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Abstract—In the field of big data applications, image in-
formation is widely used. The value density of information
utilization in big data is very low, and how to extract useful
information quickly is very important. So we should transform
the unstructured image data source into a form that can be
analyzed. In this paper, we proposed a fast image retrieval
method which designed for big data. First of all, the feature
extraction method is necessary and the feature vectors can be
obtained for every image. Then, it is the most important step
for us to encode the image feature vectors and make them into
database, which can optimize the feature structure. Finally, the
corresponding similarity matching is used to determined the
retrieval results. There are three main contributions for image
retrieval in this paper. New feature extraction method, reasonable
elements ranking and appropriate distance metric can improve
the algorithm performance. Experiments show that our method
has a great improvement in the effective performance of feature
extraction and can also get better search matching results.

Index Terms—Big data, image retrieval, feature ranking, dis-
tance learning.

I. INTRODUCTION

FA ced with the big media data, we need to organize

and manage these semi-structured and even unstructured

data effectively [1]–[4]. With the development of information

retrieval technology [5]–[7] and commercial search technol-

ogy [8] in recent years, database indexing and text retrieval

techniques has become a general pattern. However, the present

image retrieval performance still cannot meet the requirement

of expectations. Compared with text retrieval, image retrieval

is still in exploratory stage [9]–[11].

At present, there are two main types of image retrieval:

text based image retrieval (TBIR) and content-based image

retrieval (CBIR). Text based image retrieval makes use of

artificial marks to avoid visual analysis. Through the searching

and matching for texts, text based image retrieval establishes

the correlation link between images [12], [13]. However, with

the increase in size of the image database, the limitations of the

method based on artificial annotation are also shown. Manual
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annotation requires two much manpower and time consump-

tion [14]. when the size of the image database increases to

a certain extent, manual labeling for each image will become

impossible to achieve. At the same time, due to the humans’

understanding to image content often has a strong subjectivity,

the description for the same image will be different in manual

annotation [15]–[17].

In order to overcome the shortcomings of the methods based

on manual annotation, researchers put forward the content

based image retrieval [18], [19]. Different from the text based

image retrieval, content based image retrieval directly gets

visual vectors of the images to find out the similar charac-

teristics. According to the difference in the feature scale, it

is divided into the method based on global features and the

method based on local features. Content based image retrieval

can extract the relevant visual statistical characteristics such

as colors and textures. According to the distance measurement

between the feature vectors, images can be matched with each

other [20]–[22].

However, global features are susceptible to the background

and noise, especially when the object is partially occluded or

there is geometric distortion. It is difficult to establish effective

image matching. In addition, local features are irrelevant with

its scale, rotation and translation, which can be used to es-

tablish local similarity matching methods, even with complex

background or geometric distortion. In recent years, local

features draw more attentions [23]. In order to fully express

the visual content of images, an image may need thousands

of local features, which will increase the image similarity

matching process time. It is important to extract more effective

features and design corresponding index mechanism to reduce

the processing time [24]–[26].

In the research on large-scale image retrieval, the local

feature vectors are mapped. In order to build image correlation

matching, the similarity distance between images should be

measured. Content based image retrieval achieve the image

quantization based linear expression. In general, the inverted

index mechanism significantly increases the efficiency of the

large scale images matching [27]–[29]. However, it will reduce

the visual discrimination ability of local features. Because of

the ambiguity of quantization errors, unrelated images may

also share the same visual words and thus causing the errors

in image matching. This situation is becoming increasingly

apparent and it greatly affects the accuracy of retrieval results.

In order to ensure the efficiency of the existing quantitative

method and further improve the accuracy of quantitative

definition, more efficient image representation models need

to be put forward [30].
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In this paper, we proposed a fast image retrieval method

designed for big data. Considering the local features and

ranking the vectors, we can get a more accurate retrieval

results. The main contributions of this paper are as followed.

1) First of all, this paper is innovative in dealing with

the image features. When images are represented as feature

vectors, the weight relationship between the different elements

will affect the accuracy of retrieval. In this paper, the detailed

work was done, and the feature vectors were sorted according

to the contribution level, which could make the best use of the

effective information.

