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Abstract 

In the multiple protocol label-switched (MPLS) networks, the commodities are transmitted by the 

label-switched paths (LSPs). For the sake of reducing the total cost and strengthening the central 

management, the MPLS networks restrict the number of paths that a commodity can use, for 

maintaining the quality of service (QoS) of the users, the demand of each commodity must be sa-

tisfied. Under the above conditions, some links in the network may be too much loaded, affecting 

the performance of the whole network drastically. For this problem, in [1], we proposed two ma-

thematical models to describe it and a heuristic algorithm which quickly finds transmitting paths 

for each commodity are also presented. In this paper, we propose a new heuristic algorithm which 

finds a feasible path set for each commodity, and then select some paths from the path set through 

a mixed integer linear programming to transmit the demand of each commodity. This strategy 

reduces the scale of the original problem to a large extent. We test 50 instances and the results 

show the effectiveness of the new heuristic algorithm. 
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1. Introduction 

In the modern broadband communication networks, namely the multiple protocol label-switched networks 
(MPLS), data packets are transmitted through the label-switched paths (LSPs). An important feature of MPLS is 
its ability to set up traffic engineering mechanism (MPLS-TE). It can control the structure of the traffic for each 
customer by setting restrictions on the number of routes the customer used. In order to preserve the QoS re-
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quirement, the demand of each customer must be satisfied. Using a single path would possibly increase the con-
gestion of the network, while, on the other hand, a huge number of LSPs would decrease the performance of the 
protocol, and the intermediate situation is considered in the MPLS network. When limiting the number of sup-
porting LSPs, we should try to minimize the congestion of the network under the condition that all data are 
transmitted. 

This problem can be described formal as follows: Given a directed graph ( ),G V E= , which denotes the 
MPLS network, Vertex set V  and edge set E  denote the nodes and the links of the network, respectively. 
Each edge e E∈  has a positive capacity 

eu , denoting the bandwidth of the corresponding link in the network. 
A set of commodities is denoted by L , each commodity l L∈  has a source node 

ls , a destination node 
lt , 

an amount 
ld  to be delivered and a maximal number of directed paths that the commodity can use l

k . Limit-
ing the number of paths that a commodity can use is in fact the k-splittable multi-commodity flow problem 
which is introduced by Baier [2]. When 1l

k =  for all l L∈ , the problem collapses to the multi-commodity 
unsplittable flow problem, and when l

k E≥  for all l L∈ , the problem is an ordinary multi-commodity flow 
problem. In this paper, we focus on minimizing congestion of the MPLS network under the condition that 

l
k E<  for all l L∈ . 

Kleinberg [3] introduced several optimization versions of the unsplittable flow problem. In the “minimum 
congestion” version, the task is to find the smallest value 0λ >  such that there exists an unsplittable flow that 
uses at most a λ -fraction of the capacity of any edge. The “minimum number of rounds” version asks for a 
partition the set of commodities into a minimum number of subsets (rounds) and a feasible unsplittable flow for 
each subset. The “maximum routable demands” problem is to find a feasible unsplittable flow for a subset of 
demands maximizing the sum of demands in the subset. 

As for the k-splittable flow problem, researchers generalize the above optimization versions and there is a lot 
of study on the related problems. Baier et al. [2], who solved the Maximum Budget-Constrained Singe- and 
Multi-commodity k-splittable flow problem using approximation algorithms. The authors proved that the maxi-
mum single-commodity k-splittable flow problem is NP-hard in the strong sense for directed graphs. Koch et al. 
[4] proved that the maximum multi-commodity flow problem was NP-hard in the strong sense for directed as well  

as undirected graphs, and showed that when P NP≠ , the best possible approximation factor is 5
6

. Kollipoul-  

ous [5] considered the single-source Minimum Cost 2-splittable flow problem with budget constraints and with 
the assumption that the minimum edge capacity was larger than the maximum commodity demand. The author 
presented an approximation algorithm with factor (2, 1) for minimum congestion and cost. The result was gene-
ralized to the k-splittable problem by Salazar and Skutella [6] with a resulting approximation factor of  

( )1 11 ,1
2 1k k

+ +
−

. 

