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ABSTRACT 
Association rule mining (ARM) identifies frequent itemsets from 
databases and generates association rules by considering each 
item in equal value. However, items are actually different in many 
aspects in a number of real applications, such as retail marketing, 
network log, etc. The difference between items makes a strong 
impact on the decision making in these applications. Therefore, 
traditional ARM cannot meet the demands arising from these 
applications. By considering the different values of individual 
items as utilities, utility mining focuses on identifying the 
itemsets with high utilities. As “downward closure property” 
doesn’t apply to utility mining, the generation of candidate 
itemsets is the most costly in terms of time and memory space. In 
this paper, we present a Two-Phase algorithm to efficiently prune 
down the number of candidates and can precisely obtain the 
complete set of high utility itemsets. In the first phase, we propose 
a model that applies the “transaction-weighted downward closure 
property” on the search space to expedite the identification of 
candidates. In the second phase, one extra database scan is 
performed to identify the high utility itemsets. We also parallelize 
our algorithm on shared memory multi-process architecture using 
Common Count Partitioned Database (CCPD) strategy. We verify 
our algorithm by applying it to both synthetic and real databases. 
It performs very efficiently in terms of speed and memory cost, 
and shows good scalability on multiple processors,  even on large 
databases that are difficult for existing algorithms to handle.   

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – data 
mining.  

General Terms 
Algorithms, Design 

Keywords 
utility mining, association rules mining, downward closure 
property, transaction-weighted utilization 

1. INTRODUCTION 
Association rules mining (ARM) [1] is one of the most widely 
used techniques in data mining and knowledge discovery and has 
tremendous applications in business, science and other domains. 
For example, in the business, its applications include retail shelf 
management, inventory predictions, supply chain management, 
bundling products marketing. The main objective of ARM is to 
identify frequently occurring patterns of itemsets. It first finds all 
the itemsets whose co-occurrence frequency are beyond a 
minimum support threshold, and then generates rules from the 
frequent itemsets based on a minimum confidence threshold. 
Traditional ARM model treat all the items in the database equally 
by only considering if an item is present in a transaction or not. 

The frequent itemsets identified by ARM does not reflect the 
impact of any other factor except frequency of the presence or 
absence of an item. Frequent itemsets may only contribute a small 
portion of the overall profit, whereas non-frequent itemsets may 
contribute a large portion of the profit. In reality, a retail business 
may be interested in identifying its most valuable customers 
(customers who contribute a major fraction of the profits to the 
company). These are the customers, who may buy full priced 
items, high margin items, or gourmet items, which may be absent 
from a large number of transactions because most customers do 
not buy these items. In a traditional frequency oriented ARM, 
these transactions representing highly profitable customers may 
be left out.  For instance, {milk, bread} may be a frequent itemset 
with support 40%, contributing 4% of the total profit, and the 
corresponding consumers is Group A, whereas {birthday cake, 
birthday card} may be a non-frequent itemset with support 8% 
(assume support threshold is 10%), contributing 8% of the total 
profit, and the corresponding consumers is Group B. The 
marketing professionals must be more interested in promoting the 
sale of {birthday cake, birthday card} by designing promotion 
campaigns or coupons tailored for Group B (valuable customers), 
although this itemset is missed by ARM. Another example is web 
log data. A sequence of webpages visited by a user can be defined 
as a transaction. Since the number of visits to a webpage and the 
time spent on a particular webpage is different between different 
users, the total time spent on a page by a user can be viewed as 
utility. The website designers can catch the interests or behavior 
patterns of the customers by looking at the utilities of the page 
combinations and then consider re-organizing the link structure of 
their website to cater to the preference of users. Frequency is not 
sufficient to answer questions, such as whether an itemset is 
highly profitable, or whether an itemset has a strong impact. 
Utility mining is likely to be useful in a wide range of practical 
applications. 
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Recently, to address the limitation of AMR, a utility mining 
model was defined [2]. Intuitively, utility is a measure of how 
“useful” (i. e. “profitable”) an itemset is. The utility of an item or 
itemset is based on local transaction utility and external utility. 
The local transaction utility of an item is defined according to the 
information stored in a transaction, like the quantity of the item 
sold in the transaction. The external utility of an item is based on 
information from resources besides transactions, like a profit 
table. The external utility can be a measure for describing user 
preferences. The definition of utility of an itemset X, u(X), is the 
sum of the utilities of X in all the transactions containing X. The 
goal of utility mining is to identify high utility itemsets which 
drive a large portion of the total utility. Traditional ARM  model 
assumes that the utility of each item is always 1 and the sales 
quantity is either 0 or 1, thus it is only a special case of utility 
mining, where the utility or the sales quantity of each item could 
be any number. If u(X) is greater than a utility threshold, X is a 
high utility itemset, otherwise, it is a low utility itemset. Table 1 
is an example of a transaction database where the total utility is 
400. The number in each transaction in Table 1(a) is the sales 
volume of each item, and the external utility of each item is listed 
in Table 1(b). u({B, D}) = (6×10+1×6) + (10×10+1×6) = 172. {B, 
D} is a high utility itemset if the utility threshold is set at 120. 

