
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 2, FEBRUARY 2009 269

A Fast Hardware Approach for Approximate,
Efficient Logarithm and Antilogarithm Computations
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Abstract—The realization of functions such as log() and antilog()
in hardware is of considerable relevance, due to their importance
in several computing applications. In this paper, we present an ap-
proach to compute log() and antilog() in hardware. Our approach
is based on a table lookup, followed by an interpolation step. The
interpolation step is implemented in combinational logic, in a field-
programmable gate array (FPGA), resulting in an area-efficient,
fast design. The novelty of our approach lies in the fact that we
perform interpolation efficiently, without the need to perform mul-
tiplication or division, and our method performs both the log() and
antilog() operation using the same hardware architecture. We com-
pare our work with existing methods, and show that our approach
results in significantly lower memory resource utilization, for the
same approximation errors. Also our method scales very well with
an increase in the required accuracy, compared to existing tech-
niques.

Index Terms—Field-programmable gate arrays (FPGAs),
floating point arithmetic, logarithmic arithmetic, VLSI.

I. INTRODUCTION

T HE generation of elementary functions such as log() and
antilog() finds uses in many areas such as digital signal

processing (DSP), 3-D computer graphics, scientific computing,
artificial neural networks, logarithmic number systems (LNS),
and other multimedia applications [1]. Our approach provides a
good solution for field-programmable gate array (FPGA)-based
applications that require high accuracy with a low cost in terms
of required lookup table (LUT) size. Such applications include
LNS, DSP cores, etc. In fact the fast generation of these func-
tions is critical to performance in many of these applications.
Using software algorithms to generate these elementary func-
tions [2], [3] is often not fast enough as stated in [1]. Hence,
the use of dedicated hardware to compute log() and antilog() is
of great value. Over the past few decades, many authors have
proposed various hardware approaches to approximate these
elementary functions in an area-efficient manner, while main-
taining high speed and accuracy.

Two methods that are well researched and used for the gener-
ation of the logarithm function are digit-recurrence algorithms
and LUT-based approaches. Out of these methods the digit-re-
currence methods are efficient from an area and accuracy per-
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spective, but have longer latencies and convergence problems
[1], [4], [5]. The LUT-based methods are widely used to approx-
imate the logarithm and antilogarithm functions. Some of the
previous works involving LUT-based methods include, LUTs
combined with polynomial approximations [3], [6], symmetric
bipartite table-based approximations [7], [8] etc. The main ob-
jective of all these works is to utilize minimum circuit area while
retaining the accuracy of the approximation. The main idea of
our approach is to use LUTs along with linear or quadratic inter-
polation and approximates the multiplication required for inter-
polation using approximate log() and antilog() functions while
computing a more accurate log() and antilog(). We show that
the most cost effective implementation is a LUT with a linear
interpolation, implemented in a manner that optimizes the area
and delay while providing good accuracy. We apply our method
to generate the logarithm of a number and also show that a sim-
ilar methodology can be used to generate the antilogarithm of a
number.

In this paper, the number format used is similar to the IEEE
754 single-precision floating point format that has 32 bits. The
leading bit is the sign bit, followed by an 8-bit exponent and
a 23 bit mantissa . The value of a number, represented in
this format is given by

(1)

We use a similar number format representation, but assume
the number of bits in the mantissa to be variable. We also assume
that the number is positive since the logarithm of a negative
number does not exist. We target 10 or more bits of accuracy
in this work.

The remainder of this paper is organized as follows. Some
previous work in this area is described in Section II. Section III
elucidates our approach to efficiently find the logarithm of a
number through linear interpolation, and also provides an error
analysis of the approximation. Section IV shows how the an-
tilogarithm of a number is computed through linear interpo-
lation. Section V presents an improvement to the linear inter-
polation approach. Section VI investigates the computation of
logarithm through quadratic interpolation. A summary of the
various approaches explored to approximate the logarithm is
given in Section VII. We also present some estimates on the
area and delay of the linear interpolation approach, and com-
pare it with other relevant works in this section. We conclude in
Section VIII.

