
Journal of Machine Learning Research 11 (2010) 713-741 Submitted 7/08; Revised 4/09; Published 2/10

A Fast Hybrid Algorithm for Large-Scale ℓ1-Regularized
Logistic Regression

Jianing Shi JS2615@COLUMBIA.EDU

Department of Biomedical Engineering

Columbia University

New York, NY 10025, USA

Wotao Yin WOTAO.YIN@RICE.DU

Department of Computational and Applied Mathematics

Rice University

Houston, TX 77005, USA

Stanley Osher SJO@MATH.UCLA.EDU

Department of Mathematics

University of California Los Angeles

Los Angeles, CA 90095, USA

Paul Sajda PS629@COLUMBIA.EDU

Department of Biomedical Engineering

Columbia University

New York, NY 10025, USA

Editor: Saharon Rosset

Abstract

ℓ1-regularized logistic regression, also known as sparse logistic regression, is widely used in ma-

chine learning, computer vision, data mining, bioinformatics and neural signal processing. The use

of ℓ1 regularization attributes attractive properties to the classifier, such as feature selection, robust-

ness to noise, and as a result, classifier generality in the context of supervised learning. When a

sparse logistic regression problem has large-scale data in high dimensions, it is computationally ex-

pensive to minimize the non-differentiable ℓ1-norm in the objective function. Motivated by recent

work (Koh et al., 2007; Hale et al., 2008), we propose a novel hybrid algorithm based on combin-

ing two types of optimization iterations: one being very fast and memory friendly while the other

being slower but more accurate. Called hybrid iterative shrinkage (HIS), the resulting algorithm is

comprised of a fixed point continuation phase and an interior point phase. The first phase is based

completely on memory efficient operations such as matrix-vector multiplications, while the second

phase is based on a truncated Newton’s method. Furthermore, we show that various optimization

techniques, including line search and continuation, can significantly accelerate convergence. The

algorithm has global convergence at a geometric rate (a Q-linear rate in optimization terminology).

We present a numerical comparison with several existing algorithms, including an analysis using

benchmark data from the UCI machine learning repository, and show our algorithm is the most

computationally efficient without loss of accuracy.

Keywords: logistic regression, ℓ1 regularization, fixed point continuation, supervised learning,

large scale

c©2010 Jianing Shi, Wotao Yin, Stanley Osher and Paul Sajda.

SHI, YIN, OSHER AND SAJDA

1. Introduction

Logistic regression is an important linear classifier in machine learning and has been widely used

in computer vision (Bishop, 2007), bioinformatics (Tsuruoka et al., 2007), gene classification (Liao

and Chin, 2007), and neural signal processing (Parra et al., 2005; Gerson et al., 2005; Philiastides

and Sajda, 2006). ℓ1-regularized logistic regression or so-called sparse logistic regression (Tibshi-

rani, 1996), where the weight vector of the classifier has a small number of nonzero values, has been

shown to have attractive properties such as feature selection and robustness to noise. For supervised

learning with many features but limited training samples, overfitting to the training data can be a

problem in the absence of proper regularization (Vapnik, 1982, 1988). To reduce overfitting and

obtain a robust classifier, one must find a sparse solution.

Minimizing or limiting the ℓ1-norm of an unknown variable (the weight vector in logistic re-

gression) has long been recognized as a practical avenue for obtaining a sparse solution. The use of

ℓ1 minimization is based on the assumption that the classifier parameters have, a priori, a Laplace

distribution, and can be implemented using maximum-a-posteriori (MAP). The ℓ2-norm is a result

of penalizing the mean of a Gaussian prior, while a ℓ1-norm models a Laplace prior, a distribution

with heavier tails, and penalizes on its median. Such an assumption attributes important properties

to ℓ1-regularized logistic regression in that it tolerates outliers and, therefore, is robust to irrele-

vant features and noise in the data. Since the solution is sparse, the nonzero components in the

solution correspond to useful features for classification; therefore, ℓ1 minimization also performs

feature selection (Littlestone, 1988; Ng, 1998), an important task for data mining and biomedical

data analysis.

1.1 Logistic Regression

The basic form of logistic regression seeks a hyperplane that separates data belonging to two classes.

The inputs are a set of training data X = [x1, · · · ,xm]⊤ ∈ R
m×n, where each row of X is a sample

and samples of either class are assumed to be independently identically distributed, and class labels

b ∈ R
m are of −1/+1 elements. A linear classifier is a hyperplane {x : w⊤x+ v = 0}, where w ∈ R

n

is a set of weights and v ∈R the intercept. The conditional probability for the classifier label b based

on the data, according to the logistic model, takes the following form,

p(bi|xi) =
exp

(

(wT xi + v)bi

)

1+ exp
(

(wT xi + v)bi

) , i = 1, ...,m.

The average logistic loss function can be derived from the empirical logistic loss, computed

from the negative log-likelihood of the logistic model associated with all the samples, divided by

number of samples m,

lavg(w,v) =
1

m

m

∑
i=1

θ
(

(wT xi + v)bi

)

,

where θ is the logistic transfer function: θ(z) := log(1+ exp(−z)). The classifier parameters w and

v can be determined by minimizing the average logistic loss function,

argmin
w,v

lavg(w,v).

Such an optimization can also be interpreted as a MAP estimate for classifier weights w and intercept

v.

714

HYBRID ITERATIVE SHRINKAGE - HIS

1.2 ℓ1-Regularized Logistic Regression

The so-called sparse logistic regression has emerged as a popular linear decoder in the field of

machine learning, adding the ℓ1-penalty on the weights w:

argmin
w,v

lavg(w,v)+λ‖w‖1, (1)

where λ is a regularization parameter. It is well-known that ℓ1 minimization tends to give sparse

solutions. The ℓ1 regularization results in logarithmic sample complexity bounds (number of train-

ing samples required to learn a function), making it an effective learner even under an exponential

number of irrelevant features (Ng, 1998, 2004). Furthermore, ℓ1 regularization also has appealing

asymptotic sample-consistency for feature selection (Zhao and Yu, 2007).

Signals arising in the natural world tend to be sparse (Parra et al., 2001). Sparsity also arises

in signals represented in a certain basis, such as the wavelet transform, the Krylov subspace, etc.

Exploiting sparsity in a signal is therefore a natural constraint to employ in algorithm development.

An exact form of sparsity can be sought using the ℓ0 regularization, which explicitly penalizes the

number of nonzero components,

argmin
w,v

lavg(w,v)+λ‖w‖0. (2)

Although theoretically attractive, problem (2) is in general NP-hard (Natarajan, 1995), requiring

an exhaustive search. Due to this computational complexity, ℓ1 regularization has become a pop-

ular alternative, and is subtly different than ℓ0 regularization, in that the ℓ1-norm penalizes large

coefficients/parameters more than small ones.

The idea of adopting the ℓ1 regularization for seeking sparse solutions to optimization problems

has a long history. As early as the 1970’s, Claerbout and Muir first proposed to use ℓ1 to decon-

volve seismic traces (Claerbout and Muir, 1973), where a sparse reflection function was sought

from bandlimited data (Taylor et al., 1979). In the 1980’s, Donoho et al. quantified the ability of

ℓ1 to recover sparse reflectivity functions (Donoho and Stark, 1989; Donoho and Logan, 1992). Af-

ter the 1990s’, there was a dramatic rise of applications using the sparsity-promoting property of

the ℓ1-norm. Sparse model selection was proposed in statistics using LASSO (Tibshirani, 1996),

wherein the proposed soft thresholding is related to wavelet thresholding (Donoho et al., 1995). Ba-

sis pursuit, which aims to extract sparse signal representation from overcomplete dictionaries, also

underwent great development during this time (Donoho and Stark, 1989; Donoho and Logan, 1992;

Chen et al., 1998; Donoho and Huo, 2001; Donoho and Elad, 2003; Donoho, 2006). In recent years,

minimization of the ℓ1-norm has appeared as a key element in the emerging field of compressive

sensing (Candés et al., 2006; Candés and Tao, 2006; Figueiredo et al., 2007; Hale et al., 2008).

ℓ1 minimization also has far reaching impact on various applications such as portfolio optimiza-

tion (Lobo et al., 2007), sparse principle component analysis (d’Aspremont et al., 2005; Zou et al.,

2006), sparse interconnect wiring design (Vandenberghe et al., 1997, 1998), sparse control system

design (Hassibi et al., 1999), and optimization of well-connected sparse graphs (Ghosh and Boyd,

2006). Research on total variation based image processing also shows that minimizing the ℓ1-norm

of the intensity gradient can effectively remove random noise (Rudin et al., 1992). In the realm of

machine learning, ℓ1 regularization exists in various forms of classifiers, including ℓ1-regularized

logistic regression (Tibshirani, 1996), ℓ1-regularized probit regression (Figueiredo and Jain, 2001;

Figueiredo, 2003), ℓ1-regularized support vector machines (Zhu et al., 2004), and ℓ1-regularized

multinomial logistic regression (Krishnapuram et al., 2005).

