330 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 3, MARCH 2002

A Fast Hierarchical Algorithm for Three-Dimensional
Capacitance Extraction

Weiping Shj Member, IEEEJianguo Liu, Naveen Kakani, and Tiejun,Ydember, IEEE

Abstract—The authors present a new algorithm for computing are accurate, some are capable of critical net and clock tree ex-
the capacitance of three-dimensional electrical conductors of com- traction, but are very slow. In addition, all 2-D/2.5-D algorithms
plex structures. The new algorithm is significantly faster and uses use 3-D algorithms to build the extraction pattern library. A pat-

much less memory than previous best algorithms and is kernel in- . . .
dependent y P 9 tern library can easily contain tens of thousands of rules and take

The new algorithm is based on a hierarchical algorithm for the Many hours of CPU time to generate. Therefore, a fast and ac-
n-body problem and is an acceleration of the boundary element curate 3-D algorithm will have a great impact on the speed and
method (BEM) for solving the integral equation associated with accuracy of commercial extraction tools.
the capacitance extraction problem. The algorithm first adaptively
subdivides the conductor surfaces into panels according to an a Integral Equation Approach
estimation of the potential coefficients and a user-supplied error
bound. The algorithm stores the potential coefficient matrixina  The capacitance of an-conductor geometry can be summa-
hierarchical data structure of size O(n), although the matrix is  rized by anm x m capacitance matri&. The diagonal entries
sizen? if expanded explicitly, where n is the number of panels. C;; of C are positive, representing the self-capacitance of con-

The hierarchical data structure allows the multiplication of - . . : .
the coefficient matrix with any vector in O(r) time. Finally, a ductori. The nondiagonal entrigs;; are negative, representing

generalized minimal residual algorithm is used to solven linear ~the coupling capacitance between conducta@nsd,j. To deter-

systems each of sizex x n in O(mn) time, where m is the ~mine thejth row of the capacitance matrix, we compute the sur-

number of conductors. _ face charges on each conductor produced by raising conductor
The new algorithm is implemented and the performance is com- ; g ynit potential while grounding the rest of the conductors.

pared with previous best algorithms for the & x & bus example. s ; I
The new algorithm is 60 times faster than FastCap and uses 1/80 ThenC; is numerically equal to the charge on condudtdthis

of the memory used by FastCap. The results computed by the new Procedure is repeated times to compute all rows of.

algorithm are within 2.5% from that computed by FastCap. The Each of them potential problems can be solved using an
new algorithm is 5 to 150 times faster than the commercial soft- equivalent free-space formulation where the conductor-dielec-
ware QuickCap with the same accuracy. tric interfaces are replaced by a charge layer of densités-
Index Terms—Boundary element method, capacitance, parasitic suming a homogeneous dielectric, the charge layer in the free-
extraction. space problem will satisfy the integral equation
/ 1 /
l. INTRODUCTION ¥(z) = /Surfaces o(x )47r60||aj — | da @)

I N THIS paper, we study the capacitance extraction problffherey () is the known conductor surface potentiét! is the

of three-dimensional (3-D) electrical conductors of complegcremental conductor surface areaz’ € %2, 2/ € da’, and
structures. Fast and accurate capacitance extraction is importgnt /|| is the Euclidean distance betweeandz’. The kernel
inthe design and verification of deep submicron very large scgjgthe integral equation is/||x — 2.

integration (VLSI) circuits and packaging [9], [10], [13]{15], e use the Galerkin scheme to numerically solve (1)sfor
[17] and MEMS [19]. Although there are a number of algom this approach, the conductor surfaces are subdividedninto
rithms and commercial software for capacitance extraction, thgy ]| panels and it is assumed that on each paneh charge
are far from adequate. The 2-D/2.5-D algorithms are based pns uniformly distributed. Then for each panéJ, an equation
pattern matching. These algorithms are fast and capable of fgllyritten which relates the known potential @3, denoted by
chip extraction, but are inaccurate. The 3-D algorithms are baqggto the sum of the contribution of potential from charges on
onintegral equations or differential equations. These algorithig , panelsa; , A,. . .., A,. The resultis a dense linear system