Table 1. A transaction database and its utility table 
(a) Transaction table. Each row is a transaction. The columns 
represent the number of items in a particular transaction. 
TID is the transaction identification number 

       ITEM 

TID 
A B C D E 

T1 0 0 18 0 1 

T2 0 6 0 1 1 

T3 2 0 1 0 1 

T4 1 0 0 1 1 

T5 0 0 4 0 2 

T6 1 1 0 0 0 

T7 0 10 0 1 1 

T8 3 0 25 3 1 

T9 1 1 0 0 0 

T10 0 6 2 0 2 

 

(b) The utility table. The right column displays the profit of 
each item per unit in dollars 

ITEM PROFIT ($)(per unit) 

A 3 

B 10 

C 1 

D 6 

E 5 

 
To the best of our knowledge, there is no efficient strategy to find 
all the high utility itemsets. A naïve attempt may be to eliminate 
the items that contribute a small portion of the total utility. 

However, a high utility itemset may consist of some low utility 
items. Another attempt is to adopt the level-wise searching 
schema that exists in fast AMR algorithms, such as Apriori [1]. 
The base of these traditional ARM algorithms is the “downward 
closure property” (anti-monotone property):  any subset of a 
frequent itemset must also be frequent. That is, only the frequent 
k-itemsets are exploited to generate potential frequent (k+1)-
itemsets. This approach is efficient since a great number of item 
combinations are pruned at each level. However, this property 
doesn’t apply to the utility mining model. For example, u(D) = 36 
< 120, D is a low utility item, but its superset {B, D} is a high 
utility itemset. Without this property, the number of candidates 
generated at each level quickly approaches all the combinations 
of all the items. For 105 items, more than 109 2-itemsets 
candidates may be generated. Moreover, to discover a long 
pattern, the number of candidates is exorbitantly large. The cost 
of either computation time or memory is intolerable, regardless of 
what implementation is applied. The challenge of utility mining is 
in restricting the size of the candidate set and simplifying the 
computation for calculating the utility. 

Nowadays, in any real application, the size of the data set easily 
goes to hundreds of Mbytes or Gbytes. In order to tackle this 
challenge, we propose a Two-Phase algorithm to efficiently mine 
high utility itemsets. In Phase I, we define transaction-weighted 
utilization and propose a model ─ transaction-weighted 
utilization mining. Transaction-weighted utilization of an itemset 
X is estimated by the sum of the transaction utilities of all the 
transactions containing X. This model maintains a Transaction-
weighted Downward Closure Property: any subset of a high 
transaction-weighted utilization itemset must also be high in 
transaction-weighted utilization. (Please note we use a new term 
transaction-weighted utilization to distinguish it from utility. The 
focus of this paper is not proposing this new term, but to utilize 
the property of transaction-weighted utilization to help solve the 
difficulties in utility mining.) Thus, only the combinations of high 
transaction-weighted utilization itemsets are added into the 
candidate set at each level. Therefore, the size of the candidate set 
is substantially reduced during the level-wise search. The memory 
cost as well as the computation cost is also efficiently reduced. 
Phase I may overestimate some low utility itemsets as high 
transaction-weighted utilization itemsets since we use the 
transaction-weighted utilization mining model, but it never 
underestimates any itemsets. In phase II, only one extra database 
scan is performed to filter out the overestimated itemsets. The 
savings provided by Phase I may compensate for the cost incurred 
by the extra scan during Phase II. As shared memory parallel 
machines are becoming the dominant type of supercomputers in 
industry, we parallelize our algorithm on shared memory multi-
process architecture using Common Count Partitioned Database 
(CCPD) scheme. We verify our algorithm by applying it to both 
synthetic and real databases. It not only performs very efficiently 
in terms of speed and memory cost compared to the best existing 
utility mining algorithm [2] (to our best knowledge), but also 
shows good scalability on multiple processors. Our algorithm 
easily handles very large databases that existing algorithms 
cannot handle. 

The rest of this paper is organized as follows. Section 2 overviews 
the related work. Section 3 formally describes the utility mining 
model. In Section 4, we propose the Two-Phase algorithm. 
Section 5 presents our parallelization scheme. The experimental 



results are presented in section 6 and we summarize our work in 
section 7. 

2. RELATED WORK 
In the past ten years, a number of traditional ARM algorithms and 
optimizations have been proposed. The common assumption of 
them is that each item in a database is equal in weight and the 
sales quantity is 0 or 1.  All of these algorithms exploit the 
“downward closure property” as proposed in Apriori [1] (all 
subsets of a frequent itemset must be frequent), such as DHP [3], 
DIC [4], ECLAT [5], FP-growth [6]. 