715

SHI, YIN, OSHER AND SAJDA

1.3 Existing Algorithms for ℓ1-Regularized Logistic Regression

The ℓ1-regularized logistic regression problem (1) is a convex and non-differentiable problem. A

solution always exists but can be non-unique. These characteristics postulate some difficulties in

solving the problem. Generic methods for nondifferentiable convex optimization, such as the el-

lipsoid method and various sub-gradient methods (Shor, 1985; Polyak, 1987), are not designed to

handle instances of (1) with data of very large scale. There has been very active development on nu-

merical algorithms for solving the ℓ1-regularized logistic regression, including LASSO (Tibshirani,

1996), Gl1ce (Lokhorst, 1999), Grafting (Perkins and Theiler, 2003), GenLASSO (Roth, 2004),

and SCGIS (Goodman, 2004). The IRLS-LARS (iteratively reweighted least squares least angle

regression) algorithm uses a quadratic approximation for the average logistic loss function, which

is consequently solved by the LARS (least angle regression) method (Efron et al., 2004; Lee et al.,

2006). The BBR (Bayesian logistic regression) algorithm, described in Eyheramendy et al. (2003),

Madigan et al. (2005), and Genkin et al. (2007), uses a cyclic coordinate descent method for the

Bayesian logistic regression. Glmpath, a solver for ℓ1-regularized generalized linear models using

path following methods, can also handle the logistic regression problem (Park and Hastie, 2007).

MOSEK is a general purpose primal-dual interior point solver, which can solve the ℓ1-regularized

logistic regression by formulating the dual problem, or treating it as a geometric program (Boyd

et al., 2007). SMLR, algorithms for various sparse linear classifiers, can also solve sparse logistic

regression (Krishnapuram et al., 2005). Recently, Koh, Kim, and Boyd proposed an interior-point

method (Koh et al., 2007) for solving (1). Their algorithm takes truncated Newton steps and uses

preconditioned conjugated gradient iterations. This interior-point solver is efficient and provides a

highly accurate solution. The truncated Newton method has fast convergence, but forming and solv-

ing the underlying Newton systems require excessive amounts of memory for large-scale problems,

making solving such large-scale problems prohibitive. A comparison of several of these different

algorithms can be found in Schmidt et al. (2007).

1.4 Our Hybrid Algorithm

In this paper, we propose a hybrid algorithm that is comprised of two phases: the first phase is based

on a new algorithm called iterative shrinkage, inspired by a fixed point continuation (FPC) (Hale

et al., 2008), which is computationally fast and memory friendly; the second phase is a customized

interior point method, devised by Koh et al. (2007).

Figure 1 shows a diagram of our hybrid algorithm, termed Hybrid Iterative Shrinkage (HIS)

algorithm. Our algorithm requires less memory and, on mid/large-scale problems, runs faster than

the interior point method. The iterative shrinkage phase only performs matrix-vector multiplications

in size of X , as well as a very simple shrinkage operation (see (6) below), and therefore requires

minimal memory consumption. By extending the results in Hale et al. (2008), we prove Q-linear

convergence and show that the signs of wopt (hence, the indices of nonzero elements) are obtained

in a finite number of steps, typically much earlier than convergence. Based on the latter result, we

propose a hybrid algorithm that is even faster and results in highly accurate solutions. Specifically,

our algorithm predicts the sign changes in future shrinkage iterations, and when the signs of wk are

likely to be stable, switches to the interior point method and operates on a reduced problem that is

much smaller than the original. The interior point method achieves high accuracy in the solution,

making our hybrid algorithm equally accurate, as will be shown in the Section 4.

716

HYBRID ITERATIVE SHRINKAGE - HIS

Hybrid Iterative Shrinkage (HIS)

Iterative Shrinkage

Interior Point

first order

simple and efficient

memory friendly

fast at discovering true dimensions

slow at removing false dimensions

second order

high accuracy in solution

fast at removing false dimensions

memory consumptive

all dimensions in data

support in the data

true dimensions in solution

Figure 1: A diagram of our proposed hybrid iterative shrinkage (HIS) algorithm. The HIS algorithm

is comprised of two phases: the iterative shrinkage phase and the interior point phase. The

iterative shrinkage is inspired by a fixed point continuation method (Hale et al., 2008),

which is computationally fast and memory friendly. The interior point method is based

on a second-order truncated Newton method, devised by Koh et al. (2007). Our hybrid

approach takes advantage of different computational strengths of the two methods and

uses them for optimal algorithm acceleration while attaining high accuracy. Black dots

indicate the nonzero dimensions, gray dots indicate dimensions that are eliminated, and

the size of the dots show the error that each dimension contributes to the final solution.

Note that the final solution is sparse with an overall small error.

717

SHI, YIN, OSHER AND SAJDA

There are several novel aspects of our hybrid approach. The rationale of the hybrid approach

is based on the observation that the iterative shrinkage phase reduces the algorithm to gradient

projection after a finite number of iterations, which will be described in Section 3.1. We build on

this observation a hybrid approach to take advantage of the two phases of the computation using

two types of numerical methods. In the first phase, inspired by the FPC by Hale et al. (2008),

we customize the iterative shrinkage algorithm for the sparse logistic regression, whose objective

function is not quadratic. In particular, the step length in the iterative shrinkage algorithm is not

constant, unlike the compressive sensing problem. Therefore, we resort to a line search strategy to

avoid computing the Hessian matrix (required for finding the step length for stability). In addition,

the ℓ1 regularization is only applied to the w component and not v in sparse logistic regression. This

change in the model requires a different shrinkage step, as well as a careful treatment in the line

search strategy.

The remainder of the paper is organized as follows. In Section 2, we present the iterative shrink-

age algorithm for sparse logistic regression, and prove its global convergence and Q-linear conver-

gence. In Section 3, we provide the rationale for the hybrid approach, together with a description

of the hybrid algorithm. Numerical results are presented in Section 4. We conclude the paper in

Section 5.

2. Sparse Logistic Regression using Iterative Shrinkage

The iterative shrinkage algorithm used in the first phase is inspired by a fixed point continuation

algorithm by Hale et al. (2008).

2.1 Notation

For simplicity, we define ‖ · ‖ := ‖ · ‖2, as the Euclidean norm. The support of x ∈ R
n is denoted

by supp(x) := {i : xi 6= 0}. We use g to denote the gradient of f , that is, g(x) = ∇ f (x), ∀x. For any

index set I ⊆ {1, . . . ,n} (later, we will use index sets E and L), |I| is the cardinality of I and xI is

defined as the sub-vector of x of length |I|, consisting only of components xi, i ∈ I. Similarly, for

any vector-value mapping h, hI(x) denotes the sub-vector of h(x) consisting of hi(x), i ∈ I.

To express the subdifferential of ‖ · ‖1 we will use the signum function and multi-function (i.e.,

set-valued mapping). The signum function of t ∈ R is

sgn(t) :=











+1 t > 0,

0 t = 0,

−1 t < 0;

while the signum multi-function of t ∈ R is

SGN(t) := ∂|t| =











{+1} t > 0,

[−1,1] t = 0,

{−1} t < 0,

which is also the subdifferential of |t|.
For x ∈ R

n, we define sgn(x) ∈ R
n and SGN(x) ⊂ R

n component-wise as (sgn(x))i := sgn(xi)
and (SGN(x))i := SGN(xi), i = 1,2, · · · ,n, respectively. Furthermore, vector operators such as |x|

718

HYBRID ITERATIVE SHRINKAGE - HIS

and max{x,y} are defined to operate component-wise, analogous with the definitions of sgn and

SGN above. For x,y ∈ R
n, let x⊙ y ∈ R

n denote the component-wise product of x and y, that is,

(x⊙ y)i = xiyi. Finally, we let X∗ denote the set of all optimal solutions of problem (3).

2.2 Review of Fixed Point Continuation for ℓ1-minimization

A fixed-point continuation algorithm was proposed in Hale et al. (2008) as a fast algorithm for

large-scale ℓ1-regularized convex optimization problems. The authors considered the following

large-scale ℓ1-regularized minimization problem,

min
x∈Rn

f (x)+λ‖x‖1, (3)

where f : R
n → R is differentiable and convex, but not necessarily strictly convex, and λ > 0. They

devised a fixed-point iterative algorithm and proved its global convergence, including finite con-

vergence for some quantities, and a Q-linear (Quotient-linear) convergence rate without assuming

strict convexity of f or solution uniqueness. Numerically they demonstrated Q-linear convergence

in the quadratic case f (x) = ‖Ax− b‖2
2, where A is completely dense, and applied their algorithm

to ℓ1-regularized compressed sensing problems. As we will adopt this algorithm for solving our

problem (1), we review some important and useful results here and develop some new insights in

the context of ℓ1-regularized logistic regression.

The rationale for FPC is based on the idea of operator splitting. It is well-known in convex

analysis that minimizing a function in the form of φ(x) = φ1(x) + φ2(x), where both φ1 and φ2

are convex, is equivalent to finding a zero of the subdifferential ∂φ(x), that is, seeking x satisfying

0 ∈ T1(x)+T2(x) for T1 := ∂φ1 and T2 := ∂φ2. We say (I + τT1) is invertible if y = x+ τT1(x) has a

unique solution x for any given y. For τ > 0, if (I + τT1) is invertible and T2 is single-valued, then

0 ∈ T1(x)+T2(x) ⇐⇒ 0 ∈ (x+ τT1(x))− (x− τT2(x))

⇐⇒ (I − τT2)x ∈ (I + τT1)x

⇐⇒ x = (I + τT1)
−1(I − τT2)x. (4)

This gives rise to the forward-backward splitting algorithm in the form of a fixed-point iteration,

xk+1 := (I + τT1)
−1(I − τT2)x

k. (5)

Applying (4) to problem (1), where φ1(x) := λ‖x‖1 and φ2(x) := f (x), the authors of Hale et al.