II. PREVIOUS WORK

One of the earliest approaches to approximate the binary log-
arithm of a number was given by Mitchell [9]. In his method, the
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logarithm of a number is found by attaching the mantissa part of
the number to the exponent part. This method is extremely easy
to implement but gives an absolute error as high as 0.086 which
is only 3.5 bits of accuracy. There are various authors who have
reduced this error by using error correction techniques imple-
mented by simple logic gates without involving multiplications
or divisions [10]–[13]. Although these methods are better than
Mitchell’s approach, they all give less than seven accurate bits
(which might be adequate for some applications). Compared to
these methods, our approach is applicable for applications that
require a much higher accuracy. [14] gives an approach for loga-
rithmic multiplication, but they provide results based on random
input vectors and compute the average error. We find the worst
case error over all possible inputs.

In recent times, most elementary functions are generated
using LUTs. This approach, initially proposed by Brubaker
in [15], involves the computation of a function using a single
LUT. The accuracy of the approach depends solely on the
size of the LUT used. Another method given in [16] improves
Brubaker’s method by concatenating the lower order bits of
the mantissa to the value looked up from the table. However,
this gives only a small error improvement of one bit. Kmetz
[17] proposes to store the error that occurs due to the Mitchell
approximation in the table and add it to the mantissa of the
number. This results in a further improvement in error (by
3 bits) with the overhead of an add operation. In our approach,
we follow the same scheme of storing the error values of the
Mitchell approximation in a table. Other methods like [7] and
[8] make use of bigger LUTs to give more accurate results,
with a good speed of computation. In our approach, we try to
find the optimum table size to use for a required accuracy.

Apart from these simple methods, there are several other
complex methods for the generation of these elementary func-
tions. References [3] and [6] use a LUT combined with a
polynomial approximation to interpolate the function between
many small intervals. Reference [3] also presents a trade off
between the table sizes and the degree of the polynomial to use
while interpolating. The problem with these methods is that
there are multiplications and divisions involved in the computa-
tion. Our approach focuses on using a smaller size table along
with a simple linear function to interpolate between the table
values. The main contribution of this work is to approximate
the multiplication required for the interpolation by a method
that is fast and results in a small error. This also allows us to
pipeline the implementation and achieve a higher throughput.
The multipliers in our target FPGA are restricted to a speed
of 135 MHz, and by avoiding their use, we can achieve much
greater speeds, as our results indicate. There are many papers
on LNS [18]–[24]. LNS systems also require the computation
of log() quantities while finding the approximate value of some
functions like addition and subtraction. The papers [18], [20],
and [21] use multipliers to compute the log(). Reference [23]
uses only ROMs to compute the log() without any interpola-
tion. The paper [22] use ROMs and linear tangent and/or secant
interpolation. We are different from [19] and [22] in that we
explore linear least squares based interpolation which gives
us one extra bit of accuracy over our own linear secant imple-
mentation. Also our method lends itself elegantly to perform

Fig. 1. Error due to Mitchell approximation.

antilog() operation using the same hardware architecture and
accuracy as log(), whereas [19], [22] do not talk about antilog()
computation using the same hardware architecture as the log()
computation.

Reference [25] presents an analysis of the errors and hard-
ware implementation costs of some of the LUT-based methods
discussed above. In our paper, we show that a good improve-
ment in error performance can be achieved with the use of a
small LUT and some additional hardware. We compare our re-
sults with those presented in [25].

III. OUR APPROACH

This work uses a LUT-based approach combined with a linear
interpolation to generate the logarithm of a number. The mul-
tiplication required in this linear interpolation is avoided, re-
sulting in an area and delay reduction. The idea is described in
the following sections.