Quantitative association rules mining is introduced in [7], which 
associates an antecedent with an impact on a target numeric 
variable. A behavior of a subset is interesting if the statistical 
distribution of the targeted quantitative variable stands out from 
the rest. A data-driven algorithm, called “Window”, is developed. 
OPUS [8] is an efficient algorithm to discover quantitative 
associations rules in dense data sets. The focus of these two 
algorithms (identifying rules where the antecedent strongly 
impacts the targeting numeric attribute) is different from ours 
(identifying those valuable item combinations and the implied 
valuable customers). The discovery from our work can guide the 
layout of goods in stores, or promotion campaigns to valuable 
customers. 

Researches that assign different weights to items have been 
proposed. MINWAL [9] mines the weighted association rules in 
binary transaction databases based on the k-support bound 
property. An efficient association rules generation method, WAR 
[10], focuses on the generation of rules from the available 
frequent itemsets instead of searching for weighted frequent 
itemsets. WARM [11] proposes a weighted ARM model where 
itemset weight is defined as the average weight value of the items 
comprising this itemset. [12] proposes a scheme that uniformly 
weights all the transactions without considering the differences 
among the items. These weighted ARM models are special cases 
of utility mining. 

One of the problems in the field of knowledge discovery is of 
studying good measures of interestingness of discovered patterns. 
Some interestingness measures have been proposed [19]. 
Actionability and unexpectedness are two important subjective 
measures. According to these measures, a pattern is interesting if 
the user can take some action by knowing this pattern or it is 
surprising to the user. Concepts are defined in probabilistic terms. 

A concept, itemset share, is proposed in [13]. It can be regarded 
as a utility because it reflects the impact of the sales quantities of 
items on the cost or profit of an itemset. Itemset share is defined 
as a fraction of some numerical value, such as total quantity of 
items sold or total profit. Several heuristics have been proposed 
and their effectiveness is well evaluated. 

A utility mining algorithm is proposed in [14], where the concept 
of “useful” is defined as an itemset that supports a specific 
objective that people want to achieve.  It focuses on mining the 
top-K high utility closed patterns that directly support a given 
business objective. Since the “downward closure property” no 
longer holds, it develops a new pruning strategy based on a 
weaker but anti-monotonic condition. Although this work is 
contributed to utility mining, the definition of utility and the goal 
of this algorithm in his work are different from those in our work. 

An alternative formal definition of utility mining and theoretical 
model was proposed in [2], where the utility is defined as the 
combination of utility information in each transaction and 
additional resources. Since this model cannot rely on “downward 
closure property” to restrict the number of itemsets to be 
examined, a heuristics is used to predict whether an itemset 
should be added to the candidate set. However, the prediction 
usually overestimates, especially at the beginning stages, where 
the number of candidates approaches the number of all the 
combinations of items. The examination of all the combinations is 
impractical, either in computation cost or in memory space cost, 
whenever the number of items is large or the utility threshold is 
low. Although this algorithm is not efficient or scalable, it is by 
far the best to solve this specific problem. Our work is based on 
this definition and achieves a significant breakthrough of this 
problem in terms of computational cost, memory cost and 
accuracy. 

3.  UTILITY MINING 
The goal of utility mining is to discover all the itemsets whose 
utility values are beyond a user specified threshold in a 
transaction database. We start with the definition of a set of terms 
that leads to the formal definition of utility mining problem. The 
same terms are given in [2].  

• I  =  {i1, i2, …, im} is a set of items.  

• D = {T1, T2, …, Tn} be a transaction database where each 
transaction Ti ∈ D is a subset of I. 

• o(ip, Tq), local transaction utility value, represents the 
quantity of item ip in transaction Tq. For example, o(A, T8) = 
3, in Table 1(a). 

• s(ip), external utility, is the value associated with item ip in 
the Utility Table. This value reflects the importance of an 
item, which is independent of transactions. For example, in 
Table 1(b), the external utility of item A, s(A), is 3. 

• u(ip, Tq), utility, the quantitative measure of utility for item ip 
in transaction Tq, is defined as  For example, 
u(A, T

).(),( pqp isTio ×

8) = 3 × 3, in Table 1.                                   

• u(X, Tq), utility of an itemset X in transaction Tq, is defined 
as ∑

∈Xi

qp

p

Tiu ),( , where X = {i1, i2, …, ik} is a k-itemset, X ⊆ 

Tq and 1≤ k≤ m. 

• u(X), utility of an itemset X, is defined as ∑
⊆∧∈ qq TXDT

qTXu ),( . 

    (3.1) 
Utility mining is to find all the high utility itemsets. An itemset X 
is a high utility itemset if u(X) ≥ ε, where X ⊆ I and ε is the 
minimum utility threshold, otherwise, it is a low utility itemset. 
For example, in Table 1, u(A, T8) = 3×3 = 9, u({A, D, E}, T8) = 
u(A, T8) + u(D, T8) + u(E, T8) = 3×3 + 3×6 + 1×5 = 32, and u({A, 
D, E}) = u({A, D, E}, T4) + u({A, D, E}, T8) = 14 + 32 = 46. If ε 
= 120, {A, D, E} is a low utility itemset. 