References [7]-[11] are part of the researches solving the related single- and multi-commodity k-splittable 
flow problems exactly. The authors design algorithms that are based on branch-and-price strategy. Branch-and- 
price is usually used to solve large scale mixed integer linear programs. It combines column generation and 
branching strategies. In spite of this, the running time of the branch-and-price algorithm cannot obtain exact so-
lutions in short time, and is not suitable for the high speed networks. 

In the MPLS networks, the number of paths that a commodity can use is limited due to the reduction of the 
total cost, and we need to satisfy all demands of the commodities in a relative low congestion network. We aim 
to minimize the congestion as much as possible. Since this problem is NP-hard and obtaining exact solutions is 
impossible in short time, we must arrange the data on some paths quickly, hence the fast and good heuristic al-
gorithms are badly needed. In this paper, we consider a special case that all the commodities in L  have a 
common source node. 

The main contribution of this paper is as follows: for the single-source multi-commodity k-splittable flow 
problem, we propose a new heuristic algorithm, different from the old algorithm that is proposed in [1]. The new 
algorithm reduces the original problem to a small scale of mixed-integer linear programming. And in the last 
section, we test 50 instances, and the performance of the new algorithm outperforms the old one. 

This paper is organized as follows: Section 2 describes the problem and two mathematical formulations are 
also given. In Section 3 we present a heuristic algorithm and the computational results are shown in Section 4. 
Section 5 concludes the paper. 
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2. Problem Description and Mathematical Models 

We describe the problem in a more general case. In the minimum congestion k-splittable multi-commodity flow 
problem, a directed graph ( ), ,G V E u=  is given with V n=  and E m= , with arc capacities 0eu > , 

e E∀ ∈ . A set of commodities is denoted by L , each commodity l L∈  has a certain amount of demand 
ld  

to transmit, a source node 
ls  and a destination node 

lt , and the number of paths that commodity l  can use 
l

k . The goal is to find a flow f  that satisfies all demands of the commodities and minimize the congestion: 
Find the smallest α  such that there exists a feasible flow satisfying the demands and the path restrictions if all 
capacities are multiplied by α . In [1], we first propose two different mathematical models, namely the arc-path 
and arc-flow model. In this paper, we also use the two models to describe our problem. 

2.1. The Arc-Path Model 

Let l
P  denotes the set of all paths of commodity l , l

px  denotes the flow value on path l
p P∈  of commod-

ity l , { }0,1l

py ∈  denoting whether or not path l
p P∈  is used by commodity l . { }: min :p eu u e p= ∈  de-

notes the maximum flow value that path p  can transmit. 
This problem is formulated as follows: 

              min  α  

. .       
l

p l

e p e

l L p P

s t x u e Eδ α
∈ ∈

≤ ⋅ ∀ ∈∑ ∑                                 (1) 

                       
l

l

p l

p P

x d l L
∈

= ∀ ∈∑                                  (2) 

                ,  l l l

p p px y M u l L p P≤ ⋅ ⋅ ∀ ∈ ∀ ∈                           (3) 

                       
l

l l

p

p P

y k l L
∈

≤ ∀ ∈∑                                  (4) 

      0                       ,   l l

px l L p P≥ ∀ ∈ ∀ ∈                           (5) 

{ }      0,1                   ,   l l

py l L p P∈ ∀ ∈ ∀ ∈                          (6) 

      0,α >                                                   (7) 

The objective function is to minimize the factor that each edge can multiply. The first constraints (1) ensure 
that the flow value on an edge e  is at most α  of its capacity, { }0,1p

eδ ∈  is a constant, if e p∈ , 1p

eδ = , 
otherwise 0p

eδ = . The constraints (2) ensure that each commodity's demand is satisfied, and constraints (3) in-
dicate that only path p  is used by commodity l , that is 1l

py = , the flow value l

px  can be non-negative. The 
notation M  is any upper bound of the objective value, which can be selected by minll L

d u
∈∑  with

{ }min min :eu u e E= ∈ . Constraints (4) limit the number of paths that a commodity can use. Constraints (5)-(7) 
force the variables to take on feasible values. 