Pq=v (2)
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for panels4; and A;. Matrix P is known to be positive, [7]. The capacitance extraction problem shares many similari-
symmetric, and positive definite. Once the linear system (2)ties with then-body problem; both the gravitational field and the
solved, the capacitances are obtained by summing the paglettro-magnetic field decrease as the distance increases and the
charges. principle of superposition applies to both problems. The prin-
To solve (2), direct methods based on triangularization of meiple of superposition states that the potential due to a cluster of
trix P, such as Gaussian elimination and Cholesky factorizatigearticles is the sum of the potential due to each individual par-
requireO(n?) operations. Iterative algorithms normally requirdicle.
O(n?) operations per iteration. These approaches are inefficieniThere are two types of algorithms for thebody problem: the
if the number of panels is more than several thousands. In fdggrarchical algorithm of Appel [1] and the multipole algorithm
any algorithm that uses the explicit representation of matrix of Greenberg and Rohklin [6]. When Appel first published his
must use at leag(n?) time and memory since the matrix ispaper, he thought the time complexity wagn logn). Later,
sizen?. a careful analysis shows the time complexityCgn) [4]. At
Several algorithms have been proposed to solve (2) in si@out the same time, Greengard and Rohklin [6] proposed the
quadratic time. The capacitance extraction algorithm FastCaltipole algorithm and proved its time complexity G&(n).
of Nabors and White [13] used(n) time. It is based on the FastCap is based on the multipole algorithm, while our algo-
multipole algorithm for thex-body problem by Greengard andfithm is based on Appel’s algorithm [1] and a radiosity algo-
Rohklin [7]. In this paper we propose a differafin) time al-  ithm [8]. Hanraharet al.[8] used the ideas in Appel’s algorithm
gorithm, which is based on a different hierarchical algorithm f¢p compute the reflection of light among a set of objects in com-
then-body problem by Appel [1]. Efficient algorithms that arePuter graphics. Their experiencg shows Appel’s algorithm is not
not based on the-body problem include the precorrected fasenly fast, but also very easy to implement. _
Fourier transform (FFT) algorithm of Phillips and White [17], The hierarchical algorithm uses the following key ideas to
the singular value decomposition (SVD) algorithm of Kapur angPeedup the computation: 1) For practical considerations, the
Long [9], [10], etc. The running times of the precorrected FFPTces acting on a particle need only be calculated to within the
algorithm and SVD algorithm are bot(nlogn). Le Coz and 9IVen precision. 2) The force due to a cluster of particles at some

Iverson [11] proposed a Monte Carlo algorithm and successfuffjstance can be approximated with a single term.
turned it into the popular commercial software QuickCap. There are several differences between the capacitance extrac-

tion problem and thex-body problem, which prevent us from
blindly adopting then-body solution. One major difference is
that in then-body problem the objects are particles, while in the
In deep submicron technology, multilayer dielectric with difcapacitance extraction problem, the objects are continuous con-
ferent permittivity is common. When this happens, the kernel dfictor surfaces. Therefore, the hierarchical data structures are
integral (1) is no longet / ||z — #’||. Instead, it is a complicated formed differently. Then-body algorithm begins witte par-
multilayer Green’s function, which is often approximated by ticles and clusters them into larger and larger groups. Our al-
series [12]. gorithm begins with a set of panels and subdivides them into
A capacitance extraction algorithm is kernel dependentsfmaller and smaller panels. Another difference is that the self-
the algorithm is written for a specific kernel. FastCap is kerngipacitance is very important in our problem while there is no
dependent, since all multipole expansion theorems are deriggh concept in the-body problem.
specifically for thel/||z — «’|| kernel [7]. To use FastCap in
multilayer dielectric, it is necessary to introduce additionad. Our Contribution
panels on the dielectric—dielectric interface and additional

variables and equations, so that within each layer, the kerne{ isIn Section I, we show how 1o build a hierarchical data struc-

still 1/]|« — z’||[14]. As a result, the running time is drastically ure for the potential coefﬂme_nt matrix by adap_tlvely SUbd".
increased. viding the conductor surfaces into panels according to the esti-