3.1 Computational Model and Complexity 
We now examine the computational model proposed in [2]. We 
refer this algorithm as MEU (Mining using Expected Utility) for 
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Figure 1. Itemsets lattice related to the example in Table 1. ε = 120. Itemsets in circles are the high utility 
itemsets. Numbers in each box are utility / number of occurrences. Gray-shaded boxes denote the search space. 

the rest of this paper. MEU prunes the search space by predicting 
the high utility k-itemset, Ik, with the expected utility value, 
denoted as u’(Ik). u’(Ik) is calculated from the utility values of all 
its (k-1) subsets. If u’(Ik) is greater than ε, Ik is added to the 
candidate set for k-itemsets, otherwise, Ik is pruned. u’(Ik) is 
calculated as 
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Ii 
k-1 is a (k-1)-itemset such that Ii 

k-1 =Ik – {i}, i.e. Ii 
k-1 includes all 

the items except item i. sup(I) is the support of itemset I, which is 
the percentage of all the transactions that contain itemset I. The 
minimum support among all the (k-1) subsets of Ik is given as 
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              (3.3) 

For each Ik, there are k (k-1)-subsets. In (3.2) and (3.3), m is the 
number of high utility itemsets among the (k-1) subsets where Ii 

k-1 
(1 ≤ i ≤ m) are high utility itemsets, and Ii

k-1 (m+1 ≤ i ≤ k) are low 
utility itemsets. This prediction is based on the support boundary 
property [2] which states that the support of an itemset always 
decreases as its size increases. Thus, if the support of an itemset is 
zero, its superset will not appear in the database at all. This 
approach uses the high utility itemsets at level (k-1) to calculate 
the expected utility value for level k and the utility threshold ε to 
substitute the low utility itemsets. 

Let us use Table 1 as an example. Figure 1 shows the search 
space of the database, given ε = 120. Since u({D, E}) = 56 < ε, 
supmin({B, D, E}) = min{sup({B, D}), sup({B, E})} = min{0.2, 
0.3} = 0.2. The expected utility value of {B, D, E} is: 
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Hence, {B, C, D} is a candidate for 3-itemset. Observed from 
Figure 1, four out of 31 potential candidates are high utility 
itemsets, which are marked in circles. Using MEU, 26 itemsets (in 

gray-shaded boxes) have been added into the candidate sets by 
prediction. 

This model somehow reduces the number of candidates; however, 
it has drawbacks in the following aspects: 

1) Pruning the candidates – When m is small, the term 
1−

−
k

mk  

is close to 1 or even greater than 1. In this situation,  

is most likely greater than ε. When k = 2, is always 
greater than ε, no matter m is 0, 1, or 2. Similarly, when k = 
3, ≥ ε if m is 0, 1, or 2. Therefore, this estimation does 
not prune the candidates effectively at the beginning stages. 
As shown in Figure 1, all the 2-itemsets and 3-itemsets are 
included in the candidate sets. If there are 10

)(' kIu

)(' 2Iu

)(' 3Iu

5 different items 
in the database, the number of 2-itemsets is approximately 
5×109. Such requirements can easily overwhelm the 
available memory space and computation power of most of 
the machines. 

2) Accuracy – This model may miss some high utility itemsets 
when the variation of the itemset supports is large. For 
example, if ε = 40 in our example, the expected utility of 
itemset {C, D, E} is 
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Therefore, {C, D, E} is predicted to be a low utility itemset and 
then pruned from the candidate set for 3-itemsets. However, {C, 
D, E} is indeed a high utility itemset because u({C, D, E}) = 48 > 
ε. 

4. TWO-PHASE ALGORITHM 
To address the drawbacks in MEU, we propose a novel Two-
Phase algorithm that can highly effectively prune candidate 
itemsets and simplify the calculation of utility. It substantially 
reduces the search space and the memory cost and requires less 
computation. In Phase I, we define a transaction-weighted 



utilization mining model that holds a “Transaction-weighted 
Downward Closure Property”. (The purpose of introducing this 
new concept is not to define a new problem, but to utilize its 
property to prune the search space.) High transaction-weighted 
utilization itemsets are identified in this phase. The size of 
candidate set is reduced by only considering the supersets of high 
transaction-weighted utilization itemsets. In Phase II, one 
database scan is performed to filter out the high transaction-
weighted utilization itemsets that are indeed low utility itemsets. 
This algorithm guarantees that the complete set of high utility 
itemsets will be identified. 

4.1 Phase I 
Definition 1. (Transaction Utility) The transaction utility of 
transaction Tq, denoted as tu(Tq), is the sum of the utilities of all 
items in Tq: , where is the same as 

in Section 3. Table 2 gives the transaction utility for each 
transaction in Table 1. 

