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A Fast Hierarchical Algorithm for Three-Dimensional
Capacitance Extraction

Weiping Shi, Member, IEEE, Jianguo Liu, Naveen Kakani, and Tiejun Yu, Member, IEEE

Abstract—The authors present a new algorithm for computing
the capacitance of three-dimensional electrical conductors of com-
plex structures. The new algorithm is significantly faster and uses
much less memory than previous best algorithms and is kernel in-
dependent.

The new algorithm is based on a hierarchical algorithm for the
-body problem and is an acceleration of the boundary element

method (BEM) for solving the integral equation associated with
the capacitance extraction problem. The algorithm first adaptively
subdivides the conductor surfaces into panels according to an
estimation of the potential coefficients and a user-supplied error
bound. The algorithm stores the potential coefficient matrix in a
hierarchical data structure of size ( ), although the matrix is
size 2 if expanded explicitly, where is the number of panels.
The hierarchical data structure allows the multiplication of
the coefficient matrix with any vector in ( ) time. Finally, a
generalized minimal residual algorithm is used to solve linear
systems each of size in ( ) time, where is the
number of conductors.

The new algorithm is implemented and the performance is com-
pared with previous best algorithms for the bus example.
The new algorithm is 60 times faster than FastCap and uses 1/80
of the memory used by FastCap. The results computed by the new
algorithm are within 2.5% from that computed by FastCap. The
new algorithm is 5 to 150 times faster than the commercial soft-
ware QuickCap with the same accuracy.

Index Terms—Boundary element method, capacitance, parasitic
extraction.

I. INTRODUCTION

I N THIS paper, we study the capacitance extraction problem
of three-dimensional (3-D) electrical conductors of complex

structures. Fast and accurate capacitance extraction is important
in the design and verification of deep submicron very large scale
integration (VLSI) circuits and packaging [9], [10], [13]–[15],
[17] and MEMS [19]. Although there are a number of algo-
rithms and commercial software for capacitance extraction, they
are far from adequate. The 2-D/2.5-D algorithms are based on
pattern matching. These algorithms are fast and capable of full
chip extraction, but are inaccurate. The 3-D algorithms are based
on integral equations or differential equations. These algorithms
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are accurate, some are capable of critical net and clock tree ex-
traction, but are very slow. In addition, all 2-D/2.5-D algorithms
use 3-D algorithms to build the extraction pattern library. A pat-
tern library can easily contain tens of thousands of rules and take
many hours of CPU time to generate. Therefore, a fast and ac-
curate 3-D algorithm will have a great impact on the speed and
accuracy of commercial extraction tools.

A. Integral Equation Approach

The capacitance of an-conductor geometry can be summa-
rized by an capacitance matrix . The diagonal entries

of are positive, representing the self-capacitance of con-
ductor . The nondiagonal entries are negative, representing
the coupling capacitance between conductorsand . To deter-
mine the th row of the capacitance matrix, we compute the sur-
face charges on each conductor produced by raising conductor

to unit potential while grounding the rest of the conductors.
Then is numerically equal to the charge on conductor. This
procedure is repeated times to compute all rows of .

Each of the potential problems can be solved using an
equivalent free-space formulation where the conductor-dielec-
tric interfaces are replaced by a charge layer of density. As-
suming a homogeneous dielectric, the charge layer in the free-
space problem will satisfy the integral equation

(1)

where is the known conductor surface potential, is the
incremental conductor surface area,, , , and

is the Euclidean distance betweenand . The kernel
of the integral equation is .

We use the Galerkin scheme to numerically solve (1) for.
In this approach, the conductor surfaces are subdivided into
small panels and it is assumed that on each panel, a charge

is uniformly distributed. Then for each panel, an equation
is written which relates the known potential on, denoted by

, to the sum of the contribution of potential from charges on
all panels . The result is a dense linear system

(2)

where is the vector of panel charges, is the
vector of known panel potentials, and is the potential
coefficient matrix. Each entry of is defined as

area

area
(3)
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for panels and . Matrix is known to be positive,
symmetric, and positive definite. Once the linear system (2) is
solved, the capacitances are obtained by summing the panel
charges.