A. Interpolation Approach

Mitchell’s approximation [9] is given by the following equa-
tion:

(2)

The error due to this approximation is given by

(3)

The error curve shown in Fig. 1 is sampled at points (de-
pending on the size of the LUT required). These values are
rounded depending on the width of the word required and stored
in the LUT. The LUT is addressed by the first bits of the man-
tissa portion of the number. Now we investigate the option of
interpolating between the values stored in the table. This is done
by the following equation:

(4)

Here is the mantissa part, is the error value from the table
accessed by the first bits and is the next table value adjacent
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Fig. 2. Interpolation to find the log().

to . Also is the total number of MSBs in the mantissa used
for the interpolation and is the decimal value of the last
bits of the mantissa. Essentially we find an error value from the
table based on the first bits and interpolate between this value
and the next value based on the remaining bits. This is illustrated
in Fig. 2.

The third term in (4) requires a multiplication. In order to cir-
cumvent the multiplication (which is expensive in terms of area
and delay), we investigate the option of interpolating repeatedly
between any two adjacent values stored in the table. This is done
using Algorithm 1.

Algorithm 1 Recursive Bi-partitioning

STEP 1: The first bits of the mantissa address the table to
obtain the stored left value and the adjacent right value

STEP 2: Bisect the two values obtained in the previous step
and find the middle value

if the next bit in the mantissa is a 1 then

Keep the middle and right values

else

Keep the left and middle values

end if

if the last bit of the mantissa is not reached then

Goto STEP 2

else

Choose the left or right value based on, if the last bit is
a 0 or 1 respectively

end if

The error performance of Algorithm 1 is shown in Fig. 3. The
maximum error is . This gives us 14 bits of accuracy.
The only problem with this approach is that there are too many

Fig. 3. Error performance of Algorithm 1.

steps involved as all the mantissa bits are considered. Trying an-
other approach, we investigate the case where a limited number
of interpolations are done. We tabulate the maximum error in-
curred when the previous algorithm is implemented for , ,
and so on until mantissa bits and ignoring the rest. This is
the same as doing different levels of interpolation from 0 to 8.
The maximum error for this approach is shown in Table I. In this
case, the size of the LUT used is 64 words and the width of each
word is 16 bits. The width of each word in the table is chosen in
such a way that the accuracy is not reduced due to rounding.

From Table I, we see that 1 or 2 interpolations are not enough
to give a good error performance. Reasonable accuracy is ob-
tained for either 7 or 8 bits, but this requires as many interpo-
lations, and therefore results in larger delays in computing the
logarithm. In order to obtain better accuracy, we need to im-
plement the multiplication of and . However, imple-
menting multiplication is expensive in terms of area and delay.
Therefore, we approximate the multiplication, so as to obtain
good error performance as well as low delay and area utiliza-
tion. We will show in the following section(s) that our approach
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TABLE I
MAXIMUM ERROR, FOR A LIMITED INTERPOLATION APPROACH

TABLE II
MAXIMUM ERROR ��� , FOR VARIOUS APPROACHES

gives similar error performance as the 7 bit interpolation, how-
ever with lower delay.

B. More Effective Approach

In this section, we propose a more efficient approach to do
interpolation without the multiplication of and in (4).
The essential idea is that the multiplication of and
is simplified by taking the antilogarithm of the sum of the loga-
rithm of and the logarithm of . In order to perform this
operation with a small delay, we consider the following options.

1) may be approximated by either of the following
two options:

a) Mitchell approximation;
b) LUT: For the LUT option the constants

for each of the intervals is stored in the original LUT.
Recall that we stored the error values obtained by
using a Mitchel approximation for the log function.
The values are stored along with the error
values and are indexed by the same address lines.

2) Antilog of may be approximated
by either of the following two options:

a) Mitchell approximation;
b) LUT: To obtain the antilogarithm of a number by

this method, we need to construct another LUT. The
error due to the Mitchell approximation of the an-
tilogarithm function is stored in this LUT as shown
in Section IV. This antilog LUT is utilized to com-
pute the antilogarithm of a number, since the multi-
plication of and is performed by taking the
antilogarithm of the sum of the logarithm of
and the logarithm of .