∑
∈

=

qp Ti
qpq TiuTtu ),()( ),( qp Tiu

Table 2. Transaction utility of the transaction database 

TID Transaction Utility TID Transaction Utility 

T1 23 T6 13 

T2 71 T7 111 

T3 12 T8 57 

T4 14 T9 13 

T5 14 T10 72 

 
Definition 2. (Transaction-weighted Utilization) The 
transaction-weighted utilization of an itemset X, denoted as 
twu(X), is the sum of the transaction utilities of all the transactions 
containing X: 

∑
∈⊆

=
DTX

q

q

TtuXtwu )()(                         (4.1) 

For the example in Table 1, twu(A) = tu(T3) + tu(T4) + tu(T6) + 
tu(T8) + tu(T9) = 12 + 14 + 13 + 57 + 13 = 109 and twu({A, D}) = 
tu(T4) + tu(T8) = 14 + 57 = 71. 

Definition 3. (High Transaction-weighted Utilization Itemset) 
For a given itemset X, X is a high transaction-weighted utilization 
itemset if twu(X) ≥ ε’, where ε’ is the user specified threshold. 

Theorem 1. (Transaction-weighted Downward Closure 
Property) Let Ik be a k-itemset and Ik-1 be a (k-1)-itemset such 
that Ik-1 ⊂ Ik. If Ik is a high transaction-weighted utilization 
itemset, Ik-1 is a high transaction-weighted utilization itemset. 

Proof: Let be the collection of the transactions containing IkIT k 

and be the collection of transactions containing I1−kIT k-1. Since Ik-

1 ⊂ Ik, is a superset of . According to Definition 2, 1−kIT kIT
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The Transaction-weighted Downward Closure Property indicates 
that any superset of a low transaction-weighted utilization itemset 
is low in transaction-weighted utilization. That is, only the 
combinations of high transaction-weighted utilization (k-1)-
itemsets could be added into the candidate set Ck at each level. 

Theorem 2. Let HTWU be the collection of all high transaction-
weighted utilization itemsets in a transaction database D, and HU 
be the collection of high utility itemsets in D. If ε’= ε, then HU ⊆ 
HTWU. 

Proof: ∀X ∈ HU, if X is a high utility itemset, then 
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Thus, X is a high transaction-weighted utilization itemset and X 
∈HTWU.                                                                                       

According to Theorem 2, we can utilize the Transaction-weighted 
Downward Closure Property in our transaction-weighted 
utilization mining in Phase I by assuming ε’ = ε and prune those 
overestimated itemsets in Phase II.  

Figure 2 shows the search space of Phase I. Twelve out of 31 
itemsets (in gray-shaded boxes) are generated as candidates 
(including the single items), and 9 out of 31 itemsets (in circles) 
are the high transaction-weighted utilization itemsets. The level-
wise search stops at the third level, one level less than MEU in 
Figure 1. (For larger databases, the savings should be more 
evident.) By holding the Transaction-weighted Downward 
Closure Property, the search space in our algorithm is small. 
Transaction-weighted utilization mining model outperforms MEU 
in several aspects: 

1) Less candidates ─ When ε’ is large, the search space can be 
significantly reduced at the second level and higher levels. 
As shown in Figure 2, four out of 10 itemsets are pruned 
because they all contain item A (A is not a high transaction-
weighted utilization item). However, in MEU, the prediction 
hardly prunes any itemset at the beginning stages. In Figure 
1, all the 10 2-itemsets are added into the candidate set C2 
because their expected utility values are all greater than ε. 

2) Accuracy ─ Based on Theorem 2, if we let ε’=ε, the 
complete set of high utility itemsets is a subset of the high 
transaction-weighted utilization itemsets discovered by our 
transaction-weighted utilization mining model. However, the 
prediction in MEU may miss some high utility itemsets when 
the variation of itemset supports is large. 

3) Arithmetic complexity ─ One of the kernel operations in 
the Two-Phase algorithm is the calculation for each itemset’s 
transaction-weighted utilization as in equation 4.1. 
Compared to the calculation for each itemset’s expected 
utility value (equation 3.2) in MEU, equation 4.1 only incurs 
add operations rather than a number of multiplications. Thus, 
since the kernel calculation may occur a huge number of 
times, the overall computation is much less complex. 
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Figure 2. Itemsets lattice related to the example in Table 1. ε’ = 120. Itemsets in circles (solid and dashed) are 
the high transaction-weighted utilization itemsets in transaction-weighted utilization mining model. Gray-
shaded boxes denote the search space. Itemsets in solid circles are high utility itemsets found by MEU. 
Numbers in each box are transaction-weighted utilization / number of occurrence. 

4.2 Phase II 
In Phase II, one database scan is required to select the high utility 
itemsets from high transaction-weighted utilization itemsets 
identified in Phase I. The number of the high transaction-
weighted utilization itemsets is small when ε’ is high. Hence, the 
time saved in Phase I may compensate for the cost incurred by the 
extra scan during Phase II. The total computational cost of Phase 
II is the cost of equation (3.1) × the total number of high 
transaction-weighted utilization itemsets.  