To solve (2), direct methods based on triangularization of ma-
trix , such as Gaussian elimination and Cholesky factorization,
require operations. Iterative algorithms normally require

operations per iteration. These approaches are inefficient
if the number of panels is more than several thousands. In fact,
any algorithm that uses the explicit representation of matrix
must use at least time and memory since the matrix is
size .

Several algorithms have been proposed to solve (2) in sub-
quadratic time. The capacitance extraction algorithm FastCap
of Nabors and White [13] uses time. It is based on the
multipole algorithm for the -body problem by Greengard and
Rohklin [7]. In this paper we propose a different time al-
gorithm, which is based on a different hierarchical algorithm for
the -body problem by Appel [1]. Efficient algorithms that are
not based on the-body problem include the precorrected fast
Fourier transform (FFT) algorithm of Phillips and White [17],
the singular value decomposition (SVD) algorithm of Kapur and
Long [9], [10], etc. The running times of the precorrected FFT
algorithm and SVD algorithm are both . Le Coz and
Iverson [11] proposed a Monte Carlo algorithm and successfully
turned it into the popular commercial software QuickCap.

B. Kernel Independence

In deep submicron technology, multilayer dielectric with dif-
ferent permittivity is common. When this happens, the kernel of
integral (1) is no longer . Instead, it is a complicated
multilayer Green’s function, which is often approximated by a
series [12].

A capacitance extraction algorithm is kernel dependent if
the algorithm is written for a specific kernel. FastCap is kernel
dependent, since all multipole expansion theorems are derived
specifically for the kernel [7]. To use FastCap in
multilayer dielectric, it is necessary to introduce additional
panels on the dielectric–dielectric interface and additional
variables and equations, so that within each layer, the kernel is
still [14]. As a result, the running time is drastically
increased.

On the other hand, a capacitance extraction algorithm is
kernel independent if the algorithm works for any kernel.
Therefore, when applied to a multilayer dielectric, kernel-inde-
pendent algorithms are much more efficient than kernel-depen-
dent algorithms. Our algorithm is kernel independent because it
treats Green’s function as a black box; our algorithm provides
the coordinates of two points in 3-D space and the black box
returns the value of the Green’s function. The precorrected FFT
algorithm [17], SVD algorithm [9], and QuickCap [11] are also
kernel independent.

C. The -Body Problem

The -body problem is to compute the gravitational force be-
tween particles in 3-D space, where each particle exerts a force
on all the other particles, implying pairwise interactions [1],

[7]. The capacitance extraction problem shares many similari-
ties with the -body problem; both the gravitational field and the
electro-magnetic field decrease as the distance increases and the
principle of superposition applies to both problems. The prin-
ciple of superposition states that the potential due to a cluster of
particles is the sum of the potential due to each individual par-
ticle.

There are two types of algorithms for the-body problem: the
hierarchical algorithm of Appel [1] and the multipole algorithm
of Greenberg and Rohklin [6]. When Appel first published his
paper, he thought the time complexity was . Later,
a careful analysis shows the time complexity is [4]. At
about the same time, Greengard and Rohklin [6] proposed the
multipole algorithm and proved its time complexity is .
FastCap is based on the multipole algorithm, while our algo-
rithm is based on Appel’s algorithm [1] and a radiosity algo-
rithm [8]. Hanrahanet al.[8] used the ideas in Appel’s algorithm
to compute the reflection of light among a set of objects in com-
puter graphics. Their experience shows Appel’s algorithm is not
only fast, but also very easy to implement.

The hierarchical algorithm uses the following key ideas to
speedup the computation: 1) For practical considerations, the
forces acting on a particle need only be calculated to within the
given precision. 2) The force due to a cluster of particles at some
distance can be approximated with a single term.