(2008) obtained the following optimality condition of x∗:

x∗ ∈ X∗ ⇐⇒ 0 ∈ g(x∗)+λ SGN(x∗) ⇐⇒ x∗ = (I + τT1)
−1(I − τT2)x

∗,

where T2(·) = g(·), the gradient of f (·), and (I + τT1)
−1(·) is the shrinkage operator. Therefore, the

fixed-point iteration (5) for solving (3) becomes

xk+1 = s◦h(xk),

which is a composition of two mappings s and h from R
n to R

n.

The gradient descent operator is defined as

h(·) := I(·)− τ∇ f (·).

719

SHI, YIN, OSHER AND SAJDA

The shrinkage operator, on the other hand, can be written as

s(·) = sgn(·)⊙max{| · |−ν,0}, (6)

where ν = λτ . Shrinkage is also referred to soft-thresholding in the language of wavelet analysis:

(s(y))i =











yi −ν, yi > ν,

0, yi ∈ [−ν,ν],

yi +ν, yi < −ν.

In each iteration, the gradient descent step h reduces f (x) by moving along the negative gradient

direction of f (xk) and the shrinkage step s reduces the ℓ1-norm by “shrinking” the magnitude of each

nonzero component in the input vector.

2.3 Iterative Shrinkage for Sparse Logistic Regression

Recall that in the sparse logistic regression problem (1), the ℓ1 regularization is only applied to w, not

to v. Therefore, we propose a slightly different fixed point iteration. For simplicity of notation, we

define column vectors u = (w;v) ∈ R
n+1 and ci = (ai;bi) ∈ R

n+1, where ai = bxi, for i = 1,2, ...,m.

This reduces (1) to

min
u

lavg(u)+λ‖u1:n‖1,

where lavg = 1
m ∑m

i=1 θ(cT
i u), and θ denotes the logistic transfer function θ(z) = log(1+ exp(−z)).

The gradient and Hessian of lavg with respect to u is given by

g(u) ≡ ∇ lavg(u) =
1

m

m

∑
i=1

θ′(c⊤i u)ci,

H(u) ≡ ∇ 2lavg(u) =
1

m

m

∑
i=1

θ′′(c⊤i u)cic
⊤
i ,

where θ′(z) = −(1+ ez)−1 and θ′′(z) = (2+ e−z + ez)−1. To guarantee convergence, we require the

step length be bounded by 2(maxu λmaxH(u))−1.

The iterative shrinkage algorithm for sparse logistic regression is

uk+1 = s◦h1:n(u
k), for w component,

uk+1 = hn+1(u
k), for v component, (7)

which is a composition of two mappings h and s from R
n to R

n, where the gradient operator is

h(·) = ·− τg(·) = ·− τ∇ lavg(·).

While the authors in Hale et al. (2008) use a constant step length satisfying

0 < τ < 2/λmax{HEE(u) : u ∈ Ω},

we employ line search to avoid the expensive calculation of maximum eigenvalues. We will present

the convergence of the iterative shrinkage algorithm in Section 2.4. The details of the line search

algorithm will be discussed in Section 2.5.

720

HYBRID ITERATIVE SHRINKAGE - HIS

Algorithm 1 Fixed-Point Continuation Algorithm

Require: A = [c⊤1 ;c⊤2 ; · · · ;c⊤m] ∈ R
m×(n+1), u = (w;v) ∈ R

n+1, f (u) = m−1φ(Au), task:

minu lavg(u)+λ‖u‖1

Initialize u0

while “not converge” do
Armijo-like line search algorithm (Algorithm 2)

k = k +1

end while

2.4 Convergence

Global convergence and finite convergence on certain quantities were proven in Hale et al. (2008)

when the following conditions are met: (i) the optimal solution set X∗ is non-empty, (ii) f ∈C2 and

its Hessian H = ∇ 2 f is positive semi-definite in Ω = {x : ‖x−x∗‖ ≤ ρ} ⊂ R
n for ρ > 0, and (iii) the

maximum eigenvalue of H is bounded on Ω by a constant λ̂max and the step length τ is uniformly

less than 2/λ̂max. These conditions are sufficient for the forward operator h(·) to be non-expansive.

Assumption 1 Assume problem (1) has an optimal solution set X∗ 6= /0, and there exists a set

Ω = {x : ‖x− x∗‖ ≤ ρ} ⊂ R
n

for some x∗ ∈ X∗ and ρ > 0 such that f ∈C2(Ω), H(x) := ∇ 2 f (x) � 0 for x ∈ Ω and

λ̂max := sup
x∈Ω

λmax(H(x)) < ∞.

For simplicity for the analysis, we choose a constant step length τ in the fixed-point iterations (7):

xk+1 = s(xk − τg(xk)), where ν = τλ , and

τ ∈
(

0,2/λ̂max

)

,

which guarantees that h(·) = I(·)− τg(·) is non-expansive in Ω.

Theorem 1 Under Assumption, the sequence {uk} generated by the fixed-point iterations (7) ap-

plied to problem (1) from any starting point x0 ∈ Ω converges to some u∗ ∈U∗∩Ω. In addition, for

all but finitely many iterations, we have

uk
i = u∗i = 0, ∀i ∈ L = {i : |g∗i | < λ,1 ≤ i ≤ n}, (8)

sgn(hi(u
k)) = sgn(hi(u

∗)) = −
1

λ
g∗i , ∀i ∈ E = {i : |g∗i | = λ,1 ≤ i ≤ n}, (9)

where as long as

ω := min{ν(1−
|g∗i |

λ
) : i ∈ L} > 0.

The numbers of iterations not satisfying (8) and (9) do not exceed ‖u0−u∗‖2/ω2 and ‖u0−u∗‖2/ν2,

respectively.

721

SHI, YIN, OSHER AND SAJDA

Proof We sketch the proof here. First, the iteration (7) is shown to be non-expansive in ℓ2, that

is, ‖uk − u∗‖ does not increase in k with the assumption on the step length τ. Specifically, in

Assumption, the step length τ is chosen small enough to guarantee that ‖h(uk)−h(u∗)‖ ≤ ‖uk −u∗‖
(in practice, τ is determined, for example, by line search.) On the other hand, through a component-

wise analysis, one can show that no matter what τ is, the shrinkage operator s(·) is always non-

expansive, that is, ‖s(h1:n(u
k))−s(h1:n(u

∗))‖≤ ‖h1:n(u
k)−h1:n(u

∗)‖. Therefore, from the definition

of uk+1 in (7), we have

‖uk+1 −u∗‖ ≤ ‖uk −u∗‖, (10)

using the fact that u∗ is optimal if and only if u∗ is a fixed point with respect to (7). However, this

non-expansiveness of (7) does not directly give convergence.

Next, {uk} is shown to have a limit point x̄, that is, a subsequence converging to ū, due to the

compactness of Ω and (10). (7) can be proven to converge globally to ū. To show this, we first get

‖[s◦h1:n(ū);hn+1(ū)]− [s◦h1:n(u
∗);hn+1(u

∗)]‖ = ‖ū−u∗‖,

from the fact that ū is a limit point, and then use this equation to show that ū = [s◦h1:n(ū);hn+1(ū)],
that is, ū is a fixed point with respect to (7), and thus an optimal solution. Repeating the first step

above we have ‖uk+1 − ū‖ ≤ ‖uk − ū‖, which extends ū from being the limit of a subsequence to

one of the entire sequence.

Finally, to obtain the finite convergence result, we need to take a closer look at the shrinkage

operator s(·). When (8) does not hold for some iteration k at component i, we have |uk+1
i −u∗i |

2 ≤
|uk

i − u∗i |
2 −ω2, and for (9), we have |uk+1

i − u∗i |
2 ≤ |uk

i − u∗i |
2 − ν2. Obviously, there can be only

a finite number of iterations k in which either (8) or (9) does not hold, and such numbers do not

exceed ‖u0 −u∗‖2/ω2 and ‖u0 −u∗‖2/ν2, respectively.

A linear convergence result with a certain convergence rate can also be obtained. As long as

HEE(x∗) := [Hi, j(x
∗)]i, j∈E has full rank or f (x) is convex quadratic in x, the sequence {xk} converges

to x∗ R-linearly, and {‖xk‖1 + µ f (xk)} converges to ‖x∗‖1 + µ f (x∗) Q-linearly. Furthermore, if

HEE(x∗) has the full rank, then R-linear convergence can be strengthened to Q-linear convergence

by using the fact that the minimal eigenvalue of HEE at x∗ is strictly greater than 0.

2.5 Line Search

An important element of the iterative shrinkage algorithm is the step length τ at each iteration. To

ensure the stability of the algorithm, we require that the step length satisfy

0 < τ < 2/λmax{HEE(u) : u ∈ Ω}.

In compressive sensing, where the smooth part of the objective function is quadratic, the step length

is constant. In sparse logistic regression, however, the Hessian matrix changes at each iteration. If

one has to dynamically compute the step length at each iteration, this requires an expensive com-

putation for the Hessian matrix. Therefore, we resort to an “Armijo-like” line search algorithm to

avoid such a computational burden. For large-scale problems, a line search method, if used appro-

priately, can save tremendous CPU time and memory. Convergence of the Armijo-like line search

is not proven in our paper, however heuristic results are obtained through numerical experiments.

