
A Fast High Utility Itemsets Mining Algorithm
Ying Liu Wei-keng Liao Alok Choudhary

Electrical and Computer Engineering Department, Northwestern University
Evanston, IL, USA 60208

{yingliu, wkliao, choudhar}@ece.northwestern.edu

ABSTRACT
Association rule mining (ARM) identifies frequent itemsets from
databases and generates association rules by considering each
item in equal value. However, items are actually different in many
aspects in a number of real applications, such as retail marketing,
network log, etc. The difference between items makes a strong
impact on the decision making in these applications. Therefore,
traditional ARM cannot meet the demands arising from these
applications. By considering the different values of individual
items as utilities, utility mining focuses on identifying the
itemsets with high utilities. As “downward closure property”
doesn’t apply to utility mining, the generation of candidate
itemsets is the most costly in terms of time and memory space. In
this paper, we present a Two-Phase algorithm to efficiently prune
down the number of candidates and can precisely obtain the
complete set of high utility itemsets. In the first phase, we propose
a model that applies the “transaction-weighted downward closure
property” on the search space to expedite the identification of
candidates. In the second phase, one extra database scan is
performed to identify the high utility itemsets. We also parallelize
our algorithm on shared memory multi-process architecture using
Common Count Partitioned Database (CCPD) strategy. We verify
our algorithm by applying it to both synthetic and real databases.
It performs very efficiently in terms of speed and memory cost,
and shows good scalability on multiple processors, even on large
databases that are difficult for existing algorithms to handle.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications – data
mining.

General Terms
Algorithms, Design

Keywords
utility mining, association rules mining, downward closure
property, transaction-weighted utilization

1. INTRODUCTION
Association rules mining (ARM) [1] is one of the most widely
used techniques in data mining and knowledge discovery and has
tremendous applications in business, science and other domains.
For example, in the business, its applications include retail shelf
management, inventory predictions, supply chain management,
bundling products marketing. The main objective of ARM is to
identify frequently occurring patterns of itemsets. It first finds all
the itemsets whose co-occurrence frequency are beyond a
minimum support threshold, and then generates rules from the
frequent itemsets based on a minimum confidence threshold.
Traditional ARM model treat all the items in the database equally
by only considering if an item is present in a transaction or not.

The frequent itemsets identified by ARM does not reflect the
impact of any other factor except frequency of the presence or
absence of an item. Frequent itemsets may only contribute a small
portion of the overall profit, whereas non-frequent itemsets may
contribute a large portion of the profit. In reality, a retail business
may be interested in identifying its most valuable customers
(customers who contribute a major fraction of the profits to the
company). These are the customers, who may buy full priced
items, high margin items, or gourmet items, which may be absent
from a large number of transactions because most customers do
not buy these items. In a traditional frequency oriented ARM,
these transactions representing highly profitable customers may
be left out. For instance, {milk, bread} may be a frequent itemset
with support 40%, contributing 4% of the total profit, and the
corresponding consumers is Group A, whereas {birthday cake,
birthday card} may be a non-frequent itemset with support 8%
(assume support threshold is 10%), contributing 8% of the total
profit, and the corresponding consumers is Group B. The
marketing professionals must be more interested in promoting the
sale of {birthday cake, birthday card} by designing promotion
campaigns or coupons tailored for Group B (valuable customers),
although this itemset is missed by ARM. Another example is web
log data. A sequence of webpages visited by a user can be defined
as a transaction. Since the number of visits to a webpage and the
time spent on a particular webpage is different between different
users, the total time spent on a page by a user can be viewed as
utility. The website designers can catch the interests or behavior
patterns of the customers by looking at the utilities of the page
combinations and then consider re-organizing the link structure of
their website to cater to the preference of users. Frequency is not
sufficient to answer questions, such as whether an itemset is
highly profitable, or whether an itemset has a strong impact.
Utility mining is likely to be useful in a wide range of practical
applications.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
UBDM '05 , August 21, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-208-9/05/0008...$5.00.

Recently, to address the limitation of AMR, a utility mining
model was defined [2]. Intuitively, utility is a measure of how
“useful” (i. e. “profitable”) an itemset is. The utility of an item or
itemset is based on local transaction utility and external utility.
The local transaction utility of an item is defined according to the
information stored in a transaction, like the quantity of the item
sold in the transaction. The external utility of an item is based on
information from resources besides transactions, like a profit
table. The external utility can be a measure for describing user
preferences. The definition of utility of an itemset X, u(X), is the
sum of the utilities of X in all the transactions containing X. The
goal of utility mining is to identify high utility itemsets which
drive a large portion of the total utility. Traditional ARM model
assumes that the utility of each item is always 1 and the sales
quantity is either 0 or 1, thus it is only a special case of utility
mining, where the utility or the sales quantity of each item could
be any number. If u(X) is greater than a utility threshold, X is a
high utility itemset, otherwise, it is a low utility itemset. Table 1
is an example of a transaction database where the total utility is
400. The number in each transaction in Table 1(a) is the sales
volume of each item, and the external utility of each item is listed
in Table 1(b). u({B, D}) = (6×10+1×6) + (10×10+1×6) = 172. {B,
D} is a high utility itemset if the utility threshold is set at 120.

Table 1. A transaction database and its utility table
(a) Transaction table. Each row is a transaction. The columns
represent the number of items in a particular transaction.
TID is the transaction identification number

 ITEM

TID
A B C D E

T1 0 0 18 0 1

T2 0 6 0 1 1

T3 2 0 1 0 1

T4 1 0 0 1 1

T5 0 0 4 0 2

T6 1 1 0 0 0

T7 0 10 0 1 1

T8 3 0 25 3 1

T9 1 1 0 0 0

T10 0 6 2 0 2

(b) The utility table. The right column displays the profit of
each item per unit in dollars

ITEM PROFIT ($)(per unit)

A 3

B 10

C 1

D 6

E 5

To the best of our knowledge, there is no efficient strategy to find
all the high utility itemsets. A naïve attempt may be to eliminate
the items that contribute a small portion of the total utility.