There are several differences between the capacitance extrac-
tion problem and the -body problem, which prevent us from
blindly adopting the -body solution. One major difference is
that in the -body problem the objects are particles, while in the
capacitance extraction problem, the objects are continuous con-
ductor surfaces. Therefore, the hierarchical data structures are
formed differently. The -body algorithm begins with par-
ticles and clusters them into larger and larger groups. Our al-
gorithm begins with a set of panels and subdivides them into
smaller and smaller panels. Another difference is that the self-
capacitance is very important in our problem while there is no
such concept in the-body problem.

D. Our Contribution

In Section II, we show how to build a hierarchical data struc-
ture for the potential coefficient matrix by adaptively subdi-
viding the conductor surfaces into panels according to the esti-
mation of the coefficient and a user-supplied error bound. This
is different from FastCap where the conductor surfaces are di-
vided in a preprocessing stage according to the geometry of each
conductor individually. Our new algorithm subdivides the sur-
faces into panels of variable sizes and it is guaranteed that all
coefficients are calculated to the same precision. More impor-
tantly, the coefficient matrix of size is stored as
block entries in the hierarchical data structure, whereis the
number of panels.

In Section III, we show how to multiply the potential coeffi-
cient matrix with any vector in time, using the hierar-
chical data structure. The hierarchical data structure is of size

, or more precisely , where is the number
of conductors and is much less than. Then we use the gener-
alized minimum residual (GMRES) method to solve the linear
systems.
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In Section IV, we present the experimental results that show
the new algorithm is significantly faster than FastCap and uses
significantly less memory. We also compared our algorithm with
QuickCap and other algorithms. Our algorithm is much faster as
well.

Section V is the conclusion. We also discuss how to apply
our algorithm to a multilayer dielectric using multilayer Green’s
functions. Since our algorithm is kernel independent, there is no
need to introduce dielectric–dielectric interface conditions and
additional variables as required by kernel-dependent algorithms
such as FastCap [14].

II. POTENTIAL MATRIX APPROXIMATION

This section describes the recursive refinement procedure
that subdivides a large panel into a hierarchy of small panels
and builds a hierarchical representation of the potential coeffi-
cient matrix. We first describe the procedure, then estimate the
number of interactions that need to be considered and finally
analyze the error in the resulting potential matrix.

Procedure returns an estimate of the
potential coefficient for two panels defined in (3). We use
the closed form expressions derived by Wiltonet al. [20] and
numerical integration to compute the potential factor. If the
estimated coefficient is less than the user provided error bound

, then the panels are allowed to interact at this level.
The recursion is terminated and the interaction is recorded
between the two panels by procedure .
However, if the estimate is greater than, then the estimate
may not be accurate. In this case, the panel with the larger area,
say , is to be subdivided into and . The
procedure is called recursively. Procedure
subdivides a panel into two small panels. The subdivision
hierarchy is stored in a binary tree where each node has two
pointers, and , pointing to the two small panels.

Since a panel may be refined against many other panels, the
actual subdivision of a panel may have occurred previously.
When this happens, uses the same subdivision.
By sharing some subdivisions, we can reduce the amount of

Fig. 1. Partition conductor surfaces into panels.

Fig. 2. Hierarchical data structure and potential coefficients.

memory usage significantly. For example, assume whenis
refined against , is subdivided into ,
and is further subdivided. Later, assume is also re-
fined against . This time, is subdivided into , but

is further subdivided. Therefore, the two refinements
share some subdivisions, but as a whole they are different. In
general, since the locations and sizes of the panels are different,
the refinements are different.

Fig. 1 shows the refine process of two conductor surfaces. We
start with two conductor surfaces and in (a). Assume the
estimated coefficient betweenand is greater than the user
provided error bound , so we subdivide into and then
subdivide into in (b). Now assume the estimates between

, and are less than , but estimate is greater than
. Then we record interactions and at this level,

while we further subdivide panels and . The final panels are
shown in (e). We compute the self-potential coefficient at
this time.