The maximum error in the logarithm of a number incurred by
using each of these options along with the number of accurate
bits in the result is shown in Table II.

From Table II we see that the combination of 1b) and 2b)
has the best error performance. Therefore, to perform the inter-
polation described in (4), it makes sense to find the antiloga-
rithm using a LUT. The additional advantage of this is that the
same LUT can be used while computing the antilogarithm of a
number as well. Table II also shows that our approach allows
scalability of the system, by making a tradeoff between the ac-
curacy and the number of values stored in the table.

Fig. 4. Block diagram of the log engine.

C. Architecture of Implementation

Fig. 4 shows the block diagram of the log() engine which is
essentially an implementation of (4). The architecture of the in-
terpolator block is shown in Fig. 5. The exponent part of the
input number trivially becomes the decimal part of the loga-
rithm. This is because we assume that in (1). Also,
we assume that the number we operate on (which is expressed as
in (1) is positive. Here we only show the operations on the man-
tissa, . The implementation is pipelined, with 12 stages in the
pipeline. We use a 16-bit mantissa and a by 16 bit LUT as
an example. The width of each word in the table is chosen as
16 bits so that the error due to rounding does not dominate the
overall error. Rounding of a number, to bits is done as

(5)

Recall that the accuracy, from Table II, was 13.74 bits in this
case. One of the adders is a three input fixed point adder as
shown in Fig. 5. It is implemented as 2 adders. The width of
the mantissa bits processed by each block in the architecture is
shown in the diagrams. Since takes both negative and
positive values for , the values stored
in the lookup tables are actually the logarithm of the absolute
values of . It is found that changes sign from
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Fig. 5. Architecture of the interpolator for � � ��, � � �.

positive to negative for . This is equivalent to com-
paring the decimal value of the first six bits of the mantissa with
28, as shown in Fig. 5. Hence, if the first six bits have a value
greater than 28, the comparator block sends a control signal to
the ADD/SUB block instructing it to perform a subtract opera-
tion. The leading one detector (LOD) block is used to find the

. The LOD detects the first bit that has a value 1. It
then uses the remaining bits as the mantissa portion to access the
lookup table. Since there are 7 bits given as input to the LOD in
this example, the LOD finds the first position that has a value 1
and the remaining bits which can be as wide as 6 bits is used to
access the LUT. The decimal part of which is indicated
by the position of the first bit with value 1, is directly sent to the
three input fixed point adder to be added to the decimal part of

. The output of the adder after the antilog stage has
to be shifted to the right or left depending on the decimal output
of the fixed point adder. Also there is a term in the denomi-
nator of (4) and this is accounted for by a constant right shift of
7 bits at the output of the adder of the antilog LUT. In Fig. 5,
the blocks representing a LUT for and a LUT for are
identical and can be implemented using a dual port RAM. Also
note that, the address of each of the three LUTs shown in Fig. 5
has a width of 6 bits. In each case the 6 bit address word is ob-
tained by rounding off the value of the next LSB in the word
from which the address word is derived. The round() operation
is implemented using an adder as shown in (5). All the quanti-
ties that are rounded off in this manner are annotated as such in
Fig. 5.

D. Error Analysis

The expression for error due to a Mitchell approximation of
the logarithm is given by (3). As mentioned before, the error
curve due to the Mitchel approximation is sampled at various
points, and these samples are stored in the lookup table. It is ob-
served that while interpolating between any two adjacent values
in this table, the maximum error is bound to occur when the dif-
ference between these two adjacent error values is largest. The
largest difference in error values occurs for the first pair of points
in the lookup table. The size of this largest difference (assuming
a table of size and width 16) is given by

(6)
The expression for error due to our approximation is given from
(4) as

(7)

There are three sources of error in our method. An error upper
bound is obtained by adding the maximum errors due to all these
sources. In other words

(8)

where is the error due to rounding of bits stored in the
lookup table, is the error due to interpolation, and is
the error incurred due to the use of the antilogarithm function
during interpolation.