However, a high utility itemset may consist of some low utility
items. Another attempt is to adopt the level-wise searching
schema that exists in fast AMR algorithms, such as Apriori [1].
The base of these traditional ARM algorithms is the “downward
closure property” (anti-monotone property): any subset of a
frequent itemset must also be frequent. That is, only the frequent
k-itemsets are exploited to generate potential frequent (k+1)-
itemsets. This approach is efficient since a great number of item
combinations are pruned at each level. However, this property
doesn’t apply to the utility mining model. For example, u(D) = 36
< 120, D is a low utility item, but its superset {B, D} is a high
utility itemset. Without this property, the number of candidates
generated at each level quickly approaches all the combinations
of all the items. For 105 items, more than 109 2-itemsets
candidates may be generated. Moreover, to discover a long
pattern, the number of candidates is exorbitantly large. The cost
of either computation time or memory is intolerable, regardless of
what implementation is applied. The challenge of utility mining is
in restricting the size of the candidate set and simplifying the
computation for calculating the utility.

Nowadays, in any real application, the size of the data set easily
goes to hundreds of Mbytes or Gbytes. In order to tackle this
challenge, we propose a Two-Phase algorithm to efficiently mine
high utility itemsets. In Phase I, we define transaction-weighted
utilization and propose a model ─ transaction-weighted
utilization mining. Transaction-weighted utilization of an itemset
X is estimated by the sum of the transaction utilities of all the
transactions containing X. This model maintains a Transaction-
weighted Downward Closure Property: any subset of a high
transaction-weighted utilization itemset must also be high in
transaction-weighted utilization. (Please note we use a new term
transaction-weighted utilization to distinguish it from utility. The
focus of this paper is not proposing this new term, but to utilize
the property of transaction-weighted utilization to help solve the
difficulties in utility mining.) Thus, only the combinations of high
transaction-weighted utilization itemsets are added into the
candidate set at each level. Therefore, the size of the candidate set
is substantially reduced during the level-wise search. The memory
cost as well as the computation cost is also efficiently reduced.
Phase I may overestimate some low utility itemsets as high
transaction-weighted utilization itemsets since we use the
transaction-weighted utilization mining model, but it never
underestimates any itemsets. In phase II, only one extra database
scan is performed to filter out the overestimated itemsets. The
savings provided by Phase I may compensate for the cost incurred
by the extra scan during Phase II. As shared memory parallel
machines are becoming the dominant type of supercomputers in
industry, we parallelize our algorithm on shared memory multi-
process architecture using Common Count Partitioned Database
(CCPD) scheme. We verify our algorithm by applying it to both
synthetic and real databases. It not only performs very efficiently
in terms of speed and memory cost compared to the best existing
utility mining algorithm [2] (to our best knowledge), but also
shows good scalability on multiple processors. Our algorithm
easily handles very large databases that existing algorithms
cannot handle.

The rest of this paper is organized as follows. Section 2 overviews
the related work. Section 3 formally describes the utility mining
model. In Section 4, we propose the Two-Phase algorithm.
Section 5 presents our parallelization scheme. The experimental

results are presented in section 6 and we summarize our work in
section 7.

2. RELATED WORK
In the past ten years, a number of traditional ARM algorithms and
optimizations have been proposed. The common assumption of
them is that each item in a database is equal in weight and the
sales quantity is 0 or 1. All of these algorithms exploit the
“downward closure property” as proposed in Apriori [1] (all
subsets of a frequent itemset must be frequent), such as DHP [3],
DIC [4], ECLAT [5], FP-growth [6].

Quantitative association rules mining is introduced in [7], which
associates an antecedent with an impact on a target numeric
variable. A behavior of a subset is interesting if the statistical
distribution of the targeted quantitative variable stands out from
the rest. A data-driven algorithm, called “Window”, is developed.
OPUS [8] is an efficient algorithm to discover quantitative
associations rules in dense data sets. The focus of these two
algorithms (identifying rules where the antecedent strongly
impacts the targeting numeric attribute) is different from ours
(identifying those valuable item combinations and the implied
valuable customers). The discovery from our work can guide the
layout of goods in stores, or promotion campaigns to valuable
customers.

Researches that assign different weights to items have been
proposed. MINWAL [9] mines the weighted association rules in
binary transaction databases based on the k-support bound
property. An efficient association rules generation method, WAR
[10], focuses on the generation of rules from the available
frequent itemsets instead of searching for weighted frequent
itemsets. WARM [11] proposes a weighted ARM model where
itemset weight is defined as the average weight value of the items
comprising this itemset. [12] proposes a scheme that uniformly
weights all the transactions without considering the differences
among the items. These weighted ARM models are special cases
of utility mining.

One of the problems in the field of knowledge discovery is of
studying good measures of interestingness of discovered patterns.
Some interestingness measures have been proposed [19].
Actionability and unexpectedness are two important subjective
measures. According to these measures, a pattern is interesting if
the user can take some action by knowing this pattern or it is
surprising to the user. Concepts are defined in probabilistic terms.

A concept, itemset share, is proposed in [13]. It can be regarded
as a utility because it reflects the impact of the sales quantities of
items on the cost or profit of an itemset. Itemset share is defined
as a fraction of some numerical value, such as total quantity of
items sold or total profit. Several heuristics have been proposed
and their effectiveness is well evaluated.

A utility mining algorithm is proposed in [14], where the concept
of “useful” is defined as an itemset that supports a specific
objective that people want to achieve. It focuses on mining the
top-K high utility closed patterns that directly support a given
business objective. Since the “downward closure property” no
longer holds, it develops a new pruning strategy based on a
weaker but anti-monotonic condition. Although this work is
contributed to utility mining, the definition of utility and the goal
of this algorithm in his work are different from those in our work.