722

HYBRID ITERATIVE SHRINKAGE - HIS

Algorithm 2 Armijo-like Line Search Algorithm

Compute heuristic step length α0

Gradient step: uk− = uk −α0∇ lavg(u
k)

Shrinkage step: uk+ = s1:n(u
k−,λα0)

Obtain search direction: pk = uk+−uk

while “j < max line search attempts” do
if Armijo-like condition is met then

Accept line search step, update uk+1 = uk +α j p
k

else
Keep backtracking α j = µα j−1

end if
j = j +1

end while

Let’s denote the objective function for the ℓ1-regularized logistic regression as φ(u) for conve-

nience:

φ(u) = lavg(u)+λ‖u1:n‖1,

where lavg(u) = 1
m ∑m

i=1 θ(cT
i u) and θ is the logistic transfer function. A line search method, at each

iteration, computes the step length αk and the search direction pk:

uk+1 = uk +αk pk.

The search direction will be described in Eqn. (12). For our sparse logistic regression, a sequence of

step length candidates are identified, and a decision is made to accept one when certain conditions

are satisfied. We compute a heuristic step length and gradually decrease it until a sufficient decrease

condition is met.

Let’s define the heuristic step length as α0. Ideally the choice of step length α0, would be a

global minimizer of the smooth part of the objective function,

ϕ(α) = lavg(u
k +αpk), α > 0,

which is too expensive to evaluate, unlike the quadratic case in compressive sensing. Therefore, an

inexact line search strategy is usually performed in practice to identify a step length that achieves

sufficient decrease in ϕ(α) at minimal cost. Motivated by a similar approach in GPSR (Figueiredo

et al., 2007), we compute the heuristic step length through a minimizer of the quadratic approxima-

tion for ϕ(α),

lavg(u
k −α∇ lavg(u

k)) ≈ lavg(u
k)−α∇ lavg(u

k)T ∇ lavg(u
k)+0.5α2∇ lavg(u

k)T H(uk)∇ lavg(u
k).

Differentiating the right-hand side with respect to α and setting the derivative to zero, we obtain

α0 =
∇ lavg(ū

k)T ∇ lavg(ū
k)

∇ lavg(ūk)T H(ūk)∇ lavg(ūk)
, (11)

where ūk
i = 0, if ui = 0 or |gi| < λ and ūk = uk, otherwise. From (11) and the strict positiveness of

θ′′, we can see that the denominator is strictly positive as long as the gradient is nonzero. Compu-

tationally a very useful trick is not to compute the Hessian matrix directly, since we only use the

vector-matrix product between the gradient vector lavg(ū
k) and the Hessian matrix H(ūk).

723

SHI, YIN, OSHER AND SAJDA

Based on the heuristic step length α0, we can obtain the search direction pk, which is a combi-

nation of the gradient descent step and the shrinkage step:

uk− = uk −α0∇ lavg(u
k),

uk+ = s1:n(u
k−,λα0),

pk = uk+−uk. (12)

It is easy to verify that sν(y) is the solution to the non-smooth unconstrained minimization

problem min 1
2
‖x− y‖2

2 +λ‖x‖1. This minimization problem is equivalent to the following smooth

constrained optimization problem,

min
1

2
‖x− y‖2

2 +νz, subject to (x,z) ∈ Ω := {(x,z) | ‖x‖1 ≤ z},

whose optimality condition is

(s(x,ν)− x)T (y− s(x,ν)+ν(z−‖s(x,ν)‖1) ≥ 0,

for all x ∈ R
n, (y,z) ∈ Ω and ν > 0. Once we substitute u− τg for x, u for y, ‖u1:n‖1 for z and set

ν = λτ , the optimality condition becomes

(s1:n(u− τg,λτ)− (u− τg))T (u− s1:n(u− τg,λτ))+λτ(‖u1:n‖1 −‖s1:n(u− τg,λτ)‖1) ≥ 0.

Using the fact u+ = s1:n(u− τg,λτ), p = u+−u, we get

gT p+λ(‖u+
1:n‖1 −‖u1:n‖1) ≤−pT p/τ,

which means

∇ lavg(u
k)

T
pk +λ‖uk+

1:n‖1 −λ‖uk
1:n‖1 ≤ 0.

We then geometrically backtrack the step lengths, letting α j = α0, µα0, µ2α0, . . ., until the

following Armijo-like condition is satisfied:

φ(uk +α j p
k) ≤Ck +α j∆k.

Notice that the Armijo-like condition for line search stipulates that the step length α j in the search

direction pk should produce a sufficient decrease of the objective function φ(u). Ck is a reference

value with respect to the previous objective values, while the decrease in the objective function is

described as

∆k := ∇ lavg(u
k)

T
pk +λ‖uk+

1:n‖1 −λ‖uk
1:n‖1 ≤ 0.

There are two types of Armijo-like conditions depending on the choice of Ck. One can choose

Ck = φ(uk), which makes the line search monotone. One can also derive a non-monotone line

search, where Ck is a convex combination of the previous value Ck−1 and the function value φ(uk).
We refer interested readers to Wen et al. (2009) for more details.

Figure 2 illustrates the computational speedup using the line search. The top panel shows the

evolution of the objective function as a function of iterations. Tested on the benchmark data from

the UCI repository, we see that our algorithm results in a speedup of 40 (6000 iterations without

line search vs. 150 iterations with line search). The bottom panel shows the step length used in the

algorithm. In the absence of the line search, we require that the step length satisfy τ < 2/λ̂max. For

the Armijo-like line search, we illustrate both the heuristic step length α0 (solid black curve) and

the actual step length after backtracking (dashed red curve). Red asterisk labels the transition points

on the continuation path, a concept we will discuss in the next section. Note that the step lengths

can be on the order of 100 times larger for line search vs. no line search.

724

HYBRID ITERATIVE SHRINKAGE - HIS

Figure 2: Illustration of the Armijo-like line search, comparing the iterative shrinkage algorithm

with (right column) and without (left column) line search. (a) The objective function of

the iterative shrinkage algorithm without line search, attaining convergence after 6000

iterations. (b) The objective of the iterative shrinkage algorithm with line search, con-

verging at around 150 iterations. The gray bars under the “iteration” axes highlight the

difference between the number of iterations—the gray bar in (a) represents the same num-

ber of iterations as the gray bar in (b). (c) The step length without line search is bounded

by 2/λ̂max to ensure convergence. (d) The step length used in the Armijo-like line search,

(solid black curve) heuristic step length α0 (Eqn. 11), (dashed red curve) actual time

step after backtracking. The transition point on the continuation path is indicated in (red

asterisk). Data used in this numerical experiment are the ionosphere data from the UCI

machine learning data repository (http://archive.ics.uci.edu/ml/datasets/Ionosphere). Pa-

rameters used are utol = 0.001, gtol = 0.01, λ0 = 0.1, λ = 0.001.

725

SHI, YIN, OSHER AND SAJDA

2.6 Continuation Path

A continuation strategy is adopted in our algorithm, by designing a regularization path similar to

that is used in Hale et al. (2008),

λ0 > λ1 > ... > λL−1 = λ̄.

This idea is closely related to the homotopy algorithm in statistics, and has been successfully

applied to the ℓ1-regularized quadratic case, where the fidelity term is f (x) = ‖Ax−b‖2
2. The ratio-

nale of using such a continuation strategy is due to a fast rate of convergence for large λ. Therefore,

by taking advantage of different convergence rate for a family of regularization parameter λ, if

stopped appropriately, we can speed up the convergence rate of the full path. An intriguing discus-

sion regarding the convergence rate of fixed-point algorithm with λ and ω, the spectral properties of

Hessian, was presented in Hale et al. (2008). In the case of the logistic regression, we have decided

to use the geometric progression for the continuation path. We define

λi = λ0βi−1, for i = 0, ...,L−1,

where λ0 can be calculated based on the ultimate λ̄ we are interested in and the continuation path

length L, that is, λ0 = λ̄/βL−1.

As mentioned earlier, the goal of a continuation strategy is to construct a path with different

rate of convergence, with which we can speed up the whole algorithm. The solution obtained from

a previous subpath associated with λi−1 is used as the initial condition for the next subpath for λi.

Note that we design the path length L and the geometric progression rate β in such a way that the

initial regularization λ0 is fairly large, leading to a sparse solution for the initial path. Therefore, the

initial condition for the whole path, considering the sparsity in solution, is a zero vector.

Another design issue regarding such a continuation strategy is we stop each subpath according

to some criteria, in an endeavor to approximate the solution in the next λ as fast as possible. This

means that a strong convergence is not required in subpath’s except for the final one, and we can vary

the stopping criteria to “tighten” such a convergence as we proceed. The following two stopping

criteria are used:

‖uk+1 −uk‖

max(‖uk‖,1)
< utoli,

‖∇ lavg(u
k)‖∞

λi

−1 < gtol.

The first stopping criterion requires that relative change in u be small, while the second one is related

to the optimality condition, defined in Eqn. (13). Theoretically, we would like to vary utoli to attain

a seamless Q-linear convergence path. Such a choice seems to be problem dependent, and probably

even data dependent in practice. It remains an important, yet difficult research topic to study the

properties of different continuation strategies. We have chosen to use a geometric progression for

the tolerance value, utoli = utol0 ∗ γi−1, with utol0 = utol/γL−1. In our numerical simulation, we

use utol = 10−4 and gtol = 0.2.

