinct
π-graphs.

Let G0 be an input n0-node π-graph. Let λ = log log log(n0). The encoding
algorithm encodeπ(G0) is merely a function call codeπ(G0, λ), where the recursive
function codeπ(G,λ) is defined as follows:

function codeπ(G,λ)
{
if |G| = O(1) or |G| ≤ λ then
return indexπ(G)

else
{
compute π-graphs G1, G2, and a string X, from which G can be recovered;
return codeπ(G1, λ) + codeπ(G2, λ) +X;

}
}

Clearly, the code returned by algorithm encodeπ(G0) can be decoded to recover G0.
For notational brevity, if it is clear from the context, the code returned by algo-
rithm encodeπ(G0) (respectively, function codeπ(G,λ)) is also denoted encodeπ(G0)
(respectively, codeπ(G,λ)).

Function codeπ(G,λ) satisfies the separation property if there exist two constants
c and r, where 0 ≤ c < 1 and r > 1, such that the following conditions hold:

P1. max(|G1|, |G2|) ≤ |G|/r.
P2. |G1|+ |G2| = |G|+O(|G|c).
P3. |X| = O(|G|c).
Let f(|G|) be the time required to obtain indexπ(G) and G from each other. Let

g(|G|) be the time required to obtain G1, G2, X from G, and vice versa.
Theorem 2.1. Assume that function codeπ(G,λ) satisfies the separation property

and that there are at most 2β(n)+o(β(n)) distinct n-node π-graphs for some continuous
superadditive function β(n).

1. |encodeπ(G0)| ≤ β(n0) + o(β(n0)) for any n0-node π-graph G0.

2. If f(n) = 2n
O(1)

and g(n) = O(n), then G0 and encodeπ(G0) can be obtained
from each other in O(n0 log n0) time.
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Proof. The theorem holds trivially if n0 = O(1). For the rest of the proof we
assume n0 = ω(1), and thus λ = ω(1). Many graphs may appear during the execution
of encodeπ(G0). These graphs can be organized as nodes of a binary tree T rooted at
G0, where (i) if G1 and G2 are obtained from G by calling codeπ(G,λ), then G1 and
G2 are the children of G in T , and (ii) if |G| ≤ λ, then G has no children in T . Further
consider the multiset S consisting of all graphs G that are nodes of T . We partition
S into �+1 multisets S(0), S(1), S(2), . . . , S(�) as follows. S(0) consists of the graphs
G with |G| ≤ λ. For i ≥ 1, S(i) consists of the graphs G with ri−1λ < |G| ≤ riλ. Let
G0 ∈ S(�), and thus set � = O(log n0

λ ).
Define p =

∑
H∈S(0) |H|. We first show

|S(i)| < p

ri−1λ
(1)

for every i = 1, . . . , �. Let G be a graph in S(i). Let S(0, G) be the set consisting
of the leaf descendants of G in T ; for example, S(0, G0) = S(0). By condition P2,
|G| ≤ ∑

H∈S(0,G) |H|. By condition P1, no two graphs in S(i) are related in T .

Therefore S(i) contains at most one ancestor of H in T for every graph H in S(0). It
follows that

∑
G∈S(i) |G| ≤ ∑

G∈S(i)

∑
H∈S(0,G) |H| ≤ p. Since |G| > ri−1λ for every

G in S(i), inequality (1) holds.
Statement 1. Suppose that the children of G in T are G1 and G2. Let b(G) =

|X|+ |χ|, where χ is the auxiliary binary string for codeπ(G1, λ) + codeπ(G2, λ) +X.
Let q =

∑
i≥1

∑
G∈S(i) b(G). Then |encodeπ(G0)| = q +

∑
H∈S(0) |codeπ(H,λ)| ≤

q +
∑

H∈S(0)(β(|H|) + o(β(|H|))). By the superadditivity of β(n), |encodeπ(G0)| ≤
q + β(p) + o(β(p)). Since β(n) is continuous, Statement 1 can be proved by showing
p = n0 + o(n0) and q = o(n0) below.