On the other hand, a capacitance extraction algorithm %atmn of the coefficient and a user-supplied error bound. This

kernel independent if the algorithm works for any kernel® different from FastCap where the conductor surfaces are di-
Therefore, when applied to a multilayer dielectric kernel-indé’-ided in a preprocessing stage according to the geometry of each
| f )nductor individually. Our new algorithm subdivides the sur-

pendent algorithms are much more efficient than kernel-dep ) . : o
ges into panels of variable sizes and it is guaranteed that all

dent algorithms. Our algorithm is kernel independent becaus fici lculated h sion. M .
treats Green'’s function as a black box; our algorithm providgg?e icients are caicu ate X tot € same precision. viore impor-
the coefficient matriP of sizen x n is stored a®)(n)

the coordinates of two points in 3-D space and the black b@ptly, U , . :
returns the value of the Green's function. The precorrected FPPCK entries in the hierarchical data structure, wheie the

algorithm [17], SVD algorithm [9], and QuickCap [11] are alsgiUmber of panels. _ _ _
kernel independent. In Section Ill, we show how to multiply the potential coeffi-

cient matrixP with any vector inO(n) time, using the hierar-
chical data structure. The hierarchical data structure is of size
C. Then-Body Problem O(n), or more preciselyD(n + m?), wherem is the number
Then-body problem is to compute the gravitational force besf conductors and is much less thanThen we use the gener-
tweenn particles in 3-D space, where each particle exerts a forakzed minimum residual (GMRES) method to solve the linear
on all the other particles, implyin@;) pairwise interactions [1], systems.

B. Kernel Independence



332 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 3, MARCH 2002

In Section 1V, we present the experimental results that show c c
the new algorithm is significantly faster than FastCap and uses A 5 5
significantly less memory. We also compared our algorithm with ola FIG
QuickCap and other algorithms. Our algorithm is much faster as IY‘l R
well.

Section V is the conclusion. We also discuss how to apply H i I;
our algorithm to a multilayer dielectric using multilayer Green’s i
functions. Since our algorithm is kernel independent, there is no @) (b) ©) () ©)

need to introduce dielectric-dielectric interface conditions apgl, 1. pariition conductor surfaces into panels.
additional variables as required by kernel-dependent algorithms
such as FastCap [14].

Il. POTENTIAL MATRIX APPROXIMATION

This section describes the recursive refinement procedure
that subdivides a large panel into a hierarchy of small panels
and builds a hierarchical representation of the potential coeffi-
cient matrix. We first describe the procedure, then estimate the
number of interactions that need to be considered and fina'fl&g' 2.
analyze the error in the resulting potential matrix.

Hierarchical data structure and potential coefficients.