In Figure 2, the high utility itemsets ({B}, {B, D}, {B, E} and {B, 
D, E}) (in solid black circles) are covered by the high transaction-
weighted utilization itemsets (in solid and dashed black circles). 
Nine itemsets in circles are maintained after Phase I, and one 
database scan is performed in Phase II to prune 5 of the 9 itemsets 
since they are not high utility itemsets. 

5. PARALLEL IMPLEMENTATION 
Since the size of the databases in commercial activities is usually 
in Gbytes, the computation time or the memory consumption may 
be intolerable on a single processor. Therefore, high performance 
parallel computing is highly desired. Due to the fact that shared 
memory parallel machines are becoming the dominant type of 
supercomputers in industry because of its simplicity, we design 
our utility mining parallel implementation on shared-memory 
architecture. 

In shared-memory multi-process architecture (SMPs), each 
processor has its direct and equal access to all the system’s 
memory as well as its own local caches. To achieve a good 
scalability on SMPs, each processor must maximize access to 
local cache and avoid or reduce false sharing. That is, we need to 
minimize the Ping-Pong effect, where multiple processors might 
be trying to modify different variables that coincidently reside on 
the same cache line. 

The nature of our Two-Phase utility mining algorithm is a level-
wised search method, which is the same as Apriori [1]. [16, 17] 
has proved that Common Count Partitioned Database (CCPD) is 
the best strategy to parallel it. In CCPD, data is evenly partitioned 
on each processor, and each processor traverses its local database 

partition for incrementing the transaction-weighted utilization of 
each itemset. All the processors share a single common hash tree, 
which stores the candidate itemsets at each level of search as well 
as their transaction-weight utilization. To build the hash tree in 
parallel, CCPD associated a lock with each leaf node. When a 
processor wants to insert a candidate into the tree, it starts at root, 
and successively hashes on the items until it reaches a leaf. It then 
acquires the lock and inserts the candidate. With this locking 
mechanism, each processor can insert itemsets in different parts of 
the hash tree in parallel. For transaction-weight utilization 
calculation, each processor computes the value from its local 
database partition. 

6. EXPERIMENTAL EVALUATION AND 
PERFORMANCE STUDY  
We evaluate the performance of our Two-Phase algorithm by 
varying the size of the search space. We also analyze the 
scalability and result accuracy. All the experiments were 
performed on a 700-MHz Xeon 8-way shared memory parallel 
machine with a 4 Gbytes memory, running the Red Hat Linux 
Advanced Server 2.1 operating system. The program is 
implemented in C. In parallel implementation, we use OpenMP 
pragmas [18]. OpenMP is a specification for a set of compiler 
directives, library routines, and environment variables that can be 
used to specify shared memory parallelism. Due to its simplicity, 
OpenMP is quickly becoming one of the most widely used 
programming styles for SMPs. In SMPs, processors communicate 
through shared variables in the single memory space. 
Synchronization is used to coordinate processes. In order to give a 
fair comparison, we also implement MEU so that both of the 
implementations can run on the same machine. We use synthetic 
data and real world data for our evaluation purpose. The details of 
these databases are described in the following subsections. 

6.1 Synthetic Data from IBM Quest Data 
Generator 
We use two sets of synthetic databases from IBM Quest data 
generator [15]. One is a dense database, T10.I6.DX000K, where 
the average transaction size is 10; the other is a sparse database, 



Figure 3. Utility value distribution in utility table. 
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Figure 4. Execution time with varying minimum 
utility threshold.T20.I6.DX000K, where the average transaction size is 20. The 

average size of the maximal potentially frequent itemsets is 6 in 
both sets of databases. In both sets of databases, we vary the 
number of transactions from 1000K to 8000K, and the number of 
items from 1K to 8K. However, the IBM Quest data generator 
only generates the quantity of 0 or 1 for each item in a 
transaction. In order to fit them into the scenario of utility mining, 
we randomly generate the quantity of each item in each 
transaction, ranging from 1 to 5. Utility tables are also 
synthetically created by assigning a utility value to each item 
randomly, ranging from 0.01 to 10.00. Observed from real world 
databases that most items are in the low profit range, we generate 
the utility values using a log normal distribution. Figure 3 shows 
the histogram of the utility values of 1000 items. 

Table 3. The number of candidate itemsets generated by 
Phase I of Two-Phase algorithm vs. MEU in the first two 
database scans 