Figure 3 shows the continuation path using fixed utol and a varying utol following geometric

progression. When we use a fixed utol to ensure strong convergence each for λ along the path, the

solver spends a lot of time evolving slowly. One can see in (a) that the objective function shows a

726

HYBRID ITERATIVE SHRINKAGE - HIS

fairly flat reduction at earlier stages of the path. Clearly by relaxing the convergence at earlier stages

of the path, we can accelerate the computation, shown in (b). The choice of utol and gtol seems to

be data dependent in our experience, and the result we show in (b) might be suboptimal. Further

optimization of the continuation path can potentially accelerate the computation even more, which

remains an open question for future research.

0 100 200 300 400 500

0.2

0.4

0.6

0.8

Iteration

O
b
je
c
ti
v
e

0 50 100 150 200

0.2

0.4

0.6

0.8

Iteration

O
b
je
c
ti
v
e

 (a) Fix utol (b) Vary utol

Figure 3: Illustration of the continuation strategy (a) using a fixed utol = 0.0001 is used for the

stopping criterion, (b) using a varying utol according to geometric progression. Note

that a stronger convergence is not necessary in earlier stages on the continuation path.

By using a varying utol, especially tightening utol as we move along the path, we can

accelerate the fixed point continuation algorithm. Shown is the objective value (black

curve) as a function of iteration, where the transition point on the regularization path is

labeled in (red asterisk). Data used in this experiment has 10000 dimension and 100

samples. A continuation path of length 8, starting from 0.128 and ending at 0.001.

3. Hybrid Iterative Shrinkage (HIS) Algorithm

In this section we describe a hybrid approach called HIS, which uses the iterative shrinkage algo-

rithm described previously to enforce sparsity and identify the support in the data, followed by a

subspace optimization via an interior point method.

3.1 Why A Hybrid Approach?

The hybrid approach is based on an interesting observation for the iterative shrinkage algorithm,

regarding some finite convergence properties. The optimality condition for min f (x)+λ‖x‖1 is the

following

g(x)+λSGN(x) ∈ 0, (13)

727

SHI, YIN, OSHER AND SAJDA

which requires that |gi| ≤ λ, for i = 1, ...,n. We define two index sets

L := {i : |g∗i | < λ} and E := {i : |g∗i | = λ},

where g∗ = g(u∗) is constant for all u∗ ∈ X∗ and |g∗i | ≤ λ for all i. Hence, L∩E = /0 and L∪E =
{1, . . . ,n}. The following holds true for all but a finite number of k:

uk
i = u∗i = 0, ∀i ∈ L,

sgn(hi(u
k)) = sgn(hi(u

∗)) = −
1

λ
g∗i , ∀i ∈ E.

Assume that the underlying problem is nondegenerate, then L and E equal the sets of zero and

nonzero components in x∗. According to the above finite convergence result, the iterative shrinkage

algorithm obtains L and E, and thus the optimal support and signs of the optimal nonzero compo-

nents, in a finite number of steps.

Corollary 2 Under Assumption 1, after a finite number of iterations, the fixed-point iteration (7)

reduces to gradient projection iterations for minimizing φ(uE) over a constraint set OE , where

φ(uE) := −(g∗E)⊤uE + f ((uE ;0)), and

OE = {uE ∈ R
|E| : −sgn(g∗E)⊙uE ≥ 0}.

Specifically, we have uk+1 = (uk+1
E ;0) in which

uk+1
E := POE

(

uk
E − τ∇φ (uk

E)
)

,

where POE
is the orthogonal projection onto OE , and ∇φ (uE) = −g∗E +gE((uE ;0)).

This corollary, see Corollary 4.6 in Hale et al. (2008), can be directly applied to sparse logistic

regression. The fixed point continuation reduces to the gradient projection after a finite number of

iterations. The proof of this corollary is in general true for the u1:n, that is, the w component in our

problem.

Corollary 2 implies an important fact: there are two phases in the fixed point continuation

algorithm. In the first phase, the number of nonzero elements in the x evolve rapidly, until after a

finite number of iterations, when the support (non-zero elements in a vector) is found. Precisely,

it means that for all k > K, the nonzero entries in uk include all true nonzero entries in u∗ with

the matched signs. However, unless k is large, uk typically also has extra nonzeros. At this point,

the fixed point continuation reduces to the gradient projection, starting the second phase of the

algorithm. In the second phase, the zero elements in the vector stay unaltered, while the magnitude

of the nonzero elements (support) keeps evolving.

The above observation is a general statement for any f that is convex. Recall the quadratic case,

where f = ‖y−Ax‖2
2, the second phase is very fast in terms of convergence rate. This is due to

the quadratic function, and in an application to compressive sensing, the fixed point continuation

algorithm alone has resulted in super-fast performance for large-scale problems (Hale et al., 2008).

In the case of sparse logistic regression, we have a non-strictly convex f , the average logistic regres-

sion. This results in a fairly slow convergence rate when the algorithm reaches the second phase. In

view of the continuation strategy we have, this greatly affects the speed of the last subpath, with the

728

HYBRID ITERATIVE SHRINKAGE - HIS

regularization parameter λ̄ of interest. In some sense, we have designed a continuation path that is

super-fast until it reaches the second phase of the final subpath. This is not surprising given that the

fixed point continuation algorithm is based on gradient descent and shrinkage operator. We envision

that by switching to a Newton’s method, we can accelerate the second phase.

Based on this intuition, we are now in a position to describe a hybrid algorithm: a fixed point

continuation plus an interior point truncated Newton method. For the latter part we resort to the

customized interior point in Koh et al. (2007). We modified the source code of the l1logreg software

(written in C), and built an interface to our MATLAB code. This hybrid approach, based on our

observation of the two phases, enables us to attain a good balance of speed and accuracy.

3.2 Interior Point Phase

The second phase of our HIS algorithm used an interior point method developed by Koh et al.

(2007). We directly used a well-developed software package l1logreg1 and modified the source

code to build an interface to MATLAB. We review some key points for the interior point method

here.

In Koh et al. (2007), the authors overcome the difficulty of non-differentiability of the objec-

tive function by transforming the original problem into an equivalent one with linear inequality

constraints,

min
1

m

m

∑
i=1

lavg(w
T ai + vbi)+λ1T u

s.t. −ui ≤ wi ≤ ui, i = 1, ...,n.

A logarithmic barrier function, smooth and convex, is further constructed for the bound con-

straints,

ρ(w,u) = −
n

∑
i=1

log(ui +wi)−
n

∑
i=1

log(ui −wi),

defined on the domain {(w,u)∈R
n×R

n||wi|< ui, i = 1, ...,n}. The following optimization problem

can be obtained by augmenting the logarithmic barrier,

ψt(v,w,u) = tlavg(v,w)+ tλ1T u+ρ(w,u),

where t > 0. The resulting objective function is smooth, strictly convex and bounded below, and

therefore has a unique minimizer (v∗(t),w∗(t),u∗(t)). This defines a curve in R×R
n ×R

n, param-

eterized by t, called the central path. The optimal solution is also shown to be dual feasible. In

addition, (v∗(t),w∗(t)) is 2n/t-suboptimal.

As a primal interior-point method, the authors computed a sequence of points on the central path,

for an increasing sequence of values of t, and minimized ψt(v,w,u) for each t using a truncated

Newton’s method. The interior point method was customized by the authors in several ways: 1)

the dual feasible point and the associated duality gap was computed in a cheap fashion, 2) the

central path parameter t was updated to achieve a robust convergence when combined with the

preconditioned conjugate gradient (PCG) algorithm, 3) an option for solving the Newton’s system

was given for problems of different scales, where small and medium dense problems were solved by

direct methods (Cholesky factorization), while large problems were solved using iterative methods

(conjugate gradients). Interested readers are referred to Koh et al. (2007) for more details.

1. Software can be downloaded at http://www.stanford.edu/˜boyd/papers/l1_logistic_reg.html.

729

SHI, YIN, OSHER AND SAJDA

3.3 The Hybrid Algorithm

The hybrid algorithm leverages the computational strengths of both the iterative shrinkage solver

and the interior point solver.