memory usage significantly. For example, assume wiers
refined againstj, Ai is subdivided intoAi.left, Ai.right
andAi.left is further subdivided. Later, assume is also re-
{ . ) ) ) ) fined againstik. This time,Ai is subdivided intaii.left, but
Pij = POtentla}EStlmat?(Al’ Aj); Ai.right is further subdivided. Therefore, the two refinements
Ri = longest side of Ai; share some subdivisions, but as a whole they are different. In
Rj = 1‘?1.1§e,st side of Aj; e general, since the locations and sizes of the panels are different,
if ((P1j"Ri < Peps) L& (,Plj Ry < Peps)) the refinements are different.
Re.cord:.[nter.aCtlon(Alv Aj); Fig. 1 shows the refine process of two conductor surfaces. We
else if .(R} > RJ.)) { start with two conductor surfaces and H in (a). Assume the
Subc.h“d.e(Al)? . estimated coefficient betweehand H is greater than the user
Ref?ne(A?'l‘?ft’ A )ﬁ provided error boundP., so we subdividet into BUC and then
Refine(Al.right, Aj); subdivideH into IU.J in (b). Now assume the estimates between
} else {, . . BJ,CI,andCJ are less tha®,, but estimate31 is greater than
Sub‘.“lVld.e(AJ)f P.. Then we record interactiom8.J, CI, andCJ at this level,
Ref?ne(A?’ AJ 'l?ft)? while we further subdivide panel8 andI. The final panels are
Refine(Ai, Aj.right); shown in (e). We compute the self-potential coefficiéhyt at
t this time.
} Fig. 2 shows the hierarchical data structure produced by
Refine and associated potential coefficients produced by
ProcedurePotentialEstimate returns an estimate of theRecordInteraction. The panels are stored as nodes in the
potential coefficient for two panels defined in (3). We us&ee and the coefficients are stored as links between the nodes.
the closed form expressions derived by Wiltetnal. [20] and The value of each coefficient is stored as a floating-point
numerical integration to compute the potential factor. If theumber associated with the link. Each tree represents one
estimated coefficient is less than the user provided error bourmhductor surface, each nonleaf node represents one panel
Peps(FP.), then the panels are allowed to interact at this levdlurther subdivided, and each leaf node represents one panel not
The recursion is terminated and the interaction is recordadther subdivided. The union of all the leaf nodes completely
between the two panels by procediRecordInteraction. covers the surfaces of the conductors. Each horizontal link
However, if the estimate is greater th&h, then the estimate represents one pair of potential coefficients defined in (3). Each
may not be accurate. In this case, the panel with the larger argelf-link represents one self-potential coefficient.
sayAi, is to be subdivided intdi.left andAi.right. The Fig. 3 shows the block matrix represented by the links of
procedureief ine is called recursively. Procedugabdivide Fig. 2. Each block entry represents one interaction between
subdivides a panel into two small panels. The subdivisigranels. Note that there are total eight panels for the two con-
hierarchy is stored in a binary tree where each node has tdactors, so an explicit representation of the coefficient matrix
pointers,left andright, pointing to the two small panels.  would require 64 entries. However, the block matrix has only
Since a panel may be refined against many other panels, #eentries. Furthermore, if we use uniform grid discretization,
actual subdivision of a panel may have occurred previoustiien there would be a total of 16 panels and 256 entries.
When this happensSubdivide uses the same subdivision. Esselink proved the number of interactions in the above al-
By sharing some subdivisions, we can reduce the amountgafrithm isO(n) [4]. Callahan and Kosaraju show that under a

Refine(Panel Ai, Panel Aj)
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| Al H l sphere that containg be R. Consider a point of distancer
LB L ¢ L1 1L J 1 from the center of the sphere, for some- R. The potential at
ﬁ ﬁ z due to the charge on panels and A», with uniform charge
B M densitiess; andos, respectively, is
7] lvige L
B/@ 813 s 18 o ) o /
6|7 16|17 Tt dd 4 2 __dd. (4)
= wea, dmeollr’ — x| wea, dmeollz’ — x|
9 10 19 20 . . .
¢ If we treat A; and A, as a single panel with uniform charge
M7 8 BIR2 7 density(o; + 02)/2, then the potential at will be
. epd B . BBLP| ( )/
H_ 26 | 27 36 | 37 / o1 + 0y 1 . ©)
M a .
!/ _
3 29 30 39 40 wea 2 Ameoll’ — 2