Fig. 2 shows the hierarchical data structure produced by
and associated potential coefficients produced by

. The panels are stored as nodes in the
tree and the coefficients are stored as links between the nodes.
The value of each coefficient is stored as a floating-point
number associated with the link. Each tree represents one
conductor surface, each nonleaf node represents one panel
further subdivided, and each leaf node represents one panel not
further subdivided. The union of all the leaf nodes completely
covers the surfaces of the conductors. Each horizontal link
represents one pair of potential coefficients defined in (3). Each
self-link represents one self-potential coefficient.

Fig. 3 shows the block matrix represented by the links of
Fig. 2. Each block entry represents one interaction between
panels. Note that there are total eight panels for the two con-
ductors, so an explicit representation of the coefficient matrix
would require 64 entries. However, the block matrix has only
40 entries. Furthermore, if we use uniform grid discretization,
then there would be a total of 16 panels and 256 entries.

Esselink proved the number of interactions in the above al-
gorithm is [4]. Callahan and Kosaraju show that under a
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Fig. 3. Potential coefficient matrix with block entries.

very general condition, algorithms similar to ours contain
interactions [2]. We now give an intuitive explanation of why
the block matrix contains block entries. For simplicity,
consider panels of about the same size on the surface and a
binary tree constructed above the panels by merging adjacent
panels recursively. Then, panels on the same level of the tree
are the same size. The error criterion in says that two
panels can interact directly only if where is the
length of the longest side of the two panels. Sinceis asymp-
totically where is the distance between the two panels,
the two panels can interact only if , or . For
any fixed , this criterion requires that two panels at the same
level in the tree can interact only if there areother panels be-
tween them on that level, for some fixed constant. If panels

and are too far, the ancestor of would have interacted
with the ancestor of . Therefore, and cannot interact
either. This argument applies to all levels of the tree. Therefore,
each node in the tree interacts with a constant number of other
nodes, regardless of their level in the tree. So, the total number
of block entries is . Large panels that are far apart interact
directly, in the same way that small panels near each other in-
teract directly. Notice that the size of the block in the potential
factor matrix depends on the level in the tree the panel interacts
with. The higher the level, the bigger the block.

For conductors, results of Esselink [4] and Callahan and
Kosaraju [2] still hold, except that there will be an additive over-
head of . For the application of building the extraction li-
brary, is typically less than 30, while can easily reach tens
of thousands. Therefore, .

Our algorithm is kernel independent because for dif-
ferent kernels all we need to modify is the subroutine

. The rest of the algorithm is the same.
To write for multilayer Green’s function,
see [12] and [16].

Finally, we analyze the relationship between the termination
criteria and the accuracy of the computed coefficients. We will
show that the termination criterion places an upper bound on the
error associated with the potential coefficient integral between
any two interacting panels. Furthermore, all coefficients are ap-
proximated to the same precision controlled by.

Consider a panel subdivided into two small panels and
of similar shape and size. Let the radius of the smallest

sphere that contains be . Consider a point of distance
from the center of the sphere, for some . The potential at

due to the charge on panels and , with uniform charge
densities and , respectively, is

(4)

If we treat and as a single panel with uniform charge
density , then the potential at will be

(5)

Assume without loss of generality , then the difference
between (4) and (5) is

Therefore, the relative error is at most a constant times
. Since is in proportion with , the condition

in implies that the error of the ap-
proximation for every entry is bounded by a constant times
Therefore, as goes to zero, the error goes to zero. Also, all
entries in the coefficient matrix are approximated to the same
precision, which is a constant times.

III. SOLVING LINEAR SYSTEMS

A. Fast Matrix-Vector Multiplication

To solve the linear system , an iterative algorithm
requires the multiplication of the coefficient matrix with a
vector, which normally takes time. However, because our

is represented by blocks, each matrix-vector multipli-
cation can be done in time. The multiplication proceeds
in three steps. To help understand the algorithm, the reader can
imagine as the coefficient matrix, as the given charge vector,
and the product as the potential due to charge, though the
algorithm works for any matrix and vector.