Algorithm 3 Hybrid Iterative Shrinkage (HIS) Algorithm

Require: A = [c⊤1 ;c⊤2 ; · · · ;c⊤m] ∈ R
m×n+1, u = (w;v) ∈ R

n+1, f (u) = m−1φ(Au)
task: minu lavg(u)+λ‖u‖1

Initialize u0

PHASE 1 : ITERATIVE SHRINKAGE
Select λ0 and utol0
while “not converge” do

if “the last continuation path”, i == (L−1) and “transition condition” then
“transit into PHASE 2”

else
Update λi = λi−1β, utoli = utoli−1γ
Compute heuristic step length α0

Gradient descent step: uk− = uk −α0∇ lavg(u
k)

Shrinkage step: uk+ = s1:n(u
k−,λα0)

Obtain line search direction: pk = uk+−uk

while “j < max line search attempts” do
if Armijo-like condition is met then

Accept line search step, update uk+1 = uk +α j p
k

else
Keep backtracking α j = µα j−1

end if
j = j +1

end while
end if

end while
PHASE 2 : INTERIOR POINT
Initialize w̃ = wnonzero get subproblem minψt(v, w̃,u)
while “not converged” η > ε do

Solve the Newton system : ∇ 2ψk
t (v, w̃,u)[∆v,∆w̃,∆u] = −∇ψ k

t (v, w̃,u)
Backtracking line search : find the smallest integer j ≥ 0 that satisfies

ψk
t (v+α j∆v, w̃+α j∆w̃,u+α j∆u) ≤ ψk

t (v, w̃,u)+ cα j∇ψ k
t (v, w̃,u)T [∆v,∆w̃,∆u]

Update ψk+1
t (v, w̃,u) = ψk

t (v, w̃,u)+α j(∆v,∆w̃,∆u)
Check dual feasibility

Evaluate duality gap η
k = k +1

end while

In the first phase, we use the iterative shrinkage solver, due to its computational efficiency and

memory friendliness. It is especially beneficial to have a memory friendly solver for the initial

phase when one is dealing with large-scale data sets. Recall that we use a continuation strategy for

the iterative shrinkage phase, where a sequence of λ’s is used along a regularization path. In the

730

HYBRID ITERATIVE SHRINKAGE - HIS

last subpath where λ is the desired one, we transit to the interior point when the true support of the

vector is found. The corollary in Section 3.1 states that iterative shrinkage recovers the true support

in a finite number of steps. In addition, iterative shrinkage obtains all true nonzero components long

before the true support is obtained. Therefore, as long as the iterative shrinkage seems to stagnate,

which can be observed when the objective function evolves very slowly, it is highly likely that all

true nonzero components are obtained. This indicates that the algorithm is ready for switching to

the interior point.

In practice, we require the following transition condition,

‖uk+1 −uk‖

max(‖uk‖,1)
< utolt ,

and extract the nonzero components in w as the input to the interior point solver. By doing so, we

reduce the problem to a subproblem where the dimension is much smaller, and solve the subproblem

using the interior point method.

The resulting hybrid algorithm achieves high computational speed while attaining the same

numerical accuracy as the interior point method, as demonstrated with empirical results in the next

section.

4. Numerical Results

In this section we present numerical results, on a variety of data sets, to demonstrate the benefits of

our hybrid framework in terms of computational efficiency and accuracy.

4.1 Benchmark

We carried out a numerical comparison of the HIS algorithm with several existing algorithms in liter-

ature for ℓ1-regularized logistic regression. Inspired by a comparison study on this topic by Schmidt

et al. (2007),2 we compared our algorithm with 10 algorithms, including a generalized version of

Gauss-Seidel, Shooting, Grafting, Sub-Gradient, epsL1, Log-Barrier, Log-Norm, SmoothL1, EM,

ProjectionL1 and Interior-Point method. In the numerical study, we replaced the interior point

solver by the one written by Koh et al. (2007). Benchmark data were taken from the publicly avail-

able UCI machine learning repository.3 We used 10 data sets of small to median size (internetad1,

arrhythmia, glass, horsecolic, indiandiabetes, internetad2, ionosphere, madelon, pageblock, spam-

base, spectheart, wine).

All of the methods were run until the same convergence criteria was met, where appropriate,

for instance the step length, change in function value, negative directional derivative, optimality

condition, convergence tolerance is less than 10−6. We treated each algorithm solver as a black

box and evaluated both the computation time and the sparsity (measured by cardinality of solution).

We set an upper limit of 250 iterations, meaning we stop the solver when the number of iteration

exceeds 250. Since different algorithm has different speed for each iterate (usually a Newton step is

more expensive than a gradient descent step), we think the computation time is a more appropriate

evaluation criterion than number of iterations. The ability of the algorithm to find a sparse solution,

measured by the cardinality, was also evaluated in this process.

2. Source code is available at http://www.cs.wisc.edu/˜gfung/GeneralL1.

3. UCI machine learning repository is at http://www.ics.uci.edu/˜mlearn/MLRepository.html.

731

SHI, YIN, OSHER AND SAJDA

Figure 4 shows the benchmark result using data from the UCI machine learning repository. All

numerical results shown are averaged over a regularization path. The parameters for the regulariza-

tion path are calculated according to each data set, where the maximal regularization parameter is

calculated as follows:

λmax =
1

m

∥

∥

m−

m
∑

bi=+1

ai +
m+

m
∑

bi=−1

ai

∥

∥

∞, (14)

where m− is the number of training samples with label −1 and m+ is the number of training samples

with label +1 (Koh et al., 2007). λmax is an upper bound for the useful range of regularization

parameter. When λ ≥ λmax, the cardinality of the solution will be zero. In this case, we test a

regularization path of length 10, that is, λmax, 0.9λmax, 0.8λmax ... 0.1λmax. Among all the numerical

solvers, our HIS algorithm is the most efficient. HIS achieves comparable cardinality in the solution,

compared to the interior point solver.

We also evaluated the accuracy of the solution by looking at the classification performance using

Kfold cross-validation. Table 1 summaries the accuracy of the solution using the HIS algorithm,

compared to the interior point (IP) algorithm. Clearly, HIS algorithm achieves comparable accuracy

compared to IP, an algorithm that is recognized for its high accuracy.

(a) Time (b) Cardinality

10
−2

10
−1

10
0

10
1

10
2

10
3

T
im

e
 (

s
)

G
a

u
ss

S
e

id
e

l

S
h

o
o

ti
n

g

G
ra

ft
in

g

S
u

b
G

ra
d

ie
n

t

E
p

sL
1

Lo
g

N
o

rm

S
m

o
o

th
L

1

E
M

P
ro

je
ct

io
n

L
1

In
te

ri
o

rP
o

in
t

H
IS

10
0

10
1

10
2

10
3

C
a
rd
in
a
lit
y

G
a

u
ss

S
e

id
e

l

S
h

o
o

ti
n

g

G
ra

ft
in

g

S
u

b
G

ra
d

ie
n

t

E
p

sL
1

Lo
g

N
o

rm

S
m

o
o

th
L

1

E
M

P
ro

je
ct

io
n

L
1

In
te

ri
o

rP
o

in
t

H
IS

Figure 4: Comparison of our hybrid iterative shrinkage (HIS) method with several other existing

methods in literature. Benchmark data were taken from the UCI machine learning reposi-

tory, including 10 publicly available data sets. (a) Distribution of computation time across

10 data sets, (b) Distribution of cardinality for the solution across 10 data sets, averaged

over a regularization path.

4.2 Scaling Result

Numerical experiments were carried out to study how our algorithm scales with the problem size.

For the sake of generality, we used simulated data whose dimension ranges from 64 to 131072. The

732

HYBRID ITERATIVE SHRINKAGE - HIS

Accuracy Comparison

(Az ∈ [0.5,1.0])

dataname accuracy(HIS) accuarcy(IP)

arrhythmia 0.7363 0.7363

glass 0.6102 0.6102

horsecolic 0.5252 0.5252

ionosphere 0.5756 0.5756

madelon 0.6254 0.6254

spectheart 0.5350 0.5350

wine 0.6102 0.6102

internetad 0.8486 0.8486

Table 1: Comparison of solution accuracy for our hybrid iterative shrinkage (HIS) algorithm and

the interior point (IP) algorithm. Accuracy of the solution was measured by Az value,

resulted from Kfold cross-validation, where Kfold is 10. A regularization path of varying

λ were computed to determine the maximum generalized Az value. The data sets were

taken from the UCI machine learning repository.

data is drawn from a Normal distribution, where the mean of the distribution is shifted by a small

amount for each class (0.1 for samples with label 1, and −0.1 for samples with label −1). The

number of samples is the same for both classes and chosen to be smaller than the dimension of the

data. Experiments for each dimension were carried out on 100 different sets of random data. We

compared the mean and variances of the computation time, and compared our HIS algorithm to the

IP algorithm.

Table 2 summarizes the computational speed for the HIS algorithm and the IP algorithm. It

is noteworthy that the HIS algorithm improves the efficiency of computation, while maintaining

comparable accuracy to the IP algorithm. Figure 5 plots the computation result as a function of

dimension for better illustration. In (a) one can clearly see the speedup we gain from the HIS

algorithm (red), compared to the IP algorithm (blue). We also show the solution quality in (b),

where the weights we get from both solvers, is comparable.

4.3 Regularization Parameter

In general, the regularization parameter λ affects the number of iterations to converge for any solver.

As λ becomes smaller, the cardinality of the solution increases, and the computation time needed

for convergence also increases. Therefore when one seeks a solution with less sparsity (small λ), it

is more computationally expensive.

In practice, when one carries out classification on a set of data, the optimal regularization pa-

rameter is often unknown. Speaking of optimality, we refer to a regularization parameter that results

in the best classification result evaluated using Kfold cross-validation. One would run the algorithm

along a regularization path, λmax, ...,λmin, where λmax is computed by Eqn. (14) and where λmin is

supplied by the user.