2.2. The Arc-Flow Model 

The variable hl

ex  refers to the flow value of the h -th path of commodity l L∈  on edge e E∈ , 
1,2, , l

h k=  , and binary variable hl

ey  denotes whether or not edge e  is used by the h -th path of commodity
l . We use ( )A v

+  and ( )A v
−  to denote the outgoing arcs and ingoing arcs of node v V∈ , respectively. 

Then the arc-flow model is stated as follows: 

                 min  α  

( ) ( )1

,     . .   

l

l l

k
hl hl

e e l

h e A s e A s

s x x Lt d l
+ −= ∈ ∈

 
 − = ∀ ∈
 
 

∑ ∑ ∑                             (8) 

1

        ,    

l
k

hl

e e

l L h

x u e Eα
∈ =

≤ ⋅ ∀ ∈∑∑                                        (9) 

        ,     ,   1, , ,  hl hl l

e e ex y M u l L h k e E≤ ⋅ ⋅ ∀ ∈ = ∈                        (10) 
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( ) ( )
{ }      0,    ,  1, , ,  \ ,  hl hl l

e e l l

e A v e A v

x x l L h k v V s t
+ −∈ ∈

− = ∀ ∈ ∀ = ∈∑ ∑            (11) 

( )
     1 ,      ,  1, , ,  hl l

e

e A v

y l L h k v V
+∈

≤ ∀ ∈ ∀ = ∈∑                           (12) 

      0 ,          ,  1, , ,  hl l

ex l L h k e E≥ ∀ ∈ ∀ = ∈                            (13) 

{ }      y 0,1 ,       ,  1, , ,  hl l

e l L h k e E∈ ∀ ∈ ∀ = ∈                           (14) 

      0,α >                                                        (15) 

Constraints (8) ensure that each commodity’s demand is satisfied, and constraints (9) ensure the flow on each 
edge is at most α  times of its capacity, constraints (10) indicate that only if edge e  is used by the h -th path 
of commodity l  can the variable hl

ex  be positive. Constraints (11) are the flow conservation constraints and 
(12) are used to prevent cycles connecting to the h -th path of commodity l  for each l L∈ , 1, , l

h k=  . 
Constraints (13)-(15) force the variables to take on feasible values. 

The main difference of the two mathematical models is that in the arc-path model each commodity has a 
feasible path set which contains all the paths for the commodity in the network and we only need to select some 
paths from the path set to transmit the demand. Sometimes, determining all the feasible paths for a commodity is 
not an easy thing. While in the arc-flow model, the transmitting paths for each commodity are found in the net-
work directly. We know that both of the above two formulations are mixed integer linear problems which are 
NP-hard to solve, especially when the size of the network increases, the number of paths in l

P  grows expo-
nentially, and it is impossible to obtain the exact solutions in short time. 

We also note that the multi-source k-splittable problem cannot equally transform to the single-source k-split- 
table problem. If we add a super source node s , connecting it to each source node 

ls  for l L∈ , each edge 

( ), ls s  has capacity 
ld , then a feasible flow in the new graph with flow value 

ll L
d

∈∑  may not transform to a 
feasible flow satisfying all demands in the original graph. For example, a graph with five nodes 1 2 1 2, , , ,s s t t v , 
five edges ( ) ( ) ( ) ( ) ( )1 1 1 2 2 1 2 2, , , , , , , , ,s t s t s t s v v t  with capacities 1, 4, 4, 4, 4, respectively. Two commodities 
with endpoints 1 1,s t  and 2 2,s t  have demands 5 and 4, respectively. We add a super source node s  as men-
tioned above and a super sink node t . Add two edges ( )1,t t  and ( )2 ,t t  with capacity 5 and 4, respectively. 
Applying a maximum flow algorithm, such as the Edmonds-Karp Algorithm in [12], we obtain a maximum flow 
f  from s  to t  and edge flow values are as follows: ( )1, ,5s s , ( )2, , 4s s , ( )1 1, ,1s t , ( )1 2, , 4s t , ( )2 1, , 4s t , 

( )1, ,5t t , ( )2 , , 4t t , ( )2 , ,0s v  and ( )2, ,0v t . We can note that f  cannot transform to a flow in the original 
graph that satisfies the two commodities, since in f  there is no path with positive flow value from 2s  to 2t  
and the flow value from 1s  to 1t  is only 1. 