T10.I6.D1000K T20.I6.D1000K              Databases 

Threshold Phase I MEU Phase I MEU 

1st scan 226128 499500 315615 499500 
0.5% 

2nd scan 17 - 18653 - 

1st scan 153181 499500 253116 499500 
0.75% 

2nd scan 0 - 1531 - 

1st scan 98790 499500 203841 499500 
1% 

2nd scan 0 - 183 - 

1st scan 68265 499500 159330 499500 
1.25% 

2nd scan 0 - 33 - 

1st scan 44850 499500 135460 499500 
1.5% 

2nd scan 0 - 8 - 

1st scan 27730 499500 104653 499500 
1.75% 

2nd scan 0 - 4 - 

1st scan 16836 499500 84666 499500 
2% 

2nd scan 0 - 1 - 

6.1.1 Number of Candidates 
Table 3 presents the number of candidate itemsets generated by 
Phase I of our Two-Phase algorithm vs. MEU. We only provide 
the numbers in the first two database scans. The number of items 
is set at 1000, and the minimum utility threshold varies from 0.5% 

to 2%. The number of candidate itemsets generated by Phase I at 
the first database scan decreases dramatically as the threshold 
goes up. However, the number of candidates generated by MEU 
is always 499500, which is all the combinations of 1000 items. 
Phase I generates much fewer candidates compared to MEU. For 
example, 16836 by Phase I vs. 499500 by MEU at a utility 
threshold 2% in database T10.I6.D1000K. After the second 
database scan, the number of candidates generated by our 
algorithm decreases substantially, mostly decreasing more than 
99%. We don’t provide the exact numbers for MEU because it 
actually takes an inordinate amount of time (longer than 10 hours) 
to complete the second scan. In the case of T20.I6.D1000K, more 
candidates are generated, because each transaction is longer than 
that in T10.I6.D1000K. Observed from Table 3, the Transaction-
weighted Downward Closure Property in transaction-weighted 
utilization mining model can help prune candidates very 
effectively. 

6.1.2 Scalability 
Figure 4 shows the execution time (including both Phase I and 
Phase II) of the Two-Phase algorithm using T20.I6.D1000K and 
T10.I6.D1000K. Since the number of candidate itemsets 
decreases as the minimum utility threshold increases, the 
execution time decreases, correspondingly. When threshold is 
0.5%, the execution time of T20.I6.D1000K is somewhat longer, 
because it takes 3 more scans over the database in this case 
compared to other cases with higher threshold values. 

Figure 5 presents the scalability of the Two-Phase algorithm by 
increasing the number of transactions in the database. The number 
of transactions varies from 1000K to 8000K. The minimum utility 
threshold is set at 1% to 0.5% in Figure 5(a) and Figure 5(b), 
respectively. The execution times for either database increase 
approximately linearly as the data size increases.  The execution 
times for T20.I6.DX000K are longer than that of 
T10.I6.DX000K, because more computation is required for longer 
transactions. In addition, the size of database T20.I6.DX000K is 
larger and therefore takes a longer time to scan. 

Figure 6 presents the performance when varying the numbers of 
items. The number of items varies from 1K to 8K. The minimum 
utility threshold is set at 1% and 0.5% in Figure 6(a) and Figure 
6(b), respectively. When the threshold is 1% as in Figure 6(a), the 
time decreases as the number of items increases. However, in 
Figure 6(b), the time for database T10.I6.D1000K with 2K items 



(a) minimum utility threshold = 1% (b) minimum utility threshold = 0.5% 

Figure 5. Execution time for databases with different sizes.
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Figure 6. Execution time for databases with different number of items. 

is longer than that with 1K items. This is because the total number 
of candidates is 403651 in the former case, greater than 226145 in 
the latter case. Similarly, the time for database T20.I6.D1000K 
with 4K items is longer than that with 2K items, since the total 
numbers of candidates for the two cases are 1274406 and 779413, 
respectively. Thus, we can see that the execution time is 
proportional to the number of candidates generated during the 
entire process. 

6.1.3 Relationship Between Effectiveness vs. Average 
Transaction Size 
As discussed in Section 4 that high transaction-weighted 
utilization itemsets identified by Phase I (referred as HTWUI in 
Table 4) cover high utility itemsets (refered as HUI), we would 
like to investigate the relationship between them. As shown in 
Table 4, each number of HUI is smaller than the number of 
HTWUI, correspondingly. Another observation is that the number 
of HUI is closer to that of HTWUI in database T10.I6.D1000K 
than in T20.I6.D1000K. This is because in Phase I, the 
transaction-weighted utilization of any itemset X is defined as the 
sum of the transaction utilities of all the transactions containing X 
(equation 4.1). This overestimation gets worse when transactions 
are longer, because more unrelated items tend to be included in 

longer transactions. Despite the overestimation, the efficiency of 
Phase I is still evident. Hence, our proposed algorithm performs 
more efficiently, especially in dense databases. 

Table 4. Comparison of the number of candidate itemsets 
(CI), high transaction-weighted utilization itemsets (HTWUI), 
and high utility itemsets (HUI) 

T10.I6.D1000K T20.I6.D1000K 
Threshold 

CI HTWUI HUI CI HTWUI HUI 

0.5% 226145 711 25 334268 3311 25 

0.75% 153181 557 9 254647 1269 9 

1% 98790 445 6 204024 799 6 

1.25% 68265 370 2 159363 615 2 

1.5% 44850 300 0 135468 542 0 

1.75% 27730 236 0 104657 465 0 

2% 16836 184 0 84667 416 0 

 

6.2 Real-World Market Data 
We also evaluated the Two-Phase algorithm using a real world 
data from a major grocery chain store in California. It contains 



products from various categories, such as food, health care, gifts, 
and others. There are 1,112,949 transactions and 46,086 items in 
the database. Each transaction consists of the products and the 
sales volume of each product purchased by a customer at a time 
point. The size of this database is 73MByte. The average 
transaction length is 7.2. The utility table describes the profit of 
each product. 