Figure 6 shows the evolution of solution along the regularization path, using a small data set

(ionosphere) from the UCI machine learning repository. This explores sparsity of different degrees

733

SHI, YIN, OSHER AND SAJDA

Speed Comparison

(in second)

dimension mean(HIS) std(HIS) mean(IP) std(IP)

64 0.0026 0.00069 0.0043 0.00057

128 0.0025 0.00058 0.0049 0.00037

256 0.0026 0.00075 0.0078 0.00052

512 0.0024 0.00059 0.018 0.0017

1024 0.0023 0.00056 0.029 0.0023

2048 0.0026 0.00064 0.054 0.0026

4096 0.0028 0.00057 0.098 0.0050

8192 0.0030 0.00059 0.19 0.0076

16384 0.0033 0.00055 0.40 0.018

32768 0.0038 0.00055 0.89 0.037

65536 0.0049 0.00054 2.01 0.096

131072 0.0077 0.00056 4.49 0.24

Table 2: Speed comparison of the HIS algorithm with the IP algorithm, based on simulated random

benchmark data. Shown here is the computation speed as a function of dimension. Data

used here are generated by sampling from two Gaussian distributions. Note that in the

simulation, the continuation path used in the iterative shrinkage may or may not be optimal,

which means that the speed profile for the HIS algorithm can be essentially accelerated

even more.

(a) Speed (b) Solution

10
1

10
2

10
3

10
4

10
5

10
6

10
−3

10
−2

10
−1

10
0

10
1

Dimension n

T
im

e
 (

s
)

 IP

 HIS

0 5000 10000
−2

−1

0

1

2

0 5000 10000
−2

−1

0

1

2

Dimension n

C
o

e
ff

ie
n

ts
 W

 IP

 HIS

Figure 5: Comparison for the random benchmark data, between the HIS algorithm and the IP algo-

rithm. (a) Speed profile for these two approaches: (blue curve) shows the speed profile

for the IP algorithm, and (red curve) shows the speed profile for the HIS algorithm as a

function of the data dimension. (b) An example of the solutions using the IP algorithm

(blue) and the HIS algorithm (red).

734

HYBRID ITERATIVE SHRINKAGE - HIS

λ

W

00.050.10.150.2

5

10

15

20

25

30

−4

−2

0

2

4

6

8

Figure 6: Solution w evolves along a regularization path, following a geometric progression from

10−1 to 10−4. Data is ionosphere from UCI machine learning repository. As the λ be-

comes smaller, the cardinality of the solution goes up.

in the solution, and one can determine the optimal sparsity for the data. This is an attractive prop-

erty of this model, where one can search in the feature space the most informative features about

discrimination.

We illustrate the effect of the regularization parameter using real data of large scale. The data

concerns a two alternative force choice task for face versus car discrimination. We used a spik-

ing neuron model of primary visual cortex to map the input into cortical space, and decoded the

resulting spike trains using sparse logistic regression (Shi et al., 2009). The data has 40960 dimen-

sions and 360 samples for each of the two classes. Kfold cross-validation was used to evaluate the

classification performance, where the number of Kfolds is 10 in our simulation.

The speedup of the HIS algorithm compared to the IP algorithm is shown in Figure 7(a), where

blue indicates the computation time of the IP algorithm, and red shows the HIS algorithm. The

HIS algorithm results in a significant speedup over the IP algorithm, without loss of accuracy. Note

that there is an issue of model selection when we apply sparse logistic regression model to the data,

in a sense there exists an optimal level of sparsity that achieves the best classification result. We

ran the model with a sequence of regularization parameters, which resulted in classification result

(evaluated by Az value from Kfold cross-validation). Figure 7(b) illustrates the classification result

as a function of the cardinality of the solution. One can see the bell shape in the curve, which

provides a route to select the optimal sparsity for the solution.

735

SHI, YIN, OSHER AND SAJDA

(a) Time (b) Classification

Figure 7: An example using real data of large scale, n = 40960, m = 360. (a) Computation time

along such a regularization path, where the smaller λ requires more computation time.

Note that the simulation is carried out for each λ separately. (b) Classification perfor-

mance derived from ROC analysis based on Kfold cross-validation. Data used in this

simulation are neural data for a visual discrimination task (Shi et al., 2009).

4.4 Data Sets with Large Dimensions and Samples

We applied the HIS algorithm to some examples of real-world data that have both large dimensions

n and samples m. In this case, we considered text classification using the binary rcv1 data4 (Lewis

et al., 2004), and real-sim data.5

We ran the simulation on an Apple Mac Pro with two 3 GHz Quad-Core Intel processors, and

8 GB of memory. The timing of the simulation was calculated within the Matlab interface. All

the operations were optimized for sparse matrix computation. Table 3 summarizes the numerical

results. For both examples of text classification, we observed a speedup using the HIS algorithm

while attaining the same numerical accuracy, compared with the IP algorithm. The regularization

parameter does affect the computational efficiency, as we have observed in the previous section.

5. Conclusion

We have presented in this paper a computationally efficient algorithm for the ℓ1-regularized logistic

regression, also called the sparse logistic regression. The sparse logistic regression is a widely used

model for binary classification in supervised learning. The ℓ1 regularization leads to sparsity in

the solution, making it a robust classifier for data whose dimensions are larger than the number of

4. Binary rcv1 data is available at http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/binary.html#

rcv1.binary.

5. Real-sim data is available at http://www.cs.umass.edu/˜mccallum/code-data.html.

736

HYBRID ITERATIVE SHRINKAGE - HIS

Text Classification Application

(in second)

rcv1 real-sim

n = 20242 n = 72309

m = 47236 m = 20958

nonzero = 1498952 nonzero = 3709083

λ Time(HIS) Time(IP) Time(HIS) Time(IP)

10−1 0.11 1.93 0.62 6.61

10−2 0.27 1.93 0.62 6.61

10−3 2.08 8.20 5.50 18.45

10−4 5.80 8.66 13.12 19.36

Table 3: Illustration of performance on text classification, where both the dimensions n and samples

m are large-scale. We compare the computational efficiency of the HIS and IP algorithms.

In both cases, the solution accuracy is the same.

samples. Sparsity also provides an attractive avenue for feature selection, useful for various data

mining tasks.

Solving the large-scale sparse logistic regression usually requires expensive computational re-

sources, depending on the specific solver, memory and/or CPU time. The interior point method is so

far the most efficient solver in the literature, but requires expensive memory consumption. We have

presented the HIS algorithm, which couples a fast shrinkage method and a slower but more accurate

interior point method. The iterative shrinkage algorithm has global convergence with a Q-linear

rate. Various techniques such as line search and continuation strategy are used to accelerate the

computation. The shrinkage solver only involves the gradient descent and the shrinkage operator,

both of which are first-order. Based solely on efficient memory operations such as matrix-vector

multiplication, the shrinkage solver serves as the first phase for the algorithm. This reduces the

problem to a subspace whose dimension is smaller than the original problem. The HIS algorithm

then transits into the second phase, using a more accurate interior point solver. We numerically

compare the HIS algorithm with other popular algorithms in the literature, using benchmark data

from the UCI machine learning repository. We show that the HIS algorithm is the most computa-

tionally efficient, while maintaining high accuracy. The HIS algorithm also scales very well with

dimension of the problem, making it attractive for solving large-scale problems.

There are several ways to extend the HIS algorithm. One is to extend it beyond binary classifi-

cation, allowing for multiple classes (Krishnapuram and Hartemink, 2005). The other is to further

improve the regularization path. When applying the HIS algorithm, one will usually explore a range

of sparsity by constructing a regularization path (λmax, λ1, ..., λmin). Usually the smaller the λ,

the more expensive it is to employ the shrinkage algorithm. One can accelerate the computation

using the Bregman regularization, inspired by Yin et al. (2008). The Bregman iterative algorithm

essentially boosts the solution by solving a sequence of optimizations, resulting in a different regu-

larization path. Bregman has also been shown to improve solution quality in the presence of noise

(Burger et al., 2006; Shi and Osher, 2008; Osher et al., 2010). We will discuss such a regularization

path in a future paper.

737

SHI, YIN, OSHER AND SAJDA

Acknowledgments

We thank Mads Dyrholm (Columbia University) for fruitful discussions. We appreciate the anony-

mous reviewers, who have helped improve the quality of our paper. Jianing Shi and Paul Sajda’s

work was supported by grants from NGA (HM1582-07-1-2002) and NIH (EY015520). Wotao Yin’s

work was supported by NSF CAREER Award DMS-0748839 and ONR Grant N00014-08-1-1101.

Stanley Osher’s work was supported by NSF grants DMS-0312222, and ACI-0321917 and NIH

G54 RR021813.

References

C.M. Bishop. Pattern Recognition and Machine Learning. Springer, 2007.

S. Boyd, S.-J. Kim, L. Vandenberghe, and A. Hassibi. A tutorial on geometric programming. Opti-

mization and Engineering, 8(1):67–127, 2007.

M. Burger, G. Gilboa, S. Osher, and J. Xu. Nonlinear inverse scale space methods. Communications

in Mathematical Sciences, 4:179–212, 2006.

E.J. Candés and T. Tao. Near optimal signal recovery from random projections: Universal encoding

strategies? IEEE Trans. Inform. Theory, 52(2):5406–5425, 2006.

E.J. Candés, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal reconstruction

from highly incomplete frequency information. IEEE Trans. Inform. Theory, 52(2):489–509,

2006.

S. Chen, D.L. Donoho, and M.A. Saunders. Atomic decomposition by basis pursuit. SIAM J.

Scientific Computing, 20:33–61, 1998.

J.F. Claerbout and F. Muir. Robust modeling with erratic data. Geophysics, 38(5):826–844, 1973.

A. d’Aspremont, L. El Ghaoui, M. Jordan, and G. Lanckriet. A direct formulation for sparse pca

using semidefinite programming. In Advances in Neural Information Processing Systems, pages

41–48. MIT Press, 2005.