In this paper, for simplicity, we only consider the single-source multi-commodity k-splittable flow problem, 
denote the common source node by s . We propose a heuristic algorithm which largely reduce the size of the 
path set l

P  for each commodity l  to a small path set l
R , and solve the arc-path model with l

P  replaced by 
l

R  for l L∈ . 

3. The Heuristic Algorithm 

In this paper, we assume that there is a feasible splittable flow f  that satisfies all the demands of the commod-
ities. We know that f  may not meet all the path number restrictions of the commodities. In [1], we find at 
most l

k  paths for commodity l  from f , and then reallocate flow to the unsatisfied commodities by solving 
a series of linear programming. In this paper, we also find paths for commodity l  from f . On the one hand, 
we finds paths for each commodity until the total path value is equal to its demand, on the other hand, for sake 
of fairness of different commodities, we find at most one path for each commodity in a round. The steps of the 
algorithm are as follows and the flow chart of the algorithm is presented in Figure 1. 

Step 1: Find a feasible splittable flow f  in G  that satisfies all the demands; Initialize :l
R = ∅  for all 

l L∈ , denoting the paths found from f  for commodity l ; 
Step 2: For 1, ,l L=  , if the total path value of the paths in l

R  is less than 
ld , find a path from the cur-

rent flow f  for commodity l  that carry the largest flow value. Add the new path with its flow value to l
R . 

Once a path is found, delete its flow from f , update the edge flow values in f ; 
Step 3: If there is some edge in f  with positive flow value, go to step 2; otherwise, solve the arc-path model  
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Figure 1. The flow chart of the heuristic algorithm. In the process of the algorithm, when the total path value 
already found for some commodity equals to its demand, we will not find paths for it in the next round.        

 
with l

P  replaced by l
R . 

Remarks: 
● In step 1, we can add a super sink node t  to G , each sink node 

lt , l L∈  is connected to t  with capac-
ity 

ld , denote the new graph by *
G . Finding f  that satisfies all the demands of the commodities is 

equivalent to find the maximum s t−  flow in *
G , since we assume the existence of f , the maximum 

s t−  flow in *
G  is with flow value 

ll L
d

∈∑  and we can use any maximum flow algorithm to obtain the 
maximum s t−  flow.  

● For each commodity l , the number of paths found is at most m  and so the size of l
R  is largely smaller 

than l
P . Since the existence of a feasible splittable flow f  satisfying all demands, at the end of step 2 we 

have that 0f =  and the total path value of l
R  is 

ld  for each l L∈ . 
● The new algorithm applies the Round Robin strategy to find paths. In each round, each commodity finds at 

most one path in the current flow f , this strategy guarantees some fairness in certain degree. To show the 
effectiveness of the Round Robin strategy, we compare our algorithm to the one that does not use the strate-
gy in the next section. The computational results show that this strategy does have some advantages for this 
problem. 

4. Computational Results 

The testing instances are generated by the Transit Grid generator developed by G.Waissi [13]. The topology of 
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those instances (see Table 1) looks close to the transportation networks and may be well-suited for the MPLS 
networks. In this paper, we propose some results for the multi-commodity case. Tests were performed on an In-
tel Core 2.4 GHz processor, 4 GB of RAM. We use CPLEX 12.5.1 to solve the arc-flow model. The running 
time of the CPLEX-solver is restricted to 50 seconds for each instance. The testing results are reported on Table 2 
and Table 3. 