2) It is well known that the image recognition based on deep

learning will take a lot of processing time, and the different

image database will affect the matching results. In this paper,

based on the traditional distance matching algorithm, the

matching levels of retrieved images were calculated. This

method can not only guarantee the accuracy of the retrieval

system, but also save a lot of retrieval time.

3) In this paper, we improve feature extraction methods

for image retrieval. Gray co-occurrence matrix, color co-

occurrence matrix and difference between pixels of scan

pattern are used as the foundation. In addition, local binary

pattern and histogram of oriented gradient are firstly to be used

with other features. The increase in the number of features can

help us to improve the performance of the retrieval algorithm.

It also provides enough basic data for feature dimension

reduction.

The rest of this paper is organized as followed. Section II

provides the background and motivation for feature extraction.

Section III formulates the fast image retrieval problem and

presents the proposed approach. In Section IV and V, we show

the experimental results and discuss the comparison. Finally,

conclusions are drawn in Section VI.

II. BACKGROUND AND MOTIVATION

As a new research filed, the content based image retrieval

has a great commercial potential. Visual features are very

important for images, which are based on the prior knowl-

edge of the image content. In addition, visual features are

closely related with the specific application areas. Based on

content-based image retrieval technology, visual features can

be extracted automatically or semi automatically to improve

the robustness of the system and ensure the quality of image

retrieval.

The characteristic information of images can be classified

into two categories. Low level feature attribute contains color

feature, texture feature and shape feature. Semantic feature

attribute contains interpretation and identification of objects.

However, due to the current development of computer vision

and image understanding, the image retrieval technique is still

unable to realize semantic image attribute. Key of image re-

trieval is still extracting low-level feature attribute information.

Shape features are the most significant features for images.

At the same time, it is also the most difficult to describe. For

humans, it is easy to identify the objects in dominant position.

For computers, they do not the ability. And shape features

can help [31]. In the field of image retrieval, methods for

shape feature extraction can be divided into two directions:

extraction based on edge attributes and extraction based on

region shape features [32]. The main idea of extraction for

edge shape features is based on the principle of edge detection.

Edge shape features are applied mainly in images whose edge

is clear and separated. Perimeter, angle, eccentricity and points

of interest are used as descriptors. Fourier descriptor, invariant

moment, autoregressive model, the central chain code and the

curvature scale space are often used in the analysis methods

[33], [34].

Color attributes are the most simple image features, which

can be used in the field of image retrieval [35]. The common

retrieval methods can be divided into color histogram, color

correlogram, color coherence vector, color matrix and so

on. Through color channel decomposition for images, color

histogram is used for calculating and comparing similarity

between two images. In the content based image retrieval

technology, color correlogram is more effective than the tra-

ditional color histogram. In other words, color histogram just

simply reflects the proportion of different values in every color

channel. However, the color correlogram not only reflects the

global statistical relationship, but also expresses the spatial

transformation between color and distance. In addition, color

matrix mainly uses the mean, variance and skewness as the

color feature information of images. Color matrix retrieval

method has been proved to be representative as the distribution

of color information.

Texture features are mainly extracted to describe the spa-

tial relationship between the pixels in local area. Generally

speaking, the methods for texture features extraction can

be divided into the following four categories: description

based on the statistical method, description based on structure

method, description based on spectrum method and description

based on model method [36]. Specifically speaking, feature

description based on statistical method mainly considers distri-

bution on pixel values. The most common statistical methods

often describe the texture characteristics based on the gray

histogram. In order to make full use of the spatial distribution

on pixel values, co-occurrence matrix was proposed to describe

the texture feature. The method considers the information on

distance and direction between pixels. By constructing a co-

occurrence matrix, correlation information can be used as

a component of image feature vectors. In addition, texture

features based on human visual perception was put forward

including the following attributes: contrast, likeness, roughness

and so on. Description based on structure method considers

regular spatial structure arrangement.

Obviously, it will consume a large amount of time and

storage space to find similarity for every image pairs in a

database with too much images. In order to improve the re-

trieval efficiency, information dimensionality must be reduced

as much as possible. With the explosive development of big

data, image size has gradually become larger. Therefore, image

dimension reduction processing is the premise and foundation

of the content based image retrieval.