By condition P3, |X| = O(|G|c). By Fact 1, |χ| = O(log |G|). Thus, b(G) =
O(|G|c), and

q =
∑
i≥1

∑
G∈S(i)

O(|G|c).(2)

Now we regard the execution of encodeπ(G0) as a process of growing T . Let a(T ) =∑
H is a leaf of T |H|. At the beginning of the function call encodeπ(G0), T has exactly

one node G0, and thus a(T ) = n0. At the end of the function call, T is fully expanded,
and thus a(T ) = p. By condition P2, during the execution of encodeπ(G0), every
function call codeπ(G,λ) with |G| > λ increases a(T ) by O(|G|c). Hence

p = n0 +
∑
i≥1

∑
G∈S(i)

O(|G|c).(3)

Note that
∑
i≥1

∑
G∈S(i)

|G|c ≤
∑
i≥1

(riλ)cp/(ri−1λ) = pλc−1r
∑
i≥1

r(c−1)i = pλc−1O(1) = o(p).(4)

By (3) and (4), we have p = n0+o(p), and thus p = O(n0). Therefore
∑

i≥1

∑
G∈S(i) |G|c

= o(n0). By (2) and (3), p = n0 + o(n0) and q = o(n0), finishing the proof of State-
ment 1.

Statement 2. By conditions P1 and P2, |H| = Ω(λ) for every H ∈ S(0). Since∑
H∈S(0) |H| = p = n0 + o(n0), |S(0)| = O(n0/λ). Together with (1), we know
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|S(i)| = O( n0

riλ ) for every i = 0, . . . , �. By the definition of S(i), |G| ≤ riλ for every
i = 0, . . . , �. Therefore G0 and encodeπ(G0) can be obtained from each other in time

n0

λ
O


f(λ) +

∑
1≤i≤�

r−ig(riλ)


 .

Clearly f(λ) = 2λ
O(1)

= 2o(log log n0) = o(log n0). Since � = O(log n0) and g(n) =
O(n),

∑
1≤i≤� r

−ig(riλ) =
∑

1≤i≤� λ = O(λ log n0), and Statement 2 follows.
Sections 3 and 4 use Theorem 2.1 to encode various classes of graphs G. Section 3

considers plane triangulations. Section 4 considers planar graphs and plane graphs.

3. Plane triangulations. A plane triangulation is a plane graph, each of whose
faces has size exactly 3. For any plane triangulation P with n nodes, m edges, and
f faces, Euler’s formula ensures that n − m + f = 2 even if P contains self-loops
and multiple edges. One can then obtain m = 3n− 6. Therefore every n-node plane
triangulation, simple or not, has exactly 3n− 6 edges.

In this section, let π be an arbitrary conjunction over the following groups of
properties of a plane triangulation G: F2, F6, and F7, where �3 and �4 are not
required to be O(1). Our encoding scheme is based on the next fact.
Fact 2 (see [12]). Let H be an n-node m-edge undirected plane graph, each of

whose faces has size at most d. We can compute a node-simple cycle C of H in
O(n+m) time such that

• C has at most 2
√
dn nodes; and

• the numbers of H’s nodes inside and outside C are at most 2n/3, respectively.
Let G be a given n-node π-graph. Let G′ be obtained from the undirected version

of G by deleting the self-loops. Clearly each face of G′ has size at most 4. Let C ′

be a cycle of G′ having size at most 4
√
n guaranteed by Fact 2. Let C consist of the

edges of G corresponding to the edges of C ′ in G′. Note that C is not necessarily a
directed cycle if G is directed. Since G′ does not have self-loops, 2 ≤ |C| ≤ 4

√
n. If

�4 ≥ 2, then |C| can be 2. Let Gin (respectively, Gout) be the subgraph of G formed
by C and the part of G inside (respectively, outside) C. Let x be an arbitrary node
on C.

G1 is obtained by placing a cycle C1 of three nodes outside Gin and then trian-
gulating the face between C1 and Gin such that a particular node y1 of C1 has degree
strictly lower than the other two. Clearly this is feasible even if |C| = 2. The edge
directions of G1 −Gin can be arbitrarily assigned according to π.

G2 is obtained from Gout by (1) placing a cycle C2 of three nodes outside Gout

and then triangulating the face between C2 and Gout such that a particular node y2 of
C2 has degree strictly lower than the other two, and (2) triangulating the face inside
C by placing a new node z inside of C and then connecting it to each node of C by
an edge. Note that (2) is feasible even if |C| = 2. Similarly, the edge directions of
G2 −Gout can be arbitrarily assigned according to π.