In our testing, the total demands of the commodities in each instance are taken as the largest. While in prac-
tice, the demand of each commodity may be much less than the amount we take, hence the congestions we ob-
tained may be larger than 1. For simplicity, we denote the algorithm in [1] by H1. In this section, we also com-
pare our algorithm to the one that not using the Round Robin strategy. That is the one which find paths from f  
for each commodity until the total path values is its demand, and then go to the next commodity, denote the al-
gorithm by H2. The new algorithm proposed in this paper is denoted by H3. In Table 2, for each instance name, 
the first column followed is the number of commodities, and then followed the number of paths each commodity 
can use, and the next four columns are the congestions obtained by H1, H2, H3 and the CPLEX-solver in 50 
seconds, and the last three columns followed are the ratios between the congestions of each of the three heuristic 
algorithms and the CPLEX-solver for each instance. The empty positions in Table 2 and Table 3 are because of 
the size of the instance runs out of memory, and hence no results are given. In Table 3, the last four columns are 
the corresponding running times for each instance. 

From Table 3, we can note that the time spent for H1, H2 and H3 has little differences, all of the three heuris-
tic algorithms run faster than the CPLEX-solver, and when the size of the instance or the number of paths that a 
commodity can use increases, the time spent for the CPLEX-solver has a big fluctuation, and most of the in-
stances cannot obtain the exact solutions in the given time, we list the congestions obtained by the CPLEX- 
solver in 50 seconds. From column 4 and column 6 in Table 2, we can see that in the 50 test instances, 64% of 
the congestion values obtained by H3 is less than H1, and 30% have the same congestion values, and H1 has 
only 6% of the 50 congestion values that is less than H3. From column 5 and column 6 in Table 2, we note that 
34% of the congestion values obtained by H3 are less than H2, and only 16% of the congestion values obtained 
by H2 are less than H3, this shows that the Round Robin strategy is useful in the heuristic algorithm. From the 
last three columns of Table 2, we can note that for all the 40 sets of gaps, H1 has 24 instances that have gaps 
less than or equal to 1.5, while H3 has 31 instances with this property and H2 has 30. We can also note that H1 
has 5 instances with gaps larger than 2 and H2 has 2 instances with this property, while H3 has no instance with 
gaps larger than 2. Hence we conclude that the performance of H3 outperforms H1 and H2. We know that in-
creasing the size of path set for each commodity can minimize the congestion, but too large path set may also 
increasing the running time. So how to find paths for each commodity efficiently is a big challenge for this 
problem. 

5. Conclusion 

In this paper, we consider the problem of minimizing congestion in the MPLS networks. We propose a new 
heuristic algorithm. This algorithm is based on the strategy that reduces the whole feasible path set for each 
commodity, and a Round Robin strategy is also used. The computational results show that the new algorithm is 
 
Table 1. Sizes of testing instances. For each instance name, the first column followed is the number of vertices, and then the 
number of edges and finally the maximum capacity of the edges in the instance.                                       

Instances |V| |E| Max-capacity Instances |V| |E| Max-capacity 

tg4-90 6 16 90 tg52-1k 54 202 1000 

tg10-9 12 38 9 tg60-6 62 218 6 

tg15-60 17 60 60 tg70-8 72 268 8 

tg40-8 42 152 8 tg80-6 82 322 6 

tg40-10 42 152 10 tg100-9 102 400 9 

tg50-5 52 198 5 tg100-100 102 400 100 

tg50-10 52 198 10 tg150-300 152 588 300 
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Table 2. The congestions obtained by the 3 testing heuristic algorithms and the CPLEX solver. The last three columns are 
the gaps between each of the 3 algorithms and the CPLEX-solver.                                                  