Different distance calculation methods can be used in image

retrieval. For example, Manhattan distance is often used. This

method is simple and easy to understand. The relationship
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Fig. 1. Proposed content-based image retrieval method, this method is divided into three steps. Specific image features (GCM,CCM,DBPSP,LBP and HoG)
are extracted and dimension reduction is necessary.

between the two feature vectors can be computed as Equ.1.

d(q, xj) =
i=m
∑

i=1

|xij − qi| (1)

Euclidian distance is another method and the results can be

obtained as Equ.2.
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∑
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In addition, cross correlation, minimum mean distance,

statistical measure are also can be used in this problem, as

shown in Equ.3, 4 and 5.
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zj =

∑i=m

i=1
xij

m
(4)

sj =

i=m
∑

i=1

[

Max(xij , qi)

Min(xij , qi)
− 1

]2

(5)

III. IMAGE RETRIEVAL WITH DIMENSION REDUCTION

Based on the above content, this paper proposed an image

retrieval method. This method is divided into three steps, as

shown in Fig.1. First, we extracted specific image features.

The retrieval time was increased due to the large number

of extracted features, and it was necessary to make feature

dimension reduction as the second step. At last, new distance

theory was put forward for image analysis and ultimately we

got the corresponding retrieval images.

Gray co-occurrence matrix is actually obtained through the

probability (P (i, j)) of gray co-occurrence pair(gk,l, gm,n) in

four directions (θ) at different distances (d) to describe the

texture feature. Given an offset distance for gray image, there

will be four gray co-occurrence matrixes. In addition, the size

of the gray co-occurrence matrix is Q ∗ Q, and Q is the

maximum value of the image. So the element value of gray

co-occurrence matrix is determined by number of pixels in

certain offset distance and angle.

P (i, j, d, 45o) = ((k, l), (m,n)) ∈ (Mx ×My)× (Mx ×My)
(6)

|k −m| = d, |l − n| = d, gk,l = i, gm,n = j (7)

In theory, the gray co-occurrence matrix is a two-

dimensional matrix in 256×256. In this way, the quantization

scale and computation cost of gray co-occurrence matrix is

relatively large. In practice, we can quantify gray value by

classification in different level N(N = 8, 16, 32, 64, ...), so

gray co-occurrence matrix can be used in the actual image

processing. In this paper, N is set to be 8.

In addition, gray co-occurrence matrix considers the image

variation information on direction, spacing and amplitude, but

it does not directly provide different texture feature value.

We must make a quantitative description on smooth texture,

roughness, contrast and similar information. In this paper,

four other statistical characteristic are used to solve this

problem. We mainly use the angular second moment, contrast,

correlation and inverse difference, which give a more accurate

feature extraction on images.

To reflect the texture of the local image features, we can

use a 3× 3 window scaning in the image with four directions

respectively, the statistics of the adjacent four pixel value

changes, as shown in Fig.2 and 3. All features can be divided

into seven types, in accordance with the frequency of values,

so we can get a 7×7 two-dimensional matrix, known as CCM

[37].

Mi(u, v) = Mi(u, v|δx, δy)

= Mi(Pi[x, y], Pi[x+ δx, y + δy])
(8)

mi(u, v) =
Mi(u, v)

Ni

(9)
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Fig. 2. 3× 3 window for color co-occurrence matrix (CCM)

Fig. 3. 7 motifs color co-occurrence matrix (CCM)

Ni =

6
∑

u=0

6
∑

v=0

Mi(u, v) (10)

Color co-occurrence matrix (CCM) can only detect the

direction of local texture in images, but can not carefully detect

the complexity of textures. Difference between pixels of scan

pattern (DBPSP) can be used to solve the problem.

dm = |Pm − Pm+1|+ |Pm+1 − Pm+3|+ |Pm+3 − Pm+2|
(11)

ARi =
1

Ni

j
∑

Ni

d
j
i (x, y) (12)

Local binary pattern (LBP) is a kind of operator used to

describe the local texture feature of images. It has remark-

able advantages such as rotation invariance and gray scale

invariance. At first, LBP is proposed used for texture feature

extraction. Moreover, the extracted features are local textures

in images [38].