Let u be a node of G. Let v be a node on the boundary B(G) of the exterior
face of G. Define dfs(u,G, v) as follows. Let w be the counterclockwise neighbor of
v on B(G). We perform a depth-first search of G starting from v such that (1) the
neighbors of each node are visited in the counterclockwise order around that node,
and (2) w is the second visited node. A numbering is assigned the first time a node is
visited. Let dfs(u,G, v) be the binary number assigned to u in the above depth-first
search. Let X = dfs(x,G1, y1) + dfs(x,G2, y2) + dfs(z,G2, y2).
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Lemma 3.1.
1. G1 and G2 are π-graphs.
2. There exists a constant r > 1 with max(|G1|, |G2|) ≤ n/r.
3. |G1|+ |G2| = n+O(

√
n).

4. |X| = O(log n).
5. G1, G2, X can be obtained from G in O(n) time.
6. G can be obtained from G1, G2, X in O(n) time.
Proof. Statements 1–5 are straightforward by Fact 2 and the definitions of G1,

G2, and X. Statement 6 is proved as follows. It takes O(n) time to locate y1 (respec-
tively, y2) in G1 (respectively, G2) by looking for the node with the lowest degree on
B(G1) (respectively, B(G2)). By Fact 1, it takes O(1) time to obtain dfs(y1, G1, x),
dfs(y2, G2, x), and dfs(y2, G2, z) from X. Therefore x and z can be located in G1

and G2 in O(n) time by depth-first traversal. Now Gin can be obtained from G1 by
removing B(G1) and its incident edges. The cycle C in Gin is simply B(Gin). Also,
Gout can be obtained from G2 by removing B(G2), z, and their incident edges. The
C in Gout is simply the boundary of the face that encloses z and its incident edges in
G2. Since we know the positions of x in Gin and Gout, G can be obtained from Gin

and Gout by fitting them together along C by aligning x. The overall time complexity
is O(n).
Theorem 3.2. Let G0 be an n0-node π-graph. Then G0 and encodeπ(G0) can be

obtained from each other in O(n0 log n0) time. Moreover, |encodeπ(G0)| ≤ β(n0) +
o(β(n0)) for any continuous superadditive function β(n) such that there are at most
2β(n)+o(β(n)) distinct n-node π-graphs.

Proof. Since an n-node π-graph has O(n) edges, there are at most 2O(n log n)

distinct n-node π-graphs. Thus, there exists an indexing scheme indexπ(G) such that

indexπ(G) and G can be obtained from each other in 2|G|O(1)

time. The theorem
follows from Theorem 2.1 and Lemma 3.1.

4. Planar graphs and plane graphs. In this section, let π be an arbitrary
conjunction over the following groups of properties of G: F1, F2, F3, F6, and F7.
Clearly an n-node π-graph has O(n) edges.

Let G be an input n-node π-graph. For the cases of π being a planar graph
rather than a plane graph, let G be embedded first. Note that this is only for the
encoding process to be able to apply Fact 2. At the base level, we still use the indexing
scheme for π-graphs rather than the one for embedded π-graphs. As shown below,
the decoding process does not require the π-graphs to be embedded.

Let G′ be obtained from the undirected version of G by (1) triangulating each
of its faces that has size more than 3 such that no additional multiple edges are
introduced, and then (2) deleting its self-loops. Let C ′ be a cycle of G′ guaranteed
by Fact 2. Let C consists of (a) the edges of G corresponds to the edges of C ′ in
G′, and (b) the edges of C ′ that are added into G′ by the triangulation. (C is not
necessarily a directed cycle of a directed G.) Let GC be the union of G and C. Let Gin

(respectively, Gout) be the subgraph of GC formed by C and the part of GC inside
(respectively, outside) C. Let C = x1x2 · · ·x�x�+1, where x�+1 = x1. By Fact 2,
� = O(

√
n).

Lemma 4.1. Let H be an O(n)-node O(n)-edge graph. There exists an integer k
with n0.6 ≤ k ≤ n0.7 such that H does not contain any node of degree k or k − 1.

Proof. Assume for a contradiction that such a k does not exist. It follows that
the sum of degrees of all nodes in H is at least (n0.6 + n0.7)(n0.7 − n0.6)/4 = Ω(n1.4).
This contradicts the fact that H has O(n) edges.
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w0

w3

w2

w1

wk−1 wk

wk−2

Fig. 1. A k-wheel graph Wk.

Let Wk, with k ≥ 3, be a k-wheel graph defined as follows. As shown in Figure 1,
Wk consists of k + 1 nodes w0, w1, w2, . . . , wk−1, wk, where w1, w2, . . . , wk, w1 form a
cycle. w0 is a degree-k node incident to each node on the cycle. Finally, w1 is incident
to wk−1. ClearlyWk is triconnected. Also, w1 and wk are the only degree-4 neighbors
of w0 in Wk. Let k1 (respectively, k2) be an integer k guaranteed by Lemma 4.1 for
Gin (respectively, Gout). Now we define G1, G2, and X as follows.