An alternative formal definition of utility mining and theoretical
model was proposed in [2], where the utility is defined as the
combination of utility information in each transaction and
additional resources. Since this model cannot rely on “downward
closure property” to restrict the number of itemsets to be
examined, a heuristics is used to predict whether an itemset
should be added to the candidate set. However, the prediction
usually overestimates, especially at the beginning stages, where
the number of candidates approaches the number of all the
combinations of items. The examination of all the combinations is
impractical, either in computation cost or in memory space cost,
whenever the number of items is large or the utility threshold is
low. Although this algorithm is not efficient or scalable, it is by
far the best to solve this specific problem. Our work is based on
this definition and achieves a significant breakthrough of this
problem in terms of computational cost, memory cost and
accuracy.

3. UTILITY MINING
The goal of utility mining is to discover all the itemsets whose
utility values are beyond a user specified threshold in a
transaction database. We start with the definition of a set of terms
that leads to the formal definition of utility mining problem. The
same terms are given in [2].

• I = {i1, i2, …, im} is a set of items.

• D = {T1, T2, …, Tn} be a transaction database where each
transaction Ti ∈ D is a subset of I.

• o(ip, Tq), local transaction utility value, represents the
quantity of item ip in transaction Tq. For example, o(A, T8) =
3, in Table 1(a).

• s(ip), external utility, is the value associated with item ip in
the Utility Table. This value reflects the importance of an
item, which is independent of transactions. For example, in
Table 1(b), the external utility of item A, s(A), is 3.

• u(ip, Tq), utility, the quantitative measure of utility for item ip
in transaction Tq, is defined as For example,
u(A, T

).(),(pqp isTio ×

8) = 3 × 3, in Table 1.

• u(X, Tq), utility of an itemset X in transaction Tq, is defined
as ∑

∈Xi

qp

p

Tiu),(, where X = {i1, i2, …, ik} is a k-itemset, X ⊆

Tq and 1≤ k≤ m.

• u(X), utility of an itemset X, is defined as ∑
⊆∧∈ qq TXDT

qTXu),(.

 (3.1)
Utility mining is to find all the high utility itemsets. An itemset X
is a high utility itemset if u(X) ≥ ε, where X ⊆ I and ε is the
minimum utility threshold, otherwise, it is a low utility itemset.
For example, in Table 1, u(A, T8) = 3×3 = 9, u({A, D, E}, T8) =
u(A, T8) + u(D, T8) + u(E, T8) = 3×3 + 3×6 + 1×5 = 32, and u({A,
D, E}) = u({A, D, E}, T4) + u({A, D, E}, T8) = 14 + 32 = 46. If ε
= 120, {A, D, E} is a low utility itemset.

3.1 Computational Model and Complexity
We now examine the computational model proposed in [2]. We
refer this algorithm as MEU (Mining using Expected Utility) for

ABCDE
0/0

ABCD
0/0

ABCE
0/0

ACDE
57/1

BCDE
0/0

ABDE
0/0

ABC
0/0

ABD
0/0

ABE
0/0

ACD
52/1

ACE
51/2

ADE
46/2

BCD
0/0

BCE
72/1

BDE
182/2

CDE
48/1

AB
26/2

AC
41/2

AD
36/2

AE
33/3

BC
62/1

BD
172/2

BE
240/3

CD
43/1

CE
85/5

DE
56/4

A
24/5

B
240/5

C
50/5

D
36/4

E
50/8

Figure 1. Itemsets lattice related to the example in Table 1. ε = 120. Itemsets in circles are the high utility
itemsets. Numbers in each box are utility / number of occurrences. Gray-shaded boxes denote the search space.

the rest of this paper. MEU prunes the search space by predicting
the high utility k-itemset, Ik, with the expected utility value,
denoted as u’(Ik). u’(Ik) is calculated from the utility values of all
its (k-1) subsets. If u’(Ik) is greater than ε, Ik is added to the
candidate set for k-itemsets, otherwise, Ik is pruned. u’(Ik) is
calculated as

ε×
−
−

+
−

= ∑
=

−

−

1)sup(
)(

1
)(sup

)('
1

1

1
min

k
mk

I
Iu

k
I

Iu
m

i
k
i

k
i

k
k (3.2)

Ii
k-1 is a (k-1)-itemset such that Ii

k-1 =Ik – {i}, i.e. Ii
k-1 includes all

the items except item i. sup(I) is the support of itemset I, which is
the percentage of all the transactions that contain itemset I. The
minimum support among all the (k-1) subsets of Ik is given as

)}{sup(min)(sup 1

)1(,
min 1

−

≤≤⊂∀ −
= k

i
miII

k II
kk

i

 (3.3)

For each Ik, there are k (k-1)-subsets. In (3.2) and (3.3), m is the
number of high utility itemsets among the (k-1) subsets where Ii

k-1
(1 ≤ i ≤ m) are high utility itemsets, and Ii

k-1 (m+1 ≤ i ≤ k) are low
utility itemsets. This prediction is based on the support boundary
property [2] which states that the support of an itemset always
decreases as its size increases. Thus, if the support of an itemset is
zero, its superset will not appear in the database at all. This
approach uses the high utility itemsets at level (k-1) to calculate
the expected utility value for level k and the utility threshold ε to
substitute the low utility itemsets.