Fig. 4. Rotation invariant local binary pattern

Original LBP operator is defined with the 3 × 3 window,

gray value center pixel is compared with adjacent pixels, if the

surrounding pixel value is greater than the center pixel value,

the pixel is labeled as 1, otherwise it is labeled as 0. So, 8-bit

binary number ( a total of 256 codes) is produced with 3× 3
neighborhood with eight points , that is to be the LBP value of

window center pixel, and the value can be used to reflect the

texture information.In this paper, we make use of the rotation

invariant LBP operator as shown in Fig.4.

Histogram of Oriented Gradient (HoG) is used for object

detection in computer vision and image processing as a feature

descriptor [39]. It is composed of the gradient direction

histograms in local areas. In addition, hog feature can be

combined with support vector machine as the classifier in

image recognition [40], [41].

The retrieval time will be increased due to the large number

of features extracted, it is necessary to make feature dimension

reduction as the second step. In this step, maximal mutual

information criterion is used as the dimensionality reduction

algorithm [42].

I(x, y) =
∑

i,j

p(xi, yj)log
p(xi, yj)

p(xi)p(yj)
(13)

maxV =
1

|S|
2

∑

i∈S

I(c, xi) (14)

minW =
1

|S|
2

∑

i,j∈S

I(xi, yj) (15)

maxφ = (V −W ) (16)

By this method, we can sort the image features according to

the importance. There are many other calculation method for
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the distance between two vectors, weighted Euclidian distance

is calculated by Equ.17, 18 and 19.

d(q, xj) =

√

√

√

√

i=m
∑

i=1

ρi(xij − qi)2 (17)

ρi =
n

∑n

j=1
(xij − z̄i)2

(18)

z̄i =

∑j=1

n xij

n
(19)

Based on the distance between images, different calculation

on image pairs can be used for the retrieval results.

IV. PERFORMANCE EVALUATION AND DATABASES

A. Performance evaluation

It is very important to evaluate the advantages and disadvan-

tages of the image retrieval system. In recent years, a number

of indicators to measure retrieval methods have been proposed.

In this paper, we use the most common precision and recall

to carry out test analysis [43]. Precision refers to the ratio

between retrieval similar images number TP with the retrieval

total images number TP + FP , which is used to measure the

precision of image retrieval system. Recall refers to the ratio

between retrieval similarity image number TP in the database

with all the total number TP + FN, which is used to measure

the recall of image retrieval system. These two indicators can

be calculated by Equ.20 and 21.

precision =
TP

TP + FP
(20)

recall =
TP

TP + FN
(21)

In other words, the precision is the ratio between the

retrieved images and all the retrieved images. The recall is

the ratio between the retrieved relevant images and all the

related images in the image database. Generally speaking, the

more relevant, the better in feedback of retrieved images.

However, precision and recall are mutually restricted. For

example, there are 1000 images in the image database, and

only 100 images are relevant with the query image.If the first

retrieved 10 images are correct, the precision is 1, but the

recall is only 0.1. At the other extreme, if all the 1000 images

in the database have been retrieved, recall is 1, but precision

is only 0.1. In this paper, the precision-recall curve analysis

is used to assess the various retrieval methods, on the other

hand, calculation of comprehensive evaluation index is used

to evaluate the performance of the analysis.

B. Databases

In this section, we will investigate the retrieval performance

both with the proposed model and the other models for

comparison. In addition, experiments were conducted on three

sets of image database, which proved the validity of the

proposed method.

Fig. 6. Samples for Oxford Flowers database

1) WANG dataset: As the first experiment in this paper,

WANG dataset has 1000 images [44], [45]. There are 10

kinds of these images, each of which is 100. The images in

Fig.5 are the representation of the each categry. The database

can be downloaded in http://wang.ist.psu.edu/docs/related/. In

addition, these 1000 images can be divided into two parts, 900

images are used as training images, and the remaining 100 are

used as test images. Of course, the proportion for each type

of image is the same.