The input number or mantissa is split into three different
ranges in terms of bit width, in order to analyze the error. For
example, a mantissa of bit width 5 implies that the remaining
LSBs take on a value of 0.

Case 1—Mantissa Width of 0–6 bits: Here the error is due
to rounding alone as the error values for all 6-bit numbers have
already been stored in the lookup table. For a table in which each
word is 16 bits wide, the rounding error is given by .

Case 2—Mantissa Width of 7 to 13 bits: The error has con-
tributions from all the three error sources mentioned above. In-
terpolation is done by using (9). In this case, the first value of
the interval is and the last value is . Also the
first 6 bits of the mantissa are zeros since we are in the first of

intervals, and the value of is given by the decimal value
of the next 7 bits. This can be expressed as . The
interpolation error term is given by

Interpolation term (9)

Substituting , , and in (9), we get the interpolation term
in the first interval as

Interpolation term (10)

If the error due to antilog is assumed to be zero, we can find
that the error expression due to interpolation by using the fol-
lowing equation:

(11)
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Fig. 6. Antilog error during interpolation.

The maximum error is found by differentiating this equation
and setting it to zero. We get the maximum error as

at .
The antilog error depends on the values of which is

stored in the table and . We find the error due to antilog
by simulating the lookup table-based antilog approximation for
these particular values and find the maximum antilog error to be

.
The results of the simulation are shown in Fig. 6 for all pos-

sible values of ranging from 0 to 1.
Case 3—Mantissa Width Greater Than 13 bits: The rounding

and antilog errors are the same as above. As for the interpolation
error, we proceed in a fashion similar to Case 2. Here the value
of is given by , where the
function represents a round-off to the closest integer given by
(5). The error function for this case is given by

(12)

Plotting this expression from to in Fig. 7, we find
the maximum error as . Out of all the previous
cases, the third case has the worst error due to interpolation,
while the errors due to rounding and antilog approximation re-
main the same. Hence, the error bound, given by plugging in
the maximum values of each of the error components in (8) is

.

IV. ANTILOGARITHM COMPUTATION

The Mitchell approximation to find the binary antilogarithm
of a number, is given by the expression

(13)

The error due to this expression is given by

(14)

We sample the error curve at as many points as required, and
store these values in the first entry of a LUT. If are any

Fig. 7. Interpolation error for Case 3.

TABLE III
WORST CASE ANTILOG ERROR

two adjacent values stored in the memory, we store
in the second entry of the LUT. The architecture used for

the implementation of the antilog function is very similar to the
logarithm implementation except for these differences. In Fig. 4,
instead of the adder block we use a subtracter as the Mitchell
approximation is always higher than the actual antilog value.
Also the polarity of changes from positive to negative
when the mantissa . Hence while using a table with
6 address bits (i.e., 64 values), the comparison done in Fig. 5
will be to check if the decimal value of the first six bits of the
mantissa is greater than 34. The antilogarithm computation was
simulated, and the worst case errors and the accurate number of
bits are shown in Table III for different table sizes.