— = Assume without loss of generalityy > o1, then the difference
Fig. 3. Potential coefficient matrix with block entries. between (4) and (5) is

very general condition, algorithms similar to ours contaim) oa—op 1 1 , 1 ,
interactions [2]. We now give an intuitive explanation of why 2 dre </A1 ||z — ] da’ — /A2 ||z’ — z|] da)
the block matrix contain®(n) block entries. For simplicity, og—0oy 1 1 1 )
considern panels of about the same size on the surface and & 5 dme / <||$’ e =+ R) da
binary tree constructed above the panels by merging adjacent 04

panels recursively. Then, panels on the same level of the treec 72— 71 E/ ! da’.

are the same size. The error criteriorRiat ine says that two 2 1 Ja, dmeolla’ — |

panels can interact directly onlyBfi j*R < Peps wherer is the

length of the longest side of the two panels. Siffggis asymp- Therefore, the relative error is at most a constant times

totically 1/~ wherer is the distance between the two panel%z 1/37* ngclfeﬁ i ir:SRlerlfizreO[i)r?]gll?er?s m:: % (:’etrrr]Sr g?’l:g"’a”p_

i < P, g P.. . . . .
the two panels can interact onlyhi/r < I, orr > /I For oximation for every entry is bounded by a constant tifRgs

. . . . ; I
ny fixed ., this criterion requires that twi nel h npﬁ
any fixed %, this criterion requires that two panels at the sa erefore, ad’. goes to zero, the error goes to zero. Also, all

level in the tree can interact only if there drether panels be- L g . :
tween them on that level, for some fixed constantf panels entries in the coefficient matrix are approximated to the same
’ d precision, which is a constant timé.

A; andA; are too far, the ancestor df; would have interacte
with the ancestor off;. Therefore,4; and A; cannot interact

either. This argument applies to all levels of the tree. Therefore, IIl. SOLVING LINEAR SYSTEMS
each node in the tree interacts with a constant number of otiaer Fast Matrix-Vector Multiplication

nodes, regar_dle_ss of their level in the tree. So, the totgl numberl-o solve the linear syste®q = v, an iterative algorithm
of block entries i<)(rn). Large panels that are far apart mterac[tequireS the multiplication of the coefficient matf with a

directly, in the same way that small panels near each other I&ctor, which normally take®(n?) time. However, because our
teract directly. Notice that the size of the block in the potentigd ;¢ represented b@(n) blocks, each matrix-vector multipli-
factor matrix depends on the level in the tree the panel interagtgion can be done i®(n) time. The multiplication proceeds
with. The higher the level, the bigger the block. in three steps. To help understand the algorithm, the reader can
For m conductors, results of Esselink [4] and Callahan anghaginep as the coefficient matrix; as the given charge vector,
Kosaraju [2] still hold, except that there will be an additive overyng the producdPq as the potential due to chargethough the
head ofO(m?). For the application of building the extraction li-algorithm works for any matrix and vector.
brary,m is typically less than 30, while can easily reach tens |, the following pseudocodes, each pandlas two pointers
of thousands. Therefor€(n + m?) = O(n). A.left andA.right, pointing to the two children panels that
Our algorithm is kernel independent because for difre the subdivision of. Panela also has two fieldd.charge
ferent kernels all we need to modify is the subroutingnda.potential which we will explain later. For readers not
PotentialEstimate. The rest of the algorithm is the samefamiliar with recursive tree traversal, please see [3].
TowritePotentialEstimate for multilayer Green’s function,  The first step computes the charge of all panels in the tree. The
see [12] and [16]. charge of a leaf paneli is given byQi from q. The charge of an
Finally, we analyze the relationship between the terminatiefonleaf panel is the sum of the charge of its children panels. This
criteria and the accuracy of the computed coefficients. We wghiculation can be done in a single depth-first traversal of the
show that the termination criterion places an upper bound on tiage, propagating the charge upward. In other words, to compute
error associated with the potential coefficient integral betweeine charge for each panel, the charges of its children panels are
any two interacting panels. Furthermore, all coefficients are agsmputed first and then the charge of the panel equals the sum
proximated to the same precision controlledRy of the charge of its children panels. The time for computing the
Consider a panefl subdivided into two small panel$; and charge for all panels is linear in terms of the number of panels
Ao of similar shape and size. Let the radius of the smalleist the tree.
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AddCharge(Panel Ai)

{

if (Ai is leaf)
Ai.charge = Qi;

else {

Add Charge(Ai.left);
Add Charge(Ai.right);
Ai.charge =
Ai.left — charge + Ai.right — charge;
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Fig. 4. Test problem & 6 bus.