2) Oxford Flowers dataset: Oxford Flowers dataset is used

for the second experiment [46]. In this database, the re-

searchers chose a number of very common flowers in the UK,

a total of 17 categories. For each category, 80 representatives

of the picture are chosen. Some samples are shown in Fig.6. As

similar with first experiment, pictures will also be divided into

two categories: training and testing, in which the 60 images

are used to train, and the other 20 images are used to test.

3) CIFAR-10 dataset: As the third experiment, CIFAR-10

dataset [47] contains 60,000 images, which are labeled subsets

of the 80 million tiny images dataset. 50000 images are used

to train and the other 10000 images are used to test.

V. EXPERIMENTAL RESULTS

A. Compared with the results of four models

To demonstrate the advantages of this method, we introduce

some other methods: Jhanwar [48], Huang [49], Lin [50] and

ElAlami [31], [51]. Jhanwar [48] present MCM (motif co-

occurence matrix) as a feature for CBIR (contented based

images retrieval), the MCM is used to measure the distance

between images information in both color and texture. Huang

[49] put forward a contented based images retrieval using the

similarity between image textures. Sub-band gradient vectors

are used as feature to combine the texture similarity. Lin [50]

combine three features for contented based images retrieval.

Color co-occurrence matrix is useful for measuring the simi-

larity between images. Elalami [31], [51] presented a model

depending the most relevant features.

The results using different retrieval models obtained on the

Wang database are listed in the Tables II and III. And the
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TABLE I
DEFINITION OF PRECISION AND RECALL

Relevant Irrelevant Total

Retrieved TP FP Predicted Positive
No retrieved FN TN Predicted Negative
Total Actual Positive Actual Negative TP+FP+FN+TN

Fig. 5. Samples for Wang database

Fig. 7. Specific comparisons in Wang database.

Fig. 8. Specific comparisons in Oxford Flowers database.

results obtained on the Oxford Flowers database are listed in

the Tables IV and V. In additions, Fig.7 and 8 show the specific

comparisons. It can be seen from the experimental results that

our method can get higher precision and recall in most of the

retrieval process.

B. Comparison of the retrieval time of the different models

The time consumption of image retrieval process is an

important index in retrieval system. Three databases are tested

used in this paper respectively using different five methods.

Finally the results obtained are shown in the Tables VI, VII

and VIII. It can be seen from the experimental results that our

method can get result quickly in most of the retrieval process.

Usually, the retrieval time and the number of feature extrac-

tion are reverse. The more features, the higher the accuracy of

retrieval, but it will be a waste of time cost. On the contrary,

the time cost will be reduced. Experiments show that our

method can find a good balance between the retrieval accuracy

and the time cost.

In this part of the method, a large number of features are

extracted, but the contribution of each feature to the retrieval

result is different. As an innovation point, the importance of

feature ordering is used to reduce the feature dimension, and

to reduce the retrieval time as far as possible.

The proposed features based on co-occurrence information

quantitative characteristic acceleration can get the best retrieval

performance results , which proves the co-occurrence informa-

tion between visual features not only to guarantee the effective

matching of similarity between images, have also contributed

to improve the efficiency of quantitative character, especially

when asked to quantify the time overhead is smaller. The

acceleration and optimization effect is more obvious.

C. The relationship between precision and number of feature

Compared with other methods, the proposed method extract-

s many kinds of features, which will have a negative impact

on the retrieval time. So it is necessary to discuss the impact

of the number of features on the whole algorithm. Through the

arrangement of this method, the features will be sorted based

on their weight. According to this order, we use the extracted

features from less to more, and observe the change trend of

the retrieval rate. The experimental results are shown in Fig.9.

Using different number of features, we obtained precision

for the statistics under the conditions of different searching

number. Experiments show that, no matter how the retrieval

situation changes, if the number of features increase to a

certain extent, it can not improve the results when continuing

to increase feature number .
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TABLE II
THE COMPARISON OF AVERAGE PRECISION FOR DIFFERENT MODELS APPLIED IN WANG DATABASE

African Beach Monuments Buses Food Dinosaurs Elephants Flowers Horses Mountains Average