G1 is obtained from Gin and a k1-wheel graph Wk1 by adding an edge (wi, xi) for
every i = 1, . . . , �. Clearly for the case of π being a plane graph, G1 can be embedded
such that Wk1

is outside Gin, as shown in Figure 2(a). Thus, the original embedding
of Gin can be obtained from G1 by removing all nodes of Wk1 . The edge directions
of G1 −Gin can be arbitrarily assigned according to π.

G2 is obtained from Gout and a k2-wheel graphWk2 by adding an edge (wi, xi) for
every i = 1, . . . , �. Clearly for the case of π being a plane graph, G2 can be embedded
such that Wk2

is inside C, as shown in Figure 2(b). Thus, the original embedding of
Gout can be obtained from G2 by removing all nodes of Wk2 . The edge directions of
G2 −Gout can be arbitrarily assigned according to π.

Let X be an O(
√
n)-bit string which encodes k1, k2, and whether each edge

(xi, xi+1) is an original edge in G, for i = 1, . . . , �.
Lemma 4.2.
1. G1 and G2 are π-graphs.
2. There exists a constant r > 1 with max(|G1|, |G2|) ≤ n/r.
3. |G1|+ |G2| = n+O(n0.7).
4. |X| = O(

√
n).

5. G1, G2, X can be obtained from G in O(n) time.
6. G can be obtained from G1, G2, X in O(n) time.
Proof. Since Wk1 and Wk2 are both triconnected, and each node of C has degree

at least 3 in G1 and G2, statement 1 holds for each case of the connectivity of the
input π-graph G. Statements 2–5 are straightforward by Fact 2 and the definitions
of G1, G2, and X. Statement 6 is proved as follows. First of all, we obtain k1 from
X. Since Gin does not contain any node of degree k1 or k1 − 1, w0 is the only degree-
k1 node in G1. Therefore it takes O(n) time to identify w0 in G1. wk1 is the only
degree-3 neighbor of w0. Since k1 > �, w1 is the only degree-5 neighbor of w0. w2 is
the common neighbor of w0 and w1 that is not adjacent to wk1

. From now on, wi, for
each i = 3, 4, . . . , �, is the common neighbor of w0 and wi−1 other than wi−2. Clearly,
w1, w2, . . . , w� and thus x1, x2, . . . , x� can be identified in O(n) time. Gin can now be
obtained from G1 by removing Wk1 . Similarly, Gout can be obtained from G2 and
X by deleting Wk1 after identifying x1, x2, . . . , x�. Finally, GC can be recovered by
fitting Gin and Gout together by aligning x1, x2, . . . , x�. Based on X, G can then be
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(b) G2

wk1−1

w�

x�

w0

w�+1 x2
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Fig. 2. G1 and G2. The gray area of G1 is Gin. The gray area of G2 is Gout.

obtained from GC by removing the edges of C that are not originally in G.

Remark. In the proof for statement 6 of Lemma 4.2, identifying the degree-k1

node (and the k1-wheel graphWk1) does not require the embedding for G1. Therefore
the decoding process does not require the π-graphs to be embedded. This is different
from the proof of Lemma 3.1.

Theorem 4.3. Let G0 be an n0-node π-graph. Then G0 and encodeπ(G0) can be
obtained from each other in O(n0 log n0) time. Moreover, |encodeπ(G0)| ≤ β(n0) +
o(β(n0)) for any continuous superadditive function β(n) such that there are at most
2β(n)+o(β(n)) distinct n-node π-graphs.

Proof. Since there are at most 2O(n logn) distinct n-node π-graphs, there exists
an indexing scheme indexπ(G) such that indexπ(G) and G can be obtained from each

other in 2|G|O(1)

time. The theorem follows from Theorem 2.1 and Lemma 4.2.

5. Concluding remarks. For brevity, we left out F4 and F5 in sections 3 and 4.
One can verify that Theorems 3.2 and 4.3 hold even if π is a conjunction over F1
through F7 including F4 and F5.

The coding schemes given in this paper require O(n log n) time for encoding and
decoding. An immediate open question is whether one can encode some graphs other
than rooted trees in O(n) time using information-theoretically minimum number of
bits. It would be of significance to determine whether the tight bound of the number
of distinct π-graphs for each π is indeed continuous superadditive.
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