D.L. Donoho. Compressed sensing. IEEE Trans. Inform. Theory, 52:1289–1306, 2006.

D.L. Donoho and M. Elad. Optimally sparse representations in general nonorthogonal dictionaries

by ℓ1 minimization. Proc. Nat’l Academy of Science, 100(5):2197–2202, 2003.

D.L. Donoho and X. Huo. Uncertainty principles and ideal atomic decomposition. IEEE. Trans.

Inform. Theory, 48(9):2845–2862, 2001.

D.L. Donoho and B.F. Logan. Signal recovery and the large sieve. SIAM J. Appl. Math., 52(2):

577–591, 1992.

D.L. Donoho and P.B. Stark. Uncertainty principle and signal recovery. SIAM J. Appl. Math., 49(3):

906–931, 1989.

738

HYBRID ITERATIVE SHRINKAGE - HIS

D.L. Donoho, I. Johnstone, G. Kerkyacharian, and D. Picard. Wavelet shrinkage: Asymptopia? J.

Roy. Stat. Soc. B, 57(2):301–337, 1995.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Annals of Statistics,

32(2):407–499, 2004.

S. Eyheramendy, A. Genkin, W. Ju, D. Lewis, and D. Madigan. Sparse bayesian classifiers for text

categorization. Technical report, J. Intelligence Community Research and Development, 2003.

M. Figueiredo. Adaptive sparseness for supervised learning. IEEE Trans. Pattern Analysis and

Machine Intelligence, 25:1150–1159, 2003.

M. Figueiredo and A. Jain. Bayesian learning of sparse classifiers. In IEEE Conf. Computer Vision

and Pattern Recognition, pages 35–41, 2001.

M. Figueiredo, R. Nowak, and S. Wright. Gradient projection for sparse reconstruction: application

to compressed sensing and other inverse problems. IEEE J. Selected Topics in Signal Processing:

Special Issue on Convex Optimization Methods for Signal Processing, 1(4):586–598, 2007.

A. Genkin, D.D. Lewis, and D. Madigan. Large-scale bayesian logistic regression for text catego-

rization. Technometrics, 49(3):291–304, 2007.

A.D. Gerson, L.C. Parra, and P. Sajda. Cortical origins of response time variability during rapid

discrimination of visual objects. Neuroimage, 28(2):342–353, 2005.

A. Ghosh and S. Boyd. Growing well-connected graphs. In 45th IEEE Conference on Decision and

Control, pages 6605–6611, 2006.

J. Goodman. Exponential priors for maximum entropy models. In Proceedings of the Annual

Meetings of the Association for Computational Linguistics, 2004.

E. Hale, W. Yin, and Y. Zhang. Fixed-point continuation for ℓ1-minimization: methodology and

convergence. SIAM J. Optimization, 19(3):1107–1130, 2008.

A. Hassibi, J. How, and S. Boyd. Low-authority controller design via convex optimization. AIAA

Journal of Guidance, Control and Dynamics, 22(6):862–872, 1999.

K. Koh, S.-J. Kim, and S. Boyd. An interior-point method for large-scale ℓ1-regularized logistic

regression. J. Machine Learning Research, 8:1519–1555, 2007.

B. Krishnapuram and A. Hartemink. Sparse multinomial logistic regression: fast algorithms and

generalization bounds. IEEE Trans. Pattern Analysis and Machine Intelligence, 27(6):957–968,

2005.

B. Krishnapuram, L. Carin, and M. Figueiredo. Sparse multinomial logistic regression: fast algo-

rithms and generalization bounds. IEEE Trans. Pattern Analysis and Machine Intelligence, 27(6):

957–968, 2005.

S. Lee, H. Lee, P. Abbeel, and A. Ng. Efficient ℓ1-regularized logistic regression. In 21th National

Conference on Artificial Intelligence (AAAI), 2006.

739

SHI, YIN, OSHER AND SAJDA

D.D. Lewis, Y. Yang, T.G. Rose, and F. Li. Rcv1: A new benchmark collection for text categoriza-

tion research. J. Machine Learning Research, 5:361–397, 2004.

J.G. Liao and K.V. Chin. Logistic regression for disease classification using microarray data: model

selection in a large p and small n case. Bioinformatics, 23(15):1945–51, 2007.

N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algo-

rithm. Machine Learning, 2:285–318, 1988.

M. Lobo, M. Fazel, and S. Boyd. Portfolio optimization with linear and fixed transaction costs.

Annals of Operations Research, 152(1):376–394, 2007.

J. Lokhorst. The lasso and generalised linear models. Technical report, Honors Project, Department

of Statistics, University of Adelaide, South Australia, Australia, 1999.

D. Madigan, A. Genkin, D. Lewis, and D Fradkin. Bayesian multinomial logistic regression for

author identification. In Maxent Conference, pages 509–516, 2005.

B.K. Natarajan. Sparse approximate solutions to linear system. SIAM J. Computing, 24(2):227–234,

1995.

A. Ng. Feature selection, ℓ1 vs ℓ2 regularization, and rotational invariance. In International Confer-

ence on Machine Learning (ICML), pages 78–85. ACM Press, New York, 2004.

A. Ng. On feature selection: Learning with exponentially many irrelevant features as training

examples. In International Conference on Machine Learning (ICML), pages 404–412, 1998.

S. Osher, Y. Mao, B. Dong, and W. Yin. Fast linearized bregman iteration for compressive sensing

and sparse denoising. Communications in Mathematical Sciences, 8(1):93–111, 2010.

M.Y. Park and T. Hastie. ℓ1 regularized path algorithm for generalized linear models. J. R. Statist.

Soc. B, 69:659–677, 2007.

L.C. Parra, C. Spence, and P. Sajda. Higher-order statistical properties arising from the non-

stationarity of natural signals. In Advances in Neural Information Processing Systems, volume 13,

pages 786–792, 2001.

L.C. Parra, C.D. Spence, A.D. Gerson, and P. Sajda. Recipes for the linear analysis of EEG. Neu-

roimage, 28(2):326–341, 2005.

S. Perkins and J. Theiler. Online feature selection using grafting. In Proceedings of the Twenty-First

International Conference on Machine Learning (ICML), pages 592–599. ACM Press, 2003.

M.G. Philiastides and P. Sajda. Temporal characterization of the neural correlates of perceptual

decision making in the human brain. Cereb Cortex, 16(4):509–518, 2006.

B. Polyak. Introduction to Optimization. Optimization Software, 1987.

V. Roth. The generalized lasso. IEEE Tran. Neural Networks, 15(1):16–28, 2004.

L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. Phys-

ica D, 60(1-4):259–268, 1992.

740

HYBRID ITERATIVE SHRINKAGE - HIS

M. Schmidt, G. Fung, and R. Rosales. Fast optimization methods for l1 regularization: a compar-

ative study and two new approaches. In European Conference on Machine Learning (ECML),

pages 286–297, 2007.

J. Shi and S. Osher. A nonlinear inverse scale space method for a convex multiplicative noise model.

SIAM J. Imaging Sciences, 1(3):294–321, 2008.

J. Shi, J. Wielaard, R.T. Smith, and P. Sajda. Perceptual decision making investigated via sparse

decoding of a spiking neuron model of V1. In 4th International IEEE/EMBS Conference on

Neural Engineering, pages 558–561, 2009.

N.Z. Shor. Minimization Methods for Non-differentiable functions. Springer Series in Computa-

tional Mathematics. Springer, 1985.

H.L. Taylor, S.C. Banks, and J.F. McCoy. Deconvolution with the ℓ1 norm. Geophysics, 44(1):

39–52, 1979.

R. Tibshirani. Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. B, 58(1):267–288,

1996.

Y. Tsuruoka, J. McNaught, J. Tsujii, and S. Ananiadou. Learning string similarity measures for

gene/protein name dictionary look-up using logistic regression. Bioinformatics, 23(20):2768–74,

2007.

L. Vandenberghe, S. Boyd, and A. El Gamal. Optimal wire and transistor sizing for circuits with

non-tree topology. In IEEE/ACM International Conference on Computer Aided Design, pages

252–259, 1997.

L. Vandenberghe, S. Boyd, and A. El Gamal. Optimizing dominant time constant in RC circuits.

IEEE Trans. Computer-Aided Design, 17(2):110–125, 1998.

V. Vapnik. Estimation of Dependences Based on Empirical Data. Springer-Verlag, 1982.

V. Vapnik. Statistical Learning Theory. John Wiley & Sons, 1988.

Z. Wen, W. Yin, D. Goldfarb, and Y. Zhang. A fast algorithm for sparse reconstruction based on

shrinkage, subspace optimization and continuation. Technical report, Rice University CAAM

TR09-01, 2009.

W. Yin, S. Osher, J. Darbon, and D. Goldfarb. Bregman iterative algorithm for ℓ1-minimization with

applications to compressed sensing. SIAM J. Imaging Science, 1(1):143–168, 2008.

P. Zhao and B. Yu. On model selection consistency of lasso. J. Machine Learning Research, 7:

2541–2567, 2007.

J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani. 1-norm support vector machines. In Advances in

Neural Information Processing Systems, volume 16, pages 49–56. MIT Press, 2004.

H. Zou, T. Hastie, and R. Tibshirani. Sparse principle component analysis. J. Computational and

Graphical Statistics, 15(2):262–286, 2006.

741