Let us use Table 1 as an example. Figure 1 shows the search
space of the database, given ε = 120. Since u({D, E}) = 56 < ε,
supmin({B, D, E}) = min{sup({B, D}), sup({B, E})} = min{0.2,
0.3} = 0.2. The expected utility value of {B, D, E} is:

ε

ε

>=

×++×=

×
−
−

++×
−

=

226

120
2
1)

3.0
240

2.0
172(

2
2.0

13
23)

E})sup({B,
)E}B,({

)D}B,sup({
)D}B,({(

13
2.0)D}C,B,({' uuu

Hence, {B, C, D} is a candidate for 3-itemset. Observed from
Figure 1, four out of 31 potential candidates are high utility
itemsets, which are marked in circles. Using MEU, 26 itemsets (in

gray-shaded boxes) have been added into the candidate sets by
prediction.

This model somehow reduces the number of candidates; however,
it has drawbacks in the following aspects:

1) Pruning the candidates – When m is small, the term
1−

−
k

mk

is close to 1 or even greater than 1. In this situation,

is most likely greater than ε. When k = 2, is always
greater than ε, no matter m is 0, 1, or 2. Similarly, when k =
3, ≥ ε if m is 0, 1, or 2. Therefore, this estimation does
not prune the candidates effectively at the beginning stages.
As shown in Figure 1, all the 2-itemsets and 3-itemsets are
included in the candidate sets. If there are 10

)(' kIu

)(' 2Iu

)(' 3Iu

5 different items
in the database, the number of 2-itemsets is approximately
5×109. Such requirements can easily overwhelm the
available memory space and computation power of most of
the machines.

2) Accuracy – This model may miss some high utility itemsets
when the variation of the itemset supports is large. For
example, if ε = 40 in our example, the expected utility of
itemset {C, D, E} is

ε<=

++×=

++×
−

=

37

)
4.0

56
5.0

85
1.0

43(
2

}4.0,5.0,1.0min{

)
}),sup({

}),({
}),sup({

}),({
}),sup({

}),({(
13

}),,({sup)E}D,C,({' min

ED
EDu

EC
ECu

CB
DCuEDCu

Therefore, {C, D, E} is predicted to be a low utility itemset and
then pruned from the candidate set for 3-itemsets. However, {C,
D, E} is indeed a high utility itemset because u({C, D, E}) = 48 >
ε.

4. TWO-PHASE ALGORITHM
To address the drawbacks in MEU, we propose a novel Two-
Phase algorithm that can highly effectively prune candidate
itemsets and simplify the calculation of utility. It substantially
reduces the search space and the memory cost and requires less
computation. In Phase I, we define a transaction-weighted

utilization mining model that holds a “Transaction-weighted
Downward Closure Property”. (The purpose of introducing this
new concept is not to define a new problem, but to utilize its
property to prune the search space.) High transaction-weighted
utilization itemsets are identified in this phase. The size of
candidate set is reduced by only considering the supersets of high
transaction-weighted utilization itemsets. In Phase II, one
database scan is performed to filter out the high transaction-
weighted utilization itemsets that are indeed low utility itemsets.
This algorithm guarantees that the complete set of high utility
itemsets will be identified.

4.1 Phase I
Definition 1. (Transaction Utility) The transaction utility of
transaction Tq, denoted as tu(Tq), is the sum of the utilities of all
items in Tq: , where is the same as

in Section 3. Table 2 gives the transaction utility for each
transaction in Table 1.

∑
∈

=

qp Ti
qpq TiuTtu),()(),(qp Tiu

Table 2. Transaction utility of the transaction database

TID Transaction Utility TID Transaction Utility

T1 23 T6 13

T2 71 T7 111

T3 12 T8 57

T4 14 T9 13

T5 14 T10 72

Definition 2. (Transaction-weighted Utilization) The
transaction-weighted utilization of an itemset X, denoted as
twu(X), is the sum of the transaction utilities of all the transactions
containing X:

∑
∈⊆

=
DTX

q

q

TtuXtwu)()((4.1)

For the example in Table 1, twu(A) = tu(T3) + tu(T4) + tu(T6) +
tu(T8) + tu(T9) = 12 + 14 + 13 + 57 + 13 = 109 and twu({A, D}) =
tu(T4) + tu(T8) = 14 + 57 = 71.

Definition 3. (High Transaction-weighted Utilization Itemset)
For a given itemset X, X is a high transaction-weighted utilization
itemset if twu(X) ≥ ε’, where ε’ is the user specified threshold.

Theorem 1. (Transaction-weighted Downward Closure
Property) Let Ik be a k-itemset and Ik-1 be a (k-1)-itemset such
that Ik-1 ⊂ Ik. If Ik is a high transaction-weighted utilization
itemset, Ik-1 is a high transaction-weighted utilization itemset.

Proof: Let be the collection of the transactions containing IkIT k

and be the collection of transactions containing I1−kIT k-1. Since Ik-

1 ⊂ Ik, is a superset of . According to Definition 2, 1−kIT kIT

 ')()()()(
1

1 ε≥=≥= ∑∑
∈⊆∈⊆

−

− DTI

kp

DTI

qk

pkqk

ItwuTtuTtuItwu

The Transaction-weighted Downward Closure Property indicates
that any superset of a low transaction-weighted utilization itemset
is low in transaction-weighted utilization. That is, only the
combinations of high transaction-weighted utilization (k-1)-
itemsets could be added into the candidate set Ck at each level.

Theorem 2. Let HTWU be the collection of all high transaction-
weighted utilization itemsets in a transaction database D, and HU
be the collection of high utility itemsets in D. If ε’= ε, then HU ⊆
HTWU.

Proof: ∀X ∈ HU, if X is a high utility itemset, then

)()(),(

),(),()(,

XtwuTtuTiu

TiuTXuXu

qq qp

q pq

TX
qq

TX Ti
p

TX Xi
qp

TX
q

==≤

==≤=

∑∑ ∑

∑ ∑∑

⊆⊆ ∈

⊆ ∈⊆

εε

Thus, X is a high transaction-weighted utilization itemset and X
∈HTWU.