Instance |L| k H1 H2 H3 CPLEX Gaps1 Gaps2 Gaps3 

tg4-90 2 1 2.31 1.29 1.29 1.29 1.79 1.00 1.00 

tg4-90 2 2 1.00 1.00 1.00  1.00 1.00 1.00 1.00 

tg10-9 3 1 1.43 1.57 1.43 1.29 1.11 1.22 1.11 

tg10-9 3 2 1.13 1.13 1.25 0.92 1.23 1.23 1.36 

tg10-9 3 3 1.00 1.00 1.00 0.92 1.09 1.09 1.09 

tg15-60 4 1 2.00 2.09 2.00 1.82 1.10 1.15 1.10 

tg15-60 4 2 1.50 1.43 1.37 1.05 1.43 1.36 1.30 

tg15-60 4 3 1.11 1.11 1.10 1.00 1.11 1.11 1.10 

tg15-60 4 4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

tg40-8 3 1 3.00 3.00 3.00 1.50 2.00 2.00 2.00 

tg40-8 3 2 2.00 2.00 1.50 0.86 2.33 2.33 1.74 

tg40-8 3 3 1.50 1.50 1.20 0.70 2.14 2.14 1.71 

tg40-8 3 4 1.20 1.20 1.00 0.70 1.71 1.71 1.43 

tg40-10 3 1 2.33 2.00 2.33 1.50 1.55 1.33 1.55 

tg40-10 3 2 1.29 1.43 1.40 1.00 1.29 1.43 1.40 

tg40-10 3 3 1.50 1.19 1.17 1.00 1.50 1.19 1.17 

tg40-10 3 4 1.11 1.06 1.00 1.00 1.11 1.06 1.00 

tg50-5 7 1 2.50 2.50 2.50 1.67 1.50 1.50 1.50 

tg50-5 7 2 1.67 1.67 1.67 1.00 1.67 1.67 1.67 

tg50-5 7 3 1.25 1.25 1.25 1.33 0.94 0.94 0.94 

tg50-5 7 4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

tg50-10 7 1 3.00 3.00 2.00 1.80 1.67 1.67 1.11 

tg50-10 7 2 2.00 1.50 1.50 1.21 1.65 1.24 1.24 

tg50-10 7 3 1.60 1.30 1.30 1.05 1.52 1.24 1.24 

tg50-10 7 4 1.33 1.18 1.18 1.11 1.20 1.06 1.06 

tg50-10 7 5 1.14 1.08 1.08 8.00 0.14 0.14 0.14 

tg52-1k 4 1 2.69 2.21 2.21 1.34 2.01 1.65 1.65 

tg52-1k 4 2 1.53 1.37 1.37 1.00 1.53 1.37 1.37 

tg52-1k 4 3 1.14 1.14 1.14 1.00 1.14 1.14 1.14 

tg52-1k 4 4 1.03 1.03 1.03 1.00 1.03 1.03 1.03 

tg52-1k 4 5 1.03 1.00 1.00 1.00 1.03 1.00 1.00 

tg60-6 1 1 1.50 1.00 1.00 1.00 1.50 1.00 1.00 

tg60-6 1 1 1.00 0.75 0.75 0.60 1.67 1.25 1.25 

tg70-8 3 1 3.00 2.00 2.00 1.00 3.00 2.00 2.00 

tg70-8 3 2 1.50 1.00 1.00 0.60 2.50 1.67 1.67 

tg80-6 9 1 4.00 4.00 4.00 2.00 2.00 2.00 2.00 

tg80-6 9 2 2.00 2.00 2.00 1.50 1.33 1.33 1.33 

tg100-9 10 1 3.00 2.00 2.33 2.67 1.12 0.75 0.87 

tg100-9 10 2 1.75 1.40 1.50 - - - - 

tg100-9 10 3 1.33 1.17 1.31 - - - - 

tg100-9 10 4 1.04 1.07 1.17 - - - - 

tg100-100 10 1 2.32 2.21 1.81 1.66 1.40 1.33 1.09 

tg100-100 10 2 1.38 1.15 1.21 - - - - 

tg100-100 10 3 1.10 1.09 1.08 - - - - 

tg100-100 10 4 1.22 1.00 1.02 - - - - 

tg150-300 6 1 2.38 2.36 2.24 2.03 1.17 1.16 1.10 

tg150-300 6 2 1.68 1.49 1.49 - - - - 

tg150-300 6 3 1.65 1.29 1.18 - - - - 

tg150-300 6 4 1.31 1.13 1.08 - - - - 

tg150-300 6 5 1.43 1.04 1.03 - - - - 
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Table 3. Running times of the 3 test algorithms and the CPLEX solver.                                              