The second step computes for each pahehe potential due
toitsinteracting panels. This can be computed by summing up the
product of potential coefficien®;; with charge atd;, for all A;
that has interaction withl;. The time for computing the charge
for all nodes is linear in terms of the number of links in the tree.

TABLE |
COMPARISON FOR THEBUS PROBLEM. TIME IS CPU SCONDS MEMORY IS
MB, AND ERRORIS WITH RESPECT TOFASTCAP(2)

Test Problems

2x2  3x3  4x4 5x5 6x6
Collect Potential(Panel Ai)
FastCap (0)
{ Time 21 62 223 223 50.7
for all Aj such that AiAj has interaction { Memory 12 16 86 24 97
Ai.potential = Panel 792 1620 2736 4140 5832
Ai.potential + Aj.charge % Pij; Error 8.6% 5.0% 52% 85% 10.0%
if (Ai is not leaf) { FastCap (2)
CollectPotential(Ai.left); Time 32 134 248 544 1400
: I . M 56 16 26 46 62
CollectPotential(Ai.right); P:;:lory 05 1620 9736 4140 5832
} Error — — — — —
}
} QuickCap
_ o _ Time 9 12 13 12 12
The third step distributes the potential from the nonleaf nodes Error  20% 15% 18% 19% 23%
to the leaf nodes. This is done by another depth-first traversal of
the tree that propagates potential down to the leaf nodes. Each New Algorithm (P, = 0.01)
nonleaf node adds its accumulated potential to its children’s po- Time 0.06 022 047 095 23
; ; ; : P ; Memory 0.06 02 03 05 0.8
tential, recursively. The time of this step is linear in terms of the Pancl 160 408 576 720 1584
number of nodes in the tree. Error  21% 1.7% 1.8% 17% 25%
DistributePotential(Panel Ai) New Algorithm (P, = 0.003)
{ Time 099 39 106 251 474
if (Al is not leaf) { Memory 0.9 19 3.8 6.3 9.1
Mileft — > tential — Panel 1888 3504 6720 10960 13152
1.1e potential = Error  04% 02% 08% 06% 0.4%
Aileft — > potential + Ai.potential,
Airight — > potential =
~ Alright — > potential +Al.potential; g standard approach, and then recover the solution of the orig-
Distribute POtent?al(A?'l?ft)v inal problem from the solution of the projected problem. The
Distribute Potential(Ai.right); Arnoldi scheme involves the coefficient matrix only multiplica-
¥ tively. The dimension of the Krylov subspace is usually small.
¥ The GMRES method with restart [18] can be briefly de-

The total time for the matrix-vector productislinearinterms
the number of nodes and links. Itis well known that for any binary
tree withn leaves, there are exacily— 1 nonleaf nodes. There- 1
fore, the time i90(n), wheren is the number of leaf panels.

B. Generalized Minimum Residual Method

We use the GMRES method with restart [18] to solverithe, 2.
system of equations. The basic idea behind the GMRES method
is to project the problem onto a Krylov subspacg of dimen-
sionk < n using the orthonormal basis constructed by a scheme
due to Arnoldi [5], solve th&-dimensional subproblem using

?cribed as follows:
o]

ALGORITHM: GMRESX).
Start : Let e; denote the first column
of the n x n identity matrix.