According to Theorem 2, we can utilize the Transaction-weighted
Downward Closure Property in our transaction-weighted
utilization mining in Phase I by assuming ε’ = ε and prune those
overestimated itemsets in Phase II.

Figure 2 shows the search space of Phase I. Twelve out of 31
itemsets (in gray-shaded boxes) are generated as candidates
(including the single items), and 9 out of 31 itemsets (in circles)
are the high transaction-weighted utilization itemsets. The level-
wise search stops at the third level, one level less than MEU in
Figure 1. (For larger databases, the savings should be more
evident.) By holding the Transaction-weighted Downward
Closure Property, the search space in our algorithm is small.
Transaction-weighted utilization mining model outperforms MEU
in several aspects:

1) Less candidates ─ When ε’ is large, the search space can be
significantly reduced at the second level and higher levels.
As shown in Figure 2, four out of 10 itemsets are pruned
because they all contain item A (A is not a high transaction-
weighted utilization item). However, in MEU, the prediction
hardly prunes any itemset at the beginning stages. In Figure
1, all the 10 2-itemsets are added into the candidate set C2
because their expected utility values are all greater than ε.

2) Accuracy ─ Based on Theorem 2, if we let ε’=ε, the
complete set of high utility itemsets is a subset of the high
transaction-weighted utilization itemsets discovered by our
transaction-weighted utilization mining model. However, the
prediction in MEU may miss some high utility itemsets when
the variation of itemset supports is large.

3) Arithmetic complexity ─ One of the kernel operations in
the Two-Phase algorithm is the calculation for each itemset’s
transaction-weighted utilization as in equation 4.1.
Compared to the calculation for each itemset’s expected
utility value (equation 3.2) in MEU, equation 4.1 only incurs
add operations rather than a number of multiplications. Thus,
since the kernel calculation may occur a huge number of
times, the overall computation is much less complex.

ABCDE
0/0

ABCD
0/0

ABCE
0/0

ACDE
57/1

BCDE
0/0

ABDE
0/0

ABC
0/0

ABD
0/0

ABE
0/0

ACD
57/1

ACE
69/2

ADE
71/2

BCD
0/0

BCE
72/1

BDE
182/2

CDE
57/1

AB
26/2

AC
69/2

AD
71/2

AE
83/3

BC
72/1

BD
182/2

BE
254/3

CD
57/1

CE
178/5

DE
253/4

A
109/5

B
280/5

C
178/5

D
253/4

E
374/8

Figure 2. Itemsets lattice related to the example in Table 1. ε’ = 120. Itemsets in circles (solid and dashed) are
the high transaction-weighted utilization itemsets in transaction-weighted utilization mining model. Gray-
shaded boxes denote the search space. Itemsets in solid circles are high utility itemsets found by MEU.
Numbers in each box are transaction-weighted utilization / number of occurrence.

4.2 Phase II
In Phase II, one database scan is required to select the high utility
itemsets from high transaction-weighted utilization itemsets
identified in Phase I. The number of the high transaction-
weighted utilization itemsets is small when ε’ is high. Hence, the
time saved in Phase I may compensate for the cost incurred by the
extra scan during Phase II. The total computational cost of Phase
II is the cost of equation (3.1) × the total number of high
transaction-weighted utilization itemsets.

In Figure 2, the high utility itemsets ({B}, {B, D}, {B, E} and {B,
D, E}) (in solid black circles) are covered by the high transaction-
weighted utilization itemsets (in solid and dashed black circles).
Nine itemsets in circles are maintained after Phase I, and one
database scan is performed in Phase II to prune 5 of the 9 itemsets
since they are not high utility itemsets.

5. PARALLEL IMPLEMENTATION
Since the size of the databases in commercial activities is usually
in Gbytes, the computation time or the memory consumption may
be intolerable on a single processor. Therefore, high performance
parallel computing is highly desired. Due to the fact that shared
memory parallel machines are becoming the dominant type of
supercomputers in industry because of its simplicity, we design
our utility mining parallel implementation on shared-memory
architecture.

In shared-memory multi-process architecture (SMPs), each
processor has its direct and equal access to all the system’s
memory as well as its own local caches. To achieve a good
scalability on SMPs, each processor must maximize access to
local cache and avoid or reduce false sharing. That is, we need to
minimize the Ping-Pong effect, where multiple processors might
be trying to modify different variables that coincidently reside on
the same cache line.

The nature of our Two-Phase utility mining algorithm is a level-
wised search method, which is the same as Apriori [1]. [16, 17]
has proved that Common Count Partitioned Database (CCPD) is
the best strategy to parallel it. In CCPD, data is evenly partitioned
on each processor, and each processor traverses its local database

partition for incrementing the transaction-weighted utilization of
each itemset. All the processors share a single common hash tree,
which stores the candidate itemsets at each level of search as well
as their transaction-weight utilization. To build the hash tree in
parallel, CCPD associated a lock with each leaf node. When a
processor wants to insert a candidate into the tree, it starts at root,
and successively hashes on the items until it reaches a leaf. It then
acquires the lock and inserts the candidate. With this locking
mechanism, each processor can insert itemsets in different parts of
the hash tree in parallel. For transaction-weight utilization
calculation, each processor computes the value from its local
database partition.

6. EXPERIMENTAL EVALUATION AND
PERFORMANCE STUDY
We evaluate the performance of our Two-Phase algorithm by
varying the size of the search space. We also analyze the
scalability and result accuracy. All the experiments were
performed on a 700-MHz Xeon 8-way shared memory parallel
machine with a 4 Gbytes memory, running the Red Hat Linux
Advanced Server 2.1 operating system. The program is
implemented in C. In parallel implementation, we use OpenMP
pragmas [18]. OpenMP is a specification for a set of compiler
directives, library routines, and environment variables that can be
used to specify shared memory parallelism. Due to its simplicity,
OpenMP is quickly becoming one of the most widely used
programming styles for SMPs. In SMPs, processors communicate
through shared variables in the single memory space.
Synchronization is used to coordinate processes. In order to give a
fair comparison, we also implement MEU so that both of the
implementations can run on the same machine. We use synthetic
data and real world data for our evaluation purpose. The details of
these databases are described in the following subsections.