V. INTERPOLATION USING A LEAST SQUARE-BASED LINEAR

POLYNOMIAL

An improvement can be made on the linear interpolation-
based logarithm and antilogarithm computation with no addi-
tional increase in hardware. In this method, the error curve in
Fig. 1 is split up into many smaller segments. There are as many
segments as the number of entries in the LUT. Assume that the
number of entries in the LUT is . Now each of these seg-
ments is fitted using a first-order polynomial in a least square
sense. The coefficients of these polynomials are stored in the
LUT. The logarithm is now approximated as

(15)

Here are the coefficients of the least square polynomial.
If is the total number of bits in the mantissa, the first bits
are used to access the LUT. is the value represented by the
last bits of the mantissa. We store the values and
in two LUTs and the multiplication times is implemented
as before using LUTs for logarithm and antilogarithm. While
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TABLE IV
LOG AND ANTILOG ACCURACY FOR LEAST SQUARE-BASED LINEAR INTERPOLATION

TABLE V
ACCURACY OF LOGARITHM THROUGH LEAST SQUARE-BASED

QUADRATIC INTERPOLATION

performing the inner logarithm, we leave out the multiplication
term in (15). Only the coefficient is looked up and added to
the mantissa .

The antilogarithm is also computed the same way. It is ap-
proximated as

(16)

The coefficients in this case are found by fitting a poly-
nomial to different segments of the curve given in (14). The im-
provement in errors is shown in Table IV.

Note that the width of each word in the LUT has to be higher
than the accuracy obtained. Otherwise the accuracy will be af-
fected by errors due to rounding of LUT words.

VI. INTERPOLATION USING A LEAST SQUARE-BASED

QUADRATIC POLYNOMIAL

An interesting experiment is to explore how much improve-
ment in accuracy can be obtained by interpolation using a
quadratic polynomial. In this case, the logarithm would be
approximated as

(17)

Here are the coefficients of the least square quadratic
polynomial. If is the total number of bits in the mantissa, the
first bits are used to access the LUT. is the value represented
by the last bits of the mantissa.

We implement (17) by extending our approach for the linear
least square polynomial interpolation. The quadratic term is re-
alized as the antilog of the sum of twice the logarithm of
and the logarithm of . The linear term in the equation is im-
plemented as before. The values and are stored
in an LUT and the coefficient is stored in another LUT. To
find the we implement (17) after neglecting the linear
and the quadratic term, i.e., by looking up the constant term .
The hardware resources as compared to the linear interpolation
method differs by one extra LUT to store the coefficient of the
quadratic term and an extra adder to add the quadratic term in the
approximation polynomial. The accuracy due to this is shown in
Table V.

From Table V, it can be seen that quadratic interpolation
yields only about one extra bit of accuracy as compared to linear
interpolation. The accuracy of quadratic interpolation is limited
by the way in which the multiplications in the interpolation step
are implemented. Table V also shows that, if the multiplications

in the interpolation step were implemented in the perfect sense,
quadratic interpolation would have yielded a much better ac-
curacy than linear interpolation. The accuracy of quadratic in-
terpolation is limited by implementing the multiplication as a
logarithm and antilogarithm (obtained through a single LUT).
This is explained further in Section VII.

VII. EXPERIMENTAL RESULTS AND COMPARISONS

We summarize the various approaches investigated to find
the logarithm of a number. These include LUT only, LUT with
linear interpolation, LUT with linear/quadratic interpolation
based on polynomials obtained using a least square fit. The ac-
curacies of these approaches are shown in Table VI. This table
also shows the accuracy of linear and quadratic interpolation
implemented with perfect multipliers for reference purposes.

It is seen that our approximate approach using linear least
square polynomial interpolation is almost as accurate as perfect
linear interpolation. The approximate quadratic least square
polynomial interpolation is significantly less accurate than
perfect quadratic interpolation. This is due to the fact that the
multiplication required for interpolation is implemented by a
single LUT which has only 7–9 bits of accuracy. Intuitively the
approximate polynomial interpolation is implemented in two
steps of single LUT lookups which give an accuracy of around
14–18 bits. Quadratic interpolation is also implemented in two
steps and has almost the same accuracy. Logarithm computa-
tion using an LUT with a linear least square based polynomial
has a very good accuracy and uses the same resources as linear
interpolation. The Antilogarithm is also computed using the
same technique.