Instance |L| k H1-t(s) H2-t(s) H3-t(s) C-t(s) 

tg4-90 2 1 0.036 0.049 0.437 0.124 

tg4-90 2 2 0.025 0.050 0.097 0.134 

tg10-9 3 1 0.026 0.096 0.129 0.187 

tg10-9 3 2 0.050 0.142 0.326 0.184 

tg10-9 3 3 0.014 0.058 0.604 0.194 

tg15-60 4 1 0.034 0.082 0.123 0.328 

tg15-60 4 2 0.037 0.167 0.127 7.715 

tg15-60 4 3 0.032 0.135 0.132 0.634 

tg15-60 4 4 0.023 0.065 0.068 1.277 

tg40-8 3 1 0.048 0.122 0.095 13.274 

tg40-8 3 2 0.049 0.193 0.225 50.120 

tg40-8 3 3 0.056 0.131 0.216 11.204 

tg40-8 3 4 0.061 0.217 0.121 4.261 

tg40-10 3 1 0.056 0.132 0.205 50.115 

tg40-10 3 2 0.062 0.221 0.133 0.679 

tg40-10 3 3 0.066 0.127 0.196 1.606 

tg40-10 3 4 0.075 0.193 0.137 4.230 

tg50-5 7 1 0.163 0.205 0.189 50.203 

tg50-5 7 2 0.134 0.203 0.367 49.919 

tg50-5 7 3 0.142 0.202 0.311 50.833 

tg50-5 7 4 0.136 0.186 0.176 50.598 

tg50-10 7 1 0.123 0.239 0.319 50.304 

tg50-10 7 2 0.129 0.354 0.306 50.420 

tg50-10 7 3 0.143 0.330 0.272 50.771 

tg50-10 7 4 0.151 0.304 0.298 51.380 

tg50-10 7 5 0.162 0.345 0.349 52.142 

tg52-1k 4 1 0.082 0.213 0.208 50.178 

tg52-1k 4 2 0.100 0.307 0.326 50.238 

tg52-1k 4 3 0.140 0.311 0.337 16.926 

tg52-1k 4 4 0.134 0.374 0.237 12.347 

tg52-1k 4 5 0.143 0.307 0.341 18.579 

tg60-6 1 1 0.031 0.096 0.084 50.099 

tg60-6 1 1 0.034 0.077 0.076 50.111 

tg70-8 3 1 0.097 0.160 0.157 50.154 

tg70-8 3 2 0.134 0.155 0.171 50.249 

tg80-6 9 1 0.257 0.569 0.483 50.464 

tg80-6 9 2 0.384 0.582 0.576 51.427 

tg100-9 10 1 0.599 1.046 1.049 51.235 

tg100-9 10 2 1.001 1.126 1.084 - 

tg100-9 10 3 1.152 1.113 0.972 - 

tg100-9 10 4 0.880 1.109 1.048 - 

tg100-100 10 1 0.442 1.280 1.189 50.882 

tg100-100 10 2 1.767 1.383 1.317 - 

tg100-100 10 3 0.864 1.384 1.295 - 

tg100-100 10 4 0.985 1.383 1.284 - 

tg150-300 6 1 2.378 3.651 3.252 51.858 

tg150-300 6 2 1.098 3.806 3.224 - 

tg150-300 6 3 1.329 4.175 3.397 - 

tg150-300 6 4 3.922 3.938 3.224 - 

tg150-300 6 5 1.978 3.658 3.269 - 
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much better than the algorithm that we proposed before. One main limitation of the new algorithm is that it 
needs to solve a mixed integer linear programming, when the number of commodities is sufficiently large, the 
running time of the algorithm may be large. However, the idea of the algorithm provides a good feasible direc-
tion for solving this problem. In the future, we will continue to do research on how to find better feasible path 
set for each commodity, not only this, we will design effective strategies to solve the mixed integer linear pro-
gramming more quickly. 
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