6.1 Synthetic Data from IBM Quest Data
Generator
We use two sets of synthetic databases from IBM Quest data
generator [15]. One is a dense database, T10.I6.DX000K, where
the average transaction size is 10; the other is a sparse database,

Figure 3. Utility value distribution in utility table.

Utility Value Distribution

0

50

100

150

200

250

300

0 2 4 6 8 10
utility value

nu
m

be
r

of
 it

em
s

0

50

100

150

200

250

300

0 0.5 1 1.5 2 2.5

Minimum Utility Threshold(%)

Ex
ec

ut
io

n
Ti

m
e(

se
c.

)

T10.I6.D1000K

T20.I6.D1000K

Figure 4. Execution time with varying minimum
utility threshold.T20.I6.DX000K, where the average transaction size is 20. The

average size of the maximal potentially frequent itemsets is 6 in
both sets of databases. In both sets of databases, we vary the
number of transactions from 1000K to 8000K, and the number of
items from 1K to 8K. However, the IBM Quest data generator
only generates the quantity of 0 or 1 for each item in a
transaction. In order to fit them into the scenario of utility mining,
we randomly generate the quantity of each item in each
transaction, ranging from 1 to 5. Utility tables are also
synthetically created by assigning a utility value to each item
randomly, ranging from 0.01 to 10.00. Observed from real world
databases that most items are in the low profit range, we generate
the utility values using a log normal distribution. Figure 3 shows
the histogram of the utility values of 1000 items.

Table 3. The number of candidate itemsets generated by
Phase I of Two-Phase algorithm vs. MEU in the first two
database scans

T10.I6.D1000K T20.I6.D1000K Databases

Threshold Phase I MEU Phase I MEU

1st scan 226128 499500 315615 499500
0.5%

2nd scan 17 - 18653 -

1st scan 153181 499500 253116 499500
0.75%

2nd scan 0 - 1531 -

1st scan 98790 499500 203841 499500
1%

2nd scan 0 - 183 -

1st scan 68265 499500 159330 499500
1.25%

2nd scan 0 - 33 -

1st scan 44850 499500 135460 499500
1.5%

2nd scan 0 - 8 -

1st scan 27730 499500 104653 499500
1.75%

2nd scan 0 - 4 -

1st scan 16836 499500 84666 499500
2%

2nd scan 0 - 1 -

6.1.1 Number of Candidates
Table 3 presents the number of candidate itemsets generated by
Phase I of our Two-Phase algorithm vs. MEU. We only provide
the numbers in the first two database scans. The number of items
is set at 1000, and the minimum utility threshold varies from 0.5%

to 2%. The number of candidate itemsets generated by Phase I at
the first database scan decreases dramatically as the threshold
goes up. However, the number of candidates generated by MEU
is always 499500, which is all the combinations of 1000 items.
Phase I generates much fewer candidates compared to MEU. For
example, 16836 by Phase I vs. 499500 by MEU at a utility
threshold 2% in database T10.I6.D1000K. After the second
database scan, the number of candidates generated by our
algorithm decreases substantially, mostly decreasing more than
99%. We don’t provide the exact numbers for MEU because it
actually takes an inordinate amount of time (longer than 10 hours)
to complete the second scan. In the case of T20.I6.D1000K, more
candidates are generated, because each transaction is longer than
that in T10.I6.D1000K. Observed from Table 3, the Transaction-
weighted Downward Closure Property in transaction-weighted
utilization mining model can help prune candidates very
effectively.

6.1.2 Scalability
Figure 4 shows the execution time (including both Phase I and
Phase II) of the Two-Phase algorithm using T20.I6.D1000K and
T10.I6.D1000K. Since the number of candidate itemsets
decreases as the minimum utility threshold increases, the
execution time decreases, correspondingly. When threshold is
0.5%, the execution time of T20.I6.D1000K is somewhat longer,
because it takes 3 more scans over the database in this case
compared to other cases with higher threshold values.

Figure 5 presents the scalability of the Two-Phase algorithm by
increasing the number of transactions in the database. The number
of transactions varies from 1000K to 8000K. The minimum utility
threshold is set at 1% to 0.5% in Figure 5(a) and Figure 5(b),
respectively. The execution times for either database increase
approximately linearly as the data size increases. The execution
times for T20.I6.DX000K are longer than that of
T10.I6.DX000K, because more computation is required for longer
transactions. In addition, the size of database T20.I6.DX000K is
larger and therefore takes a longer time to scan.

Figure 6 presents the performance when varying the numbers of
items. The number of items varies from 1K to 8K. The minimum
utility threshold is set at 1% and 0.5% in Figure 6(a) and Figure
6(b), respectively. When the threshold is 1% as in Figure 6(a), the
time decreases as the number of items increases. However, in
Figure 6(b), the time for database T10.I6.D1000K with 2K items

(a) minimum utility threshold = 1% (b) minimum utility threshold = 0.5%

Figure 5. Execution time for databases with different sizes.

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10

Number of Transactions(millions)

Ex
ec

ut
io

n
Ti

m
e(

se
c.

)

T10.I6

T20.I6

0

500

1000

1500

2000

2500

0 2 4 6 8 10
Number of Transactions(millions)

Ex
ec

ut
io

n
Ti

m
e(

se
c.

)

T10.I6

T20.I6

0

10

20

30

40

50

60

70

80

90

0 2000 4000 6000 8000 10000

Number of Items

Ex
ec

ut
io

n
Ti

m
e(

se
c.