Table 6. Accuracy comparison between Two-Phase 
algorithm and MEU (with support constraint) on the 
real-world market data 

Threshold # High utility 
(Two-Phase) 

# High utility (MEU 
with support constraint) 

MEU 

Miss rate 

1% 2 1 50% 

0.75% 3 2 33.3% 

0.5% 5 3 40% 

0.25% 17 17 0% 

0.1% 80 66 17.5% 

In order to evaluate if the utility mining results is useful to the 
grocery store, we compare the high utility itemsets with the 
frequent itemsets mined by traditional ARM. We do observe a 
number of interesting items/itemsets. For example, a kind of 
bagged fresh vegetable is a frequent item (the support is over 
3%), however, its contribution the total profit is less than 0.25%. 
A combination of two kinds of canned vegetable is also a good 
example, which occurs in more than 1% of the transactions, but 
contributes less than 0.25% of the overall profit. Therefore, utility 
mining can help the marketing professionals in this grocery store 
make better decisions, such as highlight their highly profitable 
items/itemsets and reduce the inventory cost for frequent but less 
profitable items/itemsets.  

We evaluate the scalability of our algorithm by varying the 
threshold. As shown in Table 5, it is fast and scales well. MEU 
doesn’t work with this dataset unless out-of-core technique is 
designed and implemented, because the number of 2-itemset 
candidates is so large (approximate 2 billion) that it overwhelms 
the memory space available to us. Actually, very few machines 
can afford such a huge memory cost. 

Table 5. Experiment summary of the real-world market data 

 
Result accuracy is a very important feature of utility mining, 
because the mining results can be used to guide the marketing 
decisions. Therefore, the accuracy comparison between our Two-
Phase algorithm and MEU is given in Table 6. The miss rate is 
defined as (the number of high utility itemsets – the number of 
high utility itemsets discovered) ÷ the number of high utility 
itemsets. To control the execution time of MEU, we set the 
minimum support and the utility threshold to the same value, i.e. 
1%, 0.75%, 0.5%, 0.25% and 0.1%. With this support constraint, 
MEU works with this data set. However, it may lose some high 
utility itemsets whose support values are below the support 
threshold. For example, when the utility threshold is set at 0.1%, 
the Two-Phase algorithm discovers 80 high utility itemsets 
whereas MEU (support is set at 0.1%) only gets 66 and misses 14 
high utility 2-itemsets. Our algorithm guarantees that all the high 
utility itemsets will be discovered. 

6.3 Parallel Performance 
We vary the number of processors from 1 to 8 to study the 
scalability of our parallel implementation on the real grocery store 
dataset. Figure 7(a) presents the measured total execution time. 
The corresponding speedups are presented in Figure 7(b). As the 
minimum utility threshold decreasing, the search space is 
increasing dramatically. We observed that it scales better when 
the searching space increasing. The best case is 4.5 times speedup 
on 8 processors in the case of minimum threshold = 0.25%. The 
performance limitation stems from the significant amount of 
atomic access to the shared hash tree structure. Overall speaking, 
the parallel scalability in our experiment is good. 

7. CONCLUSIONS 
This paper proposed a Two-Phase algorithm that can discover 
high utility itemsets highly efficiently. Utility mining problem is 
at the heart of several domains, including retailing business, web 
log techniques, etc. In Phase I of our algorithm, we defined a term 
transaction-weighted utilization, and proposed the transaction-
weighted utilization mining model that holds Transaction-
weighted Downward Closure Property. That is, if a k-itemset is a 
low transaction-weighted utilization itemset, none of its supersets 
can be a high transaction-weighted utilization itemset. The 
transaction-weighted utilization mining not only effectively 
restricts the search space, but also covers all the high utility 
itemsets. Although Phase I may overestimate some itemsets due 
to the different definitions, only one extra database scan is needed 
in Phase II to filter out the overestimated itemsets. Our algorithm 
requires fewer database scans, less memory space and less 
computational cost. The accuracy, effectiveness and scalability of 
the proposed algorithm are demonstrated using both real and 
synthetic data on shared memory parallel machines. Another 
important feature is that Two-Phase algorithm can easily handle 
very large databases for which other existing algorithms are 
infeasible.  

Minimum 
utility 

threshold 

Running 
time 

(seconds) 

# 
Candidates 

# High 
transaction-

weighted 
utilization  
(Phase I) 

# High 
utility 

(Phase II) 

1% 25.76 11936 9 2 

0.75% 33.3 23229 26 3 

0.5% 53.09 69425 80 5 

0.25% 170.49 627506 457 17 

0.1% 1074.94 7332326 3292 80 
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