Jhanwar [48] 0.453 0.398 0.374 0.741 0.369 0.915 0.304 0.852 0.568 0.293 0.527
Huang [49] 0.424 0.446 0.411 0.852 0.427 0.587 0.426 0.898 0.589 0.268 0.533
Lin [50] 0.683 0.540 0.562 0.888 0.733 0.992 0.658 0.891 0.803 0.522 0.727
Elalami(2011) [31] 0.703 0.561 0.571 0.876 0.741 0.987 0.675 0.914 0.834 0.536 0.739
Elalami(2014) [51] 0.726 0.593 0.587 0.891 0.772 0.993 0.702 0.928 0.856 0.562 0.761
Proposed 0.730 0.612 0.597 0.890 0.781 0.990 0.713 0.916 0.862 0.573 0.766

TABLE III
THE COMPARISON OF AVERAGE RECALL FOR DIFFERENT MODELS APPLIED IN WANG DATABASE

African Beach Monuments Buses Food Dinosaurs Elephants Flowers Horses Mountains Average

Jhanwar [48] 0.115 0.121 0.127 0.092 0.129 0.072 0.132 0.087 0.102 0.135 0.111
Huang [49] 0.126 0.113 0.132 0.099 0.122 0.104 0.119 0.093 0.103 0.152 0.116
Lin [50] 0.141 0.192 0.174 0.121 0.132 0.101 0.149 0.112 0.134 0.213 0.146
Elalami(2011) [31] 0.153 0.198 0.182 0.116 0.138 0.098 0.156 0.118 0.139 0.228 0.152
Elalami(2014) [51] 0.161 0.203 0.191 0.126 0.148 0.109 0.163 0.129 0.144 0.236 0.161
Proposed 0.173 0.221 0.197 0.132 0.135 0.113 0.159 0.134 0.146 0.229 0.164

TABLE IV
THE COMPARISON OF AVERAGE PRECISION FOR DIFFERENT MODELS APPLIED IN OXFORD FLOWERS DATABASE

20 30 40 50 60 70 80 90 100

Jhanwar [48] 0.603 0.491 0.484 0.479 0.458 0.336 0.427 0.391 0.372
Huang [49] 0.621 0.502 0.491 0.488 0.462 0.453 0.442 0.426 0.391
Lin [50] 0.764 0.701 0.682 0.668 0.643 0.616 0.597 0.568 0.531
Elalami(2011) [31] 0.793 0.765 0.742 0.687 0.656 0.632 0.605 0.583 0.556
Elalami(2014) [51] 0.821 0.804 0.767 0.706 0.687 0.665 0.642 0.614 0.589
Proposed 0.830 0.812 0.797 0.732 0.703 0.683 0.659 0.634 0.596

TABLE V
THE COMPARISON OF AVERAGE RECALL FOR DIFFERENT MODELS APPLIED IN OXFORD FLOWERS DATABASE

20 30 40 50 60 70 80 90 100

Jhanwar [48] 0.115 0.121 0.127 0.092 0.129 0.072 0.132 0.087 0.092
Huang [49] 0.126 0.113 0.132 0.099 0.122 0.104 0.119 0.093 0.103
Lin [50] 0.141 0.192 0.174 0.121 0.132 0.101 0.149 0.112 0.134
Elalami(2011) [31] 0.153 0.198 0.182 0.116 0.138 0.098 0.156 0.118 0.139
Elalami(2014) [51] 0.161 0.203 0.191 0.126 0.148 0.109 0.163 0.129 0.144
Proposed 0.173 0.221 0.197 0.132 0.135 0.113 0.159 0.134 0.146

TABLE VI
THE COMPARISON OF RETRIEVAL TIME FOR DIFFERENT MODELS APPLIED IN WANG DATABASE

10 20 30 40 50 60 70 80 90 100

Jhanwar [48] 1.53 1.62 1.72 1.91 1.76 1.85 1.73 1.71 1.66 1.87
Huang [49] 1.50 1.47 1.51 1.51 1.54 1.52 1.51 1.49 1.53 1.55
Lin [50] 0.81 0.82 0.81 0.80 0.91 0.85 0.82 0.84 0.78 0.86
Elalami(2011) [31] 0.62 0.62 0.59 0.55 0.56 0.55 0.53 0.51 0.56 0.57
Elalami(2014) [51] 0.50 0.52 0.51 0.51 0.54 0.49 0.51 0.47 0.48 0.45
Proposed 0.49 0.48 0.50 0.53 0.51 0.47 0.49 0.46 0.53 0.42