)

T10.I6.D1000K

T20.I6.D1000K

0

50

100

150

200

250

300

0 2000 4000 6000 8000 10000

Number of Items

Ex
ec

ut
io

n
Ti

m
e(

se
c.

)
T10.I6.D1000K

T20.I6.D1000K

(a) minimum utility threshold = 1% (b) minimum utility threshold = 0.5%

Figure 6. Execution time for databases with different number of items.

is longer than that with 1K items. This is because the total number
of candidates is 403651 in the former case, greater than 226145 in
the latter case. Similarly, the time for database T20.I6.D1000K
with 4K items is longer than that with 2K items, since the total
numbers of candidates for the two cases are 1274406 and 779413,
respectively. Thus, we can see that the execution time is
proportional to the number of candidates generated during the
entire process.

6.1.3 Relationship Between Effectiveness vs. Average
Transaction Size
As discussed in Section 4 that high transaction-weighted
utilization itemsets identified by Phase I (referred as HTWUI in
Table 4) cover high utility itemsets (refered as HUI), we would
like to investigate the relationship between them. As shown in
Table 4, each number of HUI is smaller than the number of
HTWUI, correspondingly. Another observation is that the number
of HUI is closer to that of HTWUI in database T10.I6.D1000K
than in T20.I6.D1000K. This is because in Phase I, the
transaction-weighted utilization of any itemset X is defined as the
sum of the transaction utilities of all the transactions containing X
(equation 4.1). This overestimation gets worse when transactions
are longer, because more unrelated items tend to be included in

longer transactions. Despite the overestimation, the efficiency of
Phase I is still evident. Hence, our proposed algorithm performs
more efficiently, especially in dense databases.

Table 4. Comparison of the number of candidate itemsets
(CI), high transaction-weighted utilization itemsets (HTWUI),
and high utility itemsets (HUI)

T10.I6.D1000K T20.I6.D1000K
Threshold

CI HTWUI HUI CI HTWUI HUI

0.5% 226145 711 25 334268 3311 25

0.75% 153181 557 9 254647 1269 9

1% 98790 445 6 204024 799 6

1.25% 68265 370 2 159363 615 2

1.5% 44850 300 0 135468 542 0

1.75% 27730 236 0 104657 465 0

2% 16836 184 0 84667 416 0

6.2 Real-World Market Data
We also evaluated the Two-Phase algorithm using a real world
data from a major grocery chain store in California. It contains

products from various categories, such as food, health care, gifts,
and others. There are 1,112,949 transactions and 46,086 items in
the database. Each transaction consists of the products and the
sales volume of each product purchased by a customer at a time
point. The size of this database is 73MByte. The average
transaction length is 7.2. The utility table describes the profit of
each product.

Table 6. Accuracy comparison between Two-Phase
algorithm and MEU (with support constraint) on the
real-world market data

Threshold # High utility
(Two-Phase)

High utility (MEU
with support constraint)

MEU

Miss rate

1% 2 1 50%

0.75% 3 2 33.3%

0.5% 5 3 40%

0.25% 17 17 0%

0.1% 80 66 17.5%

In order to evaluate if the utility mining results is useful to the
grocery store, we compare the high utility itemsets with the
frequent itemsets mined by traditional ARM. We do observe a
number of interesting items/itemsets. For example, a kind of
bagged fresh vegetable is a frequent item (the support is over
3%), however, its contribution the total profit is less than 0.25%.
A combination of two kinds of canned vegetable is also a good
example, which occurs in more than 1% of the transactions, but
contributes less than 0.25% of the overall profit. Therefore, utility
mining can help the marketing professionals in this grocery store
make better decisions, such as highlight their highly profitable
items/itemsets and reduce the inventory cost for frequent but less
profitable items/itemsets.

We evaluate the scalability of our algorithm by varying the
threshold. As shown in Table 5, it is fast and scales well. MEU
doesn’t work with this dataset unless out-of-core technique is
designed and implemented, because the number of 2-itemset
candidates is so large (approximate 2 billion) that it overwhelms
the memory space available to us. Actually, very few machines
can afford such a huge memory cost.

Table 5. Experiment summary of the real-world market data

Result accuracy is a very important feature of utility mining,
because the mining results can be used to guide the marketing
decisions. Therefore, the accuracy comparison between our Two-
Phase algorithm and MEU is given in Table 6. The miss rate is
defined as (the number of high utility itemsets – the number of
high utility itemsets discovered) ÷ the number of high utility
itemsets. To control the execution time of MEU, we set the
minimum support and the utility threshold to the same value, i.e.
1%, 0.75%, 0.5%, 0.25% and 0.1%. With this support constraint,
MEU works with this data set. However, it may lose some high
utility itemsets whose support values are below the support
threshold. For example, when the utility threshold is set at 0.1%,
the Two-Phase algorithm discovers 80 high utility itemsets
whereas MEU (support is set at 0.1%) only gets 66 and misses 14
high utility 2-itemsets. Our algorithm guarantees that all the high
utility itemsets will be discovered.

6.3 Parallel Performance
We vary the number of processors from 1 to 8 to study the
scalability of our parallel implementation on the real grocery store
dataset. Figure 7(a) presents the measured total execution time.
The corresponding speedups are presented in Figure 7(b). As the
minimum utility threshold decreasing, the search space is
increasing dramatically. We observed that it scales better when
the searching space increasing. The best case is 4.5 times speedup
on 8 processors in the case of minimum threshold = 0.25%. The
performance limitation stems from the significant amount of
atomic access to the shared hash tree structure. Overall speaking,
the parallel scalability in our experiment is good.