In the remainder of this section, we compare our linear
least square polynomial approach with existing approaches
that approximate the logarithm function. We also analyze the
LUT-based approximation methods and compare the memory
requirement for these methods in bits.

While computing the LUT size for our method, we optimize
the memory requirement for storing the linear polynomial coef-
ficients as follows. The width of the words used in the LUT is
seen in Table IV. For the constant term stored in the LUT in
locations, the first 3 bits of all locations are zero. Hence the
first 3 bits can be omitted in all locations. This holds for both
logarithm and antilogarithm implementations.

In Table VII, we compare the LUT size required by our
method with the symmetric bipartite table method (SBTM) [8].
The SBTM involves two parallel table lookups, an addition and
two XOR operations. From Table VII, note that our approach
requires far less memory than the SBTM approach. Also when
the required accuracy increases, we see that the LUT size for
the SBTM method needed to support this accuracy increases
at a much faster rate than for our method. We also compare
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TABLE VI
ACCURACY OF VARIOUS APPROACHES TO FIND log(), IN BITS

TABLE VII
COMPARISON OF TABLE SIZES, IN BITS

our approach with methods given by Brubaker [15], Maenner
[16], and Kmetz [17]. The LUT size for all these methods were
chosen to be the least LUT size to give the required accuracy.
Note that if these methods were to provide an accuracy compa-
rable to ours, they need much bigger table sizes.

The extra accuracy we obtain in our method is traded-off with
the need to implement a modest number of additional compo-
nents for interpolation. We quantified this overhead by imple-
menting our method (as well as the SBTM method [8]) using
the Xilinx ISE Foundation tool [26]. We used an XC2VP30
FPGA as the target for this experiment. Table VIII reports the
outcome of this experiment, for outputs accurate up to 14 and
16 bits. Although our method has a bigger logic overhead in
terms of flip-flops, 4—input LUTs, and slices, these numbers
are insignificant when compared to available logic resources on
a conventional FPGA. For example in the XC2VP30 FPGA with
30 000 slices, both methods utilize less than 1% of the FPGA re-
sources. Also our method is far more conservative with respect
to the memory resources utilized. Note that our method scales
extremely well to obtain higher accuracies. To scale from 14 bits
of accuracy to 16 bits we need a minimal increase in the logic
resources and twice the memory resources as for 14 bits. The
SBTM also needs a very small increase in the logic utilization,
but needs close to three times more memory than for 14 bits.
This trend in resource utilization holds as we scale to higher ac-
curacies. The SBTM thus presents a bottleneck in its memory
requirement for higher accuracies. We compared the maximum
clocking speed of our method and the SBTM. Both the methods
were pipelined to have as high a throughput as possible. Our ar-
chitecture was pipelined to have a latency of 12 clock cycles.
After placement and routing on the target FPGA both methods
were able to support clock speeds of a little over 350 MHz. This
frequency of operation was verified by performing post place
and route simulation using the Xilinx ISE simulator tool. Both
setup time and hold time constraints were satisfied at the said
speed.

TABLE VIII
FPGA RESOURCE UTILIZATION, POWER CONSUMPTION

VIII. CONCLUSION

The implementation of functions such as log() and antilog()
in hardware is important, due to their prevalence in several com-
puting applications. In this paper, we present an approach to
compute log() and antilog() in hardware. Our approach is based
on a LUT, followed by an interpolation step. The novelty of our
approach lies in the fact that we find the log() of a number ef-
ficiently using interpolation, without the need to explicitly per-
form multiplication or division. While computing the logarithm
of a number, we perform the multiplication required during the
interpolation step, by utilizing an antilogarithm operation. The
antilogarithm operation is also performed by utilizing a LUT.
We compare our work with existing methods, and show that our
approach results in significantly lower memory utilization for
the same accuracy. Also our method scales extremely well to
accommodate higher accuracies. One interesting addition to our
method would be to explore the use of LUTs of sizes other than
powers of 2. This will give our method more scalability.
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