In the following pseudocodes, each panelhas two pointers
and , pointing to the two children panels that

are the subdivision of. Panel also has two fields
and which we will explain later. For readers not
familiar with recursive tree traversal, please see [3].

The first step computes the charge of all panels in the tree. The
charge of a leaf panel is given by from . The charge of an
nonleaf panel is the sum of the charge of its children panels. This
calculation can be done in a single depth-first traversal of the
tree, propagating the charge upward. In other words, to compute
the charge for each panel, the charges of its children panels are
computed first and then the charge of the panel equals the sum
of the charge of its children panels. The time for computing the
charge for all panels is linear in terms of the number of panels
in the tree.
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The second step computes for each panelthe potential due
to its interactingpanels.Thiscanbecomputedbysummingup the
product of potential coefficient with charge at , for all
that has interaction with . The time for computing the charge
for all nodes is linear in terms of the number of links in the tree.

The third step distributes the potential from the nonleaf nodes
to the leaf nodes. This is done by another depth-first traversal of
the tree that propagates potential down to the leaf nodes. Each
nonleaf node adds its accumulated potential to its children’s po-
tential, recursively. The time of this step is linear in terms of the
number of nodes in the tree.

The total time for thematrix-vectorproduct is linear in termsof
the numberofnodesand links. It is well known that for any binary
tree with leaves, there are exactly nonleaf nodes. There-
fore, the time is , where is the number of leaf panels.

B. Generalized Minimum Residual Method

We use the GMRES method with restart [18] to solve the
system of equations. The basic idea behind the GMRES method
is to project the problem onto a Krylov subspaceof dimen-
sion using the orthonormal basis constructed by a scheme
due to Arnoldi [5], solve the -dimensional subproblem using

Fig. 4. Test problem 6� 6 bus.

TABLE I
COMPARISON FOR THEBUS PROBLEM. TIME IS CPU SECONDS, MEMORY IS

MB, AND ERRORIS WITH RESPECT TOFASTCAP(2)

a standard approach, and then recover the solution of the orig-
inal problem from the solution of the projected problem. The
Arnoldi scheme involves the coefficient matrix only multiplica-
tively. The dimension of the Krylov subspace is usually small.

The GMRES method with restart [18] can be briefly de-
scribed as follows:

ALGORITHM: GMRES().
1. Start : Let denote the first column

of the identity matrix.
Choose and , and

.
2. Iterate : For do:

, ,
,

and
.
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TABLE II
COMPARISON FOR4� 4 BUS PROBLEM. ERRORIS WITH RESPECT TOFASTCAP(2)

TABLE III
COMPARISON FOR5� 5 BUS PROBLEM. ERRORIS WITH RESPECT TOFASTCAP(2)

3. Form the approximate solution :
,

where .
and ,

where minimizes , .
4. Restart :

Compute .
If satisfied then stop,
else compute , ,
and goto 2.

Since we can multiply with any vector in time, each
iteration can be computed in time.

IV. EXPERIMENTAL RESULTS

The new algorithm is implemented and compared with
FastCap 2.0 and QuickCap 3.1. All computation are done on
the same computer, a SUN Ultra Enterprise 2 at Texas A&M
University. It has two UltraSparc II processors at 296 MHz
and 1GB memory. FastCap(0) is FastCap with expansion order
0. It is the fastest version in the FastCap package. FastCap
(2) is FastCap with expansion order 2. It is the most accurate
version in the FastCap package, within a reasonable amount
of time. FastCap (0) is about twice as fast as FastCap (2).
However FastCap(0) has 5% to 10% relative error with respect
to FastCap (2). QuickCap is a widely used commercial software
by Random Logic Corporation.