TABLE VII
THE COMPARISON OF RETRIEVAL TIME FOR DIFFERENT MODELS APPLIED IN OXFORD FLOWERS DATABASE

34 68 102 136 180 214 248 282 316 360

Jhanwar [48] 3.11 3.14 3.08 2.92 3.14 2.93 3.18 3.21 3.15 3.31
Huang [49] 2.52 2.61 2.65 2.33 2.53 2.62 2.32 2.34 2.43 2.11
Lin [50] 1.72 1.71 1.71 1.74 1.81 1.88 1.76 1.82 1.77 1.87
Elalami(2011) [31] 1.12 1.11 1.05 1.12 1.14 1.13 1.23 1.22 1.31 1.19
Elalami(2014) [51] 0.92 0.88 0.95 0.87 0.89 0.83 0.79 0.92 0.93 0.89
Proposed 0.89 0.84 1.02 0.84 0.83 0.86 0.76 0.91 1.02 0.83
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TABLE VIII
THE COMPARISON OF RETRIEVAL TIME FOR DIFFERENT MODELS APPLIED IN CIFAR-10 DATABASE

100 200 300 400 500 600 700 800 900 1000

Jhanwar [48] 99.1 96.2 92.8 91.6 94.8 91.9 92.2 102.5 103.4 102.7
Huang [49] 75.1 72.3 73.9 71.1 74.9 73.4 75.2 73.4 73.1 72.9
Lin [50] 40.2 42.1 43.5 41.3 44.1 41.3 42.5 42.1 43.2 42.8
Elalami(2011) [31] 29.9 27.4 28.1 31.2 27.8 29.2 26.6 25.8 25.2 28.8
Elalami(2014) [51] 16.4 13.4 12.6 13.5 14.1 17.2 13.6 12.6 14.6 18.2

Proposed 16.1 12.2 11.4 14.7 13.3 16.4 12.2 11.1 13.1 19.4

Fig. 9. The relationship between precision and number of feature in CIFAR-
10 database.

Fig. 10. Average precision and recall at different distance metrics

D. Average precision at different distance metrics

In pattern recognition, different distance detection methods

have different effects on the detection results. In Sec.II, we

list several commonly used distance calculation methods,such

as Manhattan distance, Euclidian distance, Weighted Euclidian

distance, Cross correlation, the minimum mean distance and

the statistical measure. This part mainly discusses the influence

of distance detection method on the detection accuracy. The

experimental results are shown in Fig.10.

Experimental results show that, no matter what distance cal-

culation method, the precision and the recall are contradictory,

with the increase of the number of searches, both show the

change in the opposite direction.

VI. CONCLUSION

On the basis of the existing methods for image retrieval,

this paper focuses on the extraction of new features, which

makes it more closely related to the image characters. First,

we extract specific image features. Then the retrieval time will

be increased due to the large number of features extracted,

it is necessary to make feature dimension reduction. At last,

new distance theory is put forward for image analysis, and

ultimately get the best image related to retrieval samples.

Features such as GCM and DBPSP are used. In addition, LBP,

HoG and other features which have been successfully used in

other fields are combined in this paper. Most importantly, a

feature selection and ranking method plays an important role

in this algorithm. At the same time, experiments show that our

method has a great advantage in the retrieval time, which can

meet the needs of real-time retrieval.

As a kind of concise and natural visual expression method,

combination of features proposed has the following three

advantages: it can be through the location information of local

features and the relationship between each other including

detection and extraction, which does not require supervised

training alone and classification learning, and can effectively

avoid the combinatorial explosion caused by random combina-

tion of features for it. Local area image provides a multi-scale

visual expression, both contour description and preliminary

clear details, compared to the single visual words, it has

stronger visual expression and the ability to distinguish be-

tween local features. The relative position information implied

in the combination of features can be naturally integrated into

the large-scale image of the inverted index structure, geometric

consistency check corresponding both to ensure the efficiency

and ensure the accuracy of the matching. Of course, more

features can still be extracted, in the future work, this part of

the content remains to be studied.
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