7. CONCLUSIONS
This paper proposed a Two-Phase algorithm that can discover
high utility itemsets highly efficiently. Utility mining problem is
at the heart of several domains, including retailing business, web
log techniques, etc. In Phase I of our algorithm, we defined a term
transaction-weighted utilization, and proposed the transaction-
weighted utilization mining model that holds Transaction-
weighted Downward Closure Property. That is, if a k-itemset is a
low transaction-weighted utilization itemset, none of its supersets
can be a high transaction-weighted utilization itemset. The
transaction-weighted utilization mining not only effectively
restricts the search space, but also covers all the high utility
itemsets. Although Phase I may overestimate some itemsets due
to the different definitions, only one extra database scan is needed
in Phase II to filter out the overestimated itemsets. Our algorithm
requires fewer database scans, less memory space and less
computational cost. The accuracy, effectiveness and scalability of
the proposed algorithm are demonstrated using both real and
synthetic data on shared memory parallel machines. Another
important feature is that Two-Phase algorithm can easily handle
very large databases for which other existing algorithms are
infeasible.

Minimum
utility

threshold

Running
time

(seconds)

Candidates

High
transaction-

weighted
utilization
(Phase I)

High
utility

(Phase II)

1% 25.76 11936 9 2

0.75% 33.3 23229 26 3

0.5% 53.09 69425 80 5

0.25% 170.49 627506 457 17

0.1% 1074.94 7332326 3292 80

8. ACKNOWLEDGMENTS
This work was supported in part by NSF grants CCF-0444405,
CNS-0406341, CCR-0325207, DOE grant DE-FC02-01ER25485
and Intel Corp.

9. REFERENCES
[1] Agrawal, R., and Srikant, R. Fast algorithms for mining

association rules. 20th VLDB Conference, 1994.

Execution Time

0

50

100

150

200

250

1% 0.75% 0.50% 0.25%

Minimum Utility Threshold

Ti
m

e(
se

c)

1 proc 2 procs 4 procs 8 procs

Execution Time Speedups

0

1

2

3

4

5

0 2 4 6 8 10

Number of Processors

1% 0.75% 0.50% 0.25%

(a) Execution time (b) Speedups of the execution time

Figure 7. Execution time of the real world database and speedups on Xeon 8-way SMPs. The
minimum threshold is varied from 0.25% to 1%.

[11] Tao, F., Murtagh, F., and Farid, M. Weighted Association
Rule Mining using Weighted Support and Significance
Framework. Proc. of International Conference on
Knowledge Discovery and Data mining, 2003.

[2] Yao, H., Hamilton, H. J., and Butz, C. J. A Foundational
Approach to Mining Itemset Utilities from Databases. Proc.
of the 4th SIAM International Conference on Data Mining,
Florida, USA, 2004.

[12] Lu, S., Hu, H., and Li, F. Mining weighted association rules.
Intelligent Data Analysis, 5(3) (2001), 211-225.

[3] Park, J. S., Chen, M., and Yu, P.S. An Effective hash Based
Algorithm for Mining Association Rules. Proc. of ACM
SIGMOD Conference, New York, 1995. [13] Barber, B., and Hamilton, H. J. Extracting share frequent

itemsets with infrequent subsets. Data Mining and
Knowledge Discovery, 7(2) (2003), 153-185.

[4] Brin, S., Motwani, R., UIIman J. D., and Tsur, S. Dynamic
itemset counting and implication rules for market basket
data. Proc. of ACM SIGMOD Conference on Management of
Data, Arizona, 1997.

[14] Chan, R., Yang, Q., Shen, Y. Mining high utility Itemsets.
Proc. of IEEE ICDM, Florida, 2003.

[5] Zaki, M. J., Parthasarathy, S., Ogihara, M., and Li, W. New
Algorithms for Fast Discovery of Association Rules. Proc. of
3rd Conference on Knowledge Discovery and Data mining,
California, 1997.

[15] IBM, IBM synthetic data generation code.
http://www.almaden.ibm.com/software/quest/Resources/inde
x.shtml.

[16] Zaki, M. J., Parallel and Distributed Association Mining: A
Survey. IEEE Concurrency, special issue on Parallel
Mechanisms for Data Mining, Vol. 7, No. 4, December
1999, 4-25.

[6] Han, J., Pei, J., and Yin, Y. Mining Frequent Patterns
without Candidate Generation. Proc. of SIGMOD, 2000.

[7] Aumann, Y., and Lindell, Y. A statistical theory for
quantitative association rules. Proc. of the 5th KDD, 1999. [17] Zaki, M. J., Ogihara, M., Parthasarathy, S., and Li, W.

Parallel Data Mining for Association Rules on Shared-
memory Multi-processors. Supercomputing, Pittsburg, PA,
November 1996.

[8] Webb, G. I. Discovering associations with numeric variables.
Proc. of the 7 KDD, 2001. th

[9] Cai, C. H., Fu, Ada W. C., Cheng, C. H., and Kwong, W. W.
Mining Association Rules with Weighted Items. Proc. of
International Database Engineering and Applications
Symposium (IDEAS), 1998.

[18] OpenMP. OpenMP: Simple, Portable, Scalable SMP
Programming. http://www.openmp.org/.

[10] Wang, W., Yang, J., and Yu, P. S. Efficient Mining of
Weighted Association Rules (WAR). Proc. of 6th KDD,
2000.

[19] Silberschatz, A., Tuzhilin, A. What Makes Patterns
Interesting in Knowledge Discovery Systems. IEEE
Transactions on Knowledge and Data Engineering, 8(6),
December 1996.

	INTRODUCTION
	RELATED WORK
	UTILITY MINING
	Computational Model and Complexity

	TWO-PHASE ALGORITHM
	Phase I
	Phase II

	PARALLEL IMPLEMENTATION
	EXPERIMENTAL EVALUATION AND PERFORMANCE STUDY
	Synthetic Data from IBM Quest Data Generator
	Number of Candidates
	Scalability
	Relationship Between Effectiveness vs. Average Transaction S

	Real-World Market Data
	Parallel Performance

	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