Choose zo and 7o = v — Pzg, 8 = |ro|| and
v = 7’0//3-
lterate : For j=1,2,---,k do:

hi,j = (ijv Ui)g t=1,2,---,7,
f}j+1 = ij - E£=1hi7ﬂ}i,

hjt1i = 1941l and

Vjgr = Vi1 /Pty
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TABLE I
COMPARISON FOR4 X 4 BuS PROBLEM. ERRORIS WITH RESPECT TOFASTCAP(2)
First Row of Capacitance Matrix (pF) Error | Time | Mem
Cu Cr2 Ci3 Cua Cis Cis Ci7 Chs (sec) | (MB)
FastCap(0) || 394.5 | -124.0 | -0.175 | -2.471 | -52.15 | -43.39 [ -43.08 | -52.92 || 5.2% | 22.3 86
FastCap(2) || 405.2 | -137.8 | -11.91 | -8.079 | -48.36 | -40.09 | -40.01 | -48.45 — 24.8 26
QuickCap | 413 | -142 | -141 | -6.6 | -48.1 | -39.8 | -41.7 | -495 | 1.8% | 13 NA
New Algo
P.=0.01 | 401.6 | -139.6 | -9.180 | -6.480 | -48.46 | -37.80 | -37.53 | -48.46 || 1.8% | 0.47 | 0.3

TABLE Il
COMPARISON FOR5 x 5 Bus PROBLEM. ERRORIS WITH RESPECT TOFASTCAP(Z)
First Row of Capacitance Matrix (pF) Error | Time | Mem
Cu Cis Cis Ciy Cis Cis Ciz Cig Cio Ci,10 (sec) | (MB)
FastCap(0) || 505.5 | -142.8 | -10.48 | -20.31 | 2.21 | -54.51 | -50.13 | -46.04 | -50.32 | -55.01 || 8.5%.| 22.3 24
FastCap(2) || 484.5 | -166.1 | -13.62 | -6.17 | -6.54 | -48.84 | -40.12 | -40.12 | -40.21 | -48.90 — 54.4 46
QuickCap 486 -162 -14 -8.34 | -5.93 | -51.8 | -40.8 -42 -38.9 | -48.7 || 1.9% 12 NA
New Algo
P. =001 | 476.5 | -168.2 | -12.97 | -1.91 | -4.48 | -47.37 | -38.52 | -37.36 | -38.41 | -47.69 || 1.7% | 0.95 0.5

3. Form the approximate solution : Table | compares the new algorithm, FastCap and QuickCap.
Hy = [hiha--- hg], Tables Il and 1l show the first row of the capacitance matrix
where h; = [hy jho - hjr1]". computed by the three programs. The conductors are numbered
Vi = [viva---w] and o = w0 + Vayr, from one side to the other side 1, 2, k.(top layer) and then
where 1y, minimizes  ||Be; — Hy, |, y € R*. k+1,...,2k (bottom layer). The following is a summary of the

4. Restart comparison.

Compute 7 = b— Puy. 1) SetP. = 0.01 and compare with FastCap. Compared
If satisfied then stop, with FastCap(2), our algorithm is 52 to 60 times faster
else compute  wo = wx, B = [rll, v = /P and uses 1/93 to 1/68 of the memory. The error is less
and goto 2. than 2.5% with respect to FastCap(2). Compared with

Since we can multiplf? with any vector inO(n) time, each

iteration can be computed Bi(x) time. FastCap(0), our algorithm is 22 to 47 times faster and is

three times more accurate. (Some memory usage numbers
IV. EXPERIMENTAL RESULTS reported by FastCap(0) appear to be incorrect.)
) L . 2) SetP. = 0.01 and compare with QuickCap. The running