The test examples are bus crossing conductors for
to 6, taken from the FastCap paper [13]. The 66 bus example
is shown in Fig. 4. Each bus in the example is scaled to

. The distance between buses on the same
layer is , and the distance between layers is. The constant

is 111.27 pF/m, according to [13].
The error of capacitance matrices is defined as follows.

Let the capacitance matrix computed by FastCap (2) be
and the capacitance matrix computed by another program be

. Then the error is estimated in the Frobenius norm [5]:
. This is the standard way to measure the

difference between two matrices.
Our GMRES solver reduces the two-norm of the residual to

1% of the initial residual, the same condition used by the con-
jugate residual algorithm in FastCap.

Table I compares the new algorithm, FastCap and QuickCap.
Tables II and III show the first row of the capacitance matrix
computed by the three programs. The conductors are numbered
from one side to the other side 1, 2, …,(top layer) and then

(bottom layer). The following is a summary of the
comparison.

1) Set and compare with FastCap. Compared
with FastCap(2), our algorithm is 52 to 60 times faster
and uses 1/93 to 1/68 of the memory. The error is less
than 2.5% with respect to FastCap(2). Compared with
FastCap(0), our algorithm is 22 to 47 times faster and is
three times more accurate. (Some memory usage numbers
reported by FastCap(0) appear to be incorrect.)

2) Set and compare with QuickCap. The running
time of QuickCap will increase significantly if we require
high accuracy, which is typical for any Monte Carlo algo-
rithms. Therefore, we use the results of the first run of
QuickCap. Our algorithm is 5 to 150 times faster than
QuickCap and the accuracy is the same. It appears the
running time of QuickCap is independent of the size of
input, which we do not understand since we do not have
access to the source code of QuickCap.

3) and compare with FastCap(2). The new
algorithm is 2 to 4 times faster and uses 1/6 to 1/8 of
the memory. The error is less than 0.8% with respect to
FastCap(2).

It is natural to ask how to choose the value of. Since
gives an asymptotic error bound, similar to the expansion order
of FastCap and running time/variance of QuickCap,does
not translate directly to the accuracy of computed capacitance
matrix . The relationship between and error of can only
be measured for an actual implementation using a reference. For
the current implementation and with FastCap as the reference,

is the default value.
We do not have access to the precorrected FFT algorithm [17]

and the SVD algorithm [9]. Published results show the precor-
rected FFT algorithm and the SVD algorithm are about twice as
fast as FastCap for the bus examples [9], [17]. Therefore,
based on their relative performance to FastCap, our algorithm is
much faster than these algorithms as well.
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V. CONCLUSION

This paper presents a hierarchical algorithm that is signif-
icantly faster than previous best algorithms and uses much
less memory. The new algorithm is kernel independent and,
therefore, is even more efficient when applied to multilayer
dielectrics. The new algorithm does not require preprocessing
to partition the conductor surface into panels; instead, it
automatically partitions the panels according to a user supplied
error bound. The new algorithm provides continuous tradeoff
of time with precision by changing the error bound.

There are a number of differences between our algorithm and
FastCap: 1) We include the discretization process into the algo-
rithm. By doing so, we not only find a good discretization, but
also get the hierarchy for free, which FastCap needs to rebuild
from scratch. We experimented by feeding the results of our dis-
cretization to FastCap. It was discovered that our discretization
gives better accuracy than the discretization that only considers
the geometry of each conductor separately. 2) We use a single
term to approximate the charge and potential, which is the same
as multipole expansion order zero. However, we use far more
panels to compensate the low expansion order. It can be seen
from Table I that it is less expensive to use more panels than
to use high expansion orders. Also, to use any expansion order
higher than 0 will make the algorithm kernel dependent. 3) Our
hierarchical data structure is more efficient than the array used
by FastCap. Experimental results show this is a major source of
improvement. Also, some features, such as the adaptive evalua-
tion defined in FastCap [15], is free under our data structure.
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