The new aIgonthr_n is implemented and pompared with time of QuickCap will increase significantly if we require
FastCap 2.0 and QuickCap 3.1. All computatlon are done on high accuracy, which is typical for any Monte Carlo algo-
the_ same computer, a SUN Ultra Enterprise 2 at Texas A&M rithms. Therefore, we use the results of the first run of
University. It has two UItraSpr_zlrc Il processors at 29_6 MHz QuickCap. Our algorithm is 5 to 150 times faster than
and 1.GB memory. Fast(_:ap(_O) is FastCap with expansion order QuickCap and the accuracy is the same. It appears the
0. l.t is the faste;t version in the FastCa_p package. FastCap running time of QuickCap is independent of the size of
(2) is FastCap with expansion order 2. It is the most accurate input, which we do not understand since we do not have
version in the FastCap package, within a reasonable amount acce,ss to the source code of QuickCap

of time. FastCap (0) is about twice as fast as FastCap (2). - )
However FastCap(0) has 5% to 10% relative error with respect3) e - 0'093 and compare with FastCap(2). The new
algorithm is 2 to 4 times faster and uses 1/6 to 1/8 of

to FastCap (2). QuickCap is a widely used commercial software h h < h % with
by Random Logic Corporation. the memory. The error is less than 0.8% with respect to
FastCap(2).

The test examples akex & bus crossing conductors fbr= 2 ) )
to 6, taken from the FastCap paper [13]. TheBbus example It is natural to ask how to choose the valuefgf Since P.
is shown in Fig. 4. Each bus in thex & example is scaled to gives an asymptotic error bound, similar to the expansion order

1m x 1m x (2k+1)m. The distance between buses on the sarfié FastCap and running time/variance of QuickC#p,does
layer islm, and the distance between layersis. The constant Not translate directly to the accuracy of computed capacitance
4rey is 111.27 pF/m, according to [13]. matrix C. The relationship betweef, and error ofC can only

The error of capacitance matrices is defined as followRe measured for an actualimplementation using a reference. For
Let the capacitance matrix computed by FastCap (2)Che the current implementation and with FastCap as the reference,

and the capacitance matrix computed by another program Be= 0.01 is the default value. .
C'. Then the error is estimated in the Frobenius norm [5]: We do not have access to the precorrected FFT algorithm [17]

IC — C'||/||CJ|. This is the standard way to measure thand the SVD algorithm [9]. Published results show the precor-
difference between two matrices. rected FFT algorithm and the SVD algorithm are about twice as
Our GMRES solver reduces the two-norm of the residual fast as FastCap for thex & bus examples [9], [17]. Therefore,
1% of the initial residual, the same condition used by the cohased on their relative performance to FastCap, our algorithm is

jugate residual algorithm in FastCap. much faster than these algorithms as well.
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V. CONCLUSION [11]

This paper presents a hierarchical algorithm that is signif-
icantly faster than previous best algorithms and uses mudh?l
less memory. The new algorithm is kernel independent and,
therefore, is even more efficient when applied to multilayer[13]
dielectrics. The new algorithm does not require preprocessing
to partition the conductor surface into panels; instead, iti4
automatically partitions the panels according to a user supplied
error bound. The new algorithm provides continuous tradeof[ls]
of time with precision by changing the error bouRd

There are a number of differences between our algorithm and
FastCap: 1) We include the discretization process into the algélﬁ]
rithm. By doing so, we not only find a good discretization, but
also get the hierarchy for free, which FastCap needs to rebuild
from scratch. We experimented by feeding the results of our did?"]
cretization to FastCap. It was discovered that our discretization
gives better accuracy than the discretization that only considefS]
the geometry of each conductor separately. 2) We use a single
term to approximate the charge and potential, which is the sanje9)
as multipole expansion order zero. However, we use far more
panels to compensate the low expansion order. It can be segp
from Table | that it is less expensive to use more panels than
to use high expansion orders. Also, to use any expansion order
higher than 0 will make the algorithm kernel dependent. 3) Our
hierarchical data structure is more efficient than the array used
by FastCap. Experimental results show this is a major source -
improvement. Also, some features, such as the adaptive eval
tion defined in FastCap [15], is free under our